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Abstract. Variational iteration method has been successful to solve a wide range of linear and
nonlinear problems. This method is convergent to the exact solution, and furthermore, if there
is an explicit form of the exact solution, then the method converges very rapidly. In this paper,
we consider acoustic equations. Our contribution is a new application of the variational iteration
method for solving the acoustic equations. Results show that the variational iteration method
gives physically correct approximate solutions to the acoustic equations. We demonstrate the
method solving the acoustic equations using several iterations.

1. Introduction

A mathematical model needs to be solved to find the solution to a real problem. It is generally
difficult to find analytical exact solutions to mathematical models if the models contain many
variables and have complex structures. In this case, an approximate approach gives a way to
find solutions to real problems.

Elasticity equations are a model for wave propagation. Elasticity equations can be simplified
into acoustic equation under some assumptions. Acoustics include sound waves. Acoustic
equations model pressure and velocity changes of a system. One application of acoustic equations
is the vibration of a cable wire that causes sound waves.

One of methods that can solve the acoustic equations is the variational iteration method.
The variational iteration method was developed by Ji-Huan He [1–4]. This method has been
used by many researchers to solve problems. The method is applicable for solving a large
range of equations, including the acoustic equations. Solutions obtained from this method are
approximations of the exact solution.

In this research, we focus on solving the acoustic equations [5–8], in particular the model
discussed by LeVeque [5]. To our knowledge, our work is the first in implementing the variational
iteration method to solve the acoustic equations. We construct the approximate solutions using
the theory of the variational iterations. We then use the Maple software to compute the iterations
and generate the plots of the approximate solutions. Several iterations are enough to show that
the approximate solutions produced by the variational iteration method are physically correct.

The rest of the paper is organized as follows. First we recall how the variational iteration
method works in solving a partial differential equation. Then we construct approximate solutions
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to the acoustic equations. Afterward, we present some computational results. Finally some
concluding remarks are drawn.

2. Variational iteration method

The variational iteration method does not need numerical discretization, as the method is an
analytical approach [9, 10]. This method has been proved to be reliable, accurate and effective
used to find solutions to differential equations. The method needs an initial value of the
differential equations.

Let us illustrate some basic concepts of variational iteration method. Consider the following
equation

Lu+Nu = g(x). (1)

Here L is a linear operator, N is a nonlinear operator, g(x) is a nonhomogeneous term and u is
a function of x. From (1), we can construct a correction functional as follows

un+1(x) = un(x) +

∫

x

0

λ{Lun(τ) +Nũn(τ)− g(τ)}dτ, n ≥ 0 (2)

with λ being a general Lagrange multiplier. The index n denotes the n-th order iteration, and
then ũn is assumed as a restriction variation, that is, δũn = 0. We note that integration by parts
have the following forms

∫

λ(τ)u′
n
(τ)dτ = λ(τ)un(τ)−

∫

λ′(τ)un(τ)dτ (3)

∫

λ(τ)u′′
n
(τ)dτ = λ(τ)u′

n
(τ)− λ′(τ)un(τ) +

∫

λ′′(τ)un(τ)dτ (4)

To show how the variational iteration method works, let us consider the following partial
differential equation (see Wazwaz [4]):

ux − ut = 0, u(0, t) = t, u(x, 0) = x. (5)

We construct the correction functional from (5) to obtain

un+1(x, t) = un(x, t) +

∫

t

0

λ(τ)(unτ − ũnt)dτ. (6)

From (3) and (4) then we obtain the stationary conditions

λ′(τ) = 0, (7)

1 + λ(τ)|τ=t = 0. (8)

The Lagrange multiplier for the above equations is

λ = −1. (9)

Then, we can substitute the Lagrange multiplier (9) into (6) to have the iteration formula

un+1(x, t) = un(x, t)−

∫

t

0

(unτ − unt)dτ, n ≥ 0. (10)

Iterating (10) we have
u0(x, t) = t, (11)
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u1(x, t) = x+ t, (12)

u2(x, t) = x+ t, (13)

u3(x, t) = x+ t, (14)

... (15)

un(x, t) = x+ t. (16)

Therefore, the exact solution to (5) is u(x, t) = x+ t.

3. Acoustic equations

The acoustic equations, in the simplest form, are [11,12]

pt + ux = 0, (17)

ut + px = 0, (18)

where p(x, t) is the pressure, u(x, t) is the velocity, t is time variable and x is the space variable.
We assume that the initial condition is given by p(x, 0) = 0.1 sech2(0.2x) and u(x, 0) = 0.

We construct a correction functional to solve (17) and (18) using the variational iteration
method

pn+1(x, t) = pn(x, t) +

∫

t

0

λ1(τ)

(

∂pn(x, τ)

∂τ
+

∂ũn(x, τ)

∂x

)

dτ, (19)

un+1(x, t) = un(x, t) +

∫

t

0

λ2(τ)

(

∂un(x, τ)

∂τ
+

∂p̃n(x, τ)

∂x

)

dτ. (20)

Here λ1 and λ2 are Lagrange multipliers. In (19) we make the functional to be stationary to pn.
Furthermore, in (20) we make the functional to be stationary to un, so we have

δpn+1(x, t) = δpn(x, t) + δ

∫

t

0

λ1(τ)
∂pn(x, τ)

∂τ
dτ + δ

∫

t

0

λ1(τ)
∂ũn(x, τ)

∂x
dτ, (21)

δun+1(x, t) = δun(x, t) + δ

∫

t

0

λ2(τ)
∂un(x, τ)

∂τ
dτ + δ

∫

t

0

λ2(τ)
∂p̃n(x, τ)

∂x
dτ, (22)

where ũn and p̃n are assumed as restriction variations. Noticing that δp̃n and δũn = 0, we obtain

δpn+1(x, t) = δpn(x, t) + δ

∫

t

0

λ1(τ)
∂pn(x, τ)

∂τ
dτ, (23)

δun+1(x, t) = δun(x, t) + δ

∫

t

0

λ2(τ)
∂un(x, τ)

∂τ
dτ. (24)

Using integration by parts, (23) and (24) can be written as follows

δpn+1(x, t) = [1 + λ1(τ)]δpn(x, t)− δ

∫

t

0

λ′

1(τ)pn(x, t)dτ, (25)

and

δun+1(x, t) = [1 + λ2(τ)]δun(x, t)− δ

∫

t

0

λ′

2(τ)un(x, t)dτ. (26)
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Using (25), we obtain the stationary conditions

pn(τ, t) :

{

λ′

1(τ) = 0,

1 + λ1(τ) = 0.
(27)

Equation (27) leads to
λ1(τ) = −1. (28)

Using (26), we obtain the stationary conditions

un(τ, t) :

{

λ′

2(τ) = 0,

1 + λ2(τ) = 0.
(29)

Equation (29) leads to
λ2(τ) = −1. (30)

Now, we obtain the value of the Lagrange multiplier λ1 = λ2 = −1. Substituting that value
into (19) and (20), we find

pn+1(x, t) = pn(x, t)−

∫

t

0

(

∂pn(x, τ)

∂τ
+

∂un(x, τ)

∂x

)

dτ, n ≥ 0, (31)

un+1(x, t) = un(x, t)−

∫

t

0

(

∂un(x, τ)

∂τ
+

∂pn(x, τ)

∂x

)

dτ, n ≥ 0. (32)

Equations (31) and (32) are the variational iteration formulas for (17) and (18).

4. Computational results

In this section we present some computational experiment to demonstrate the calculations of
the variational iteration method. Here we calculate the first, second and third iterations using
the variational iteration formulas (31) and (32). All quantities are assumed to have SI units
with the MKS system.

For our computational experiment, we are given the initial condition

p(x, 0) = 0.1 sech2(0.2x), (33)

and
u(x, 0) = 0. (34)

We take hyperbolic secant function for initial pressure and zero function for velocity because
these functions are smooth, so they have continuous derivatives. Therefore, they can be used
in the demonstration for our method. The amplitude and phase constant in (33) are taken to
be 0.1 and 0.2, respectively.

Using the Maple software, we obtain the following results:

p0(x, t) = 0.1 sech2(0.2x), (35)

u0(x, t) = 0, (36)

p1(x, t) = 0.1 sech2(0.2x), (37)
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Figure 1. Variational iteration solution for p3(x, t).

u1(x, t) = 0.04 sech(0.2x)2 tanh(0.2x)t, (38)

p2(x, t) = 0.1 sech(0.2x)2 + 0.008 sech(0.2x)2 tanh(0.2x)2 t2

− 0.02 sech(0.2x)2
(

0.2 − 0.2 tanh(0.2x)2
)

t2,
(39)

u2(x, t) = 0.04 sech(0.2x)2 tanh(0.2x)t, (40)

p3(x, t) = 0.1 sech(0.2x)2 + 0.008 sech(0.2x)2 tanh(0.2x)2 t2

− 0.02 sech(0.2x)2
(

0.2 − 0.2 tanh(0.2x)2
)

t2,
(41)

u3(x, t) = 0.04 sech(0.2x)2 tanh(0.2x)t + 0.0011 sech(0.2x)2 tanh(0.2x)3 t3

− 0.0011 sech(0.2x)2 tanh(0.2x)
(

0.2 − 0.2 tanh(0.2x)2
)

t3.
(42)

In this paper, we stop our calculations up to the third iteration. The approximate solution
for the pressure is p3(x, t) and the velocity is u3(x, t). The wave propagation for the pressure is
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Figure 2. Variational iteration solution for u3(x, t).

illustrated in figure 1, and for the velocity in figure 2. As time evolves, the pressure from the
center of the domain is spread out to the left and to the right. The pressure wave propagating to
the left has negative velocity, whereas the one to the right has positive velocity. This behavior is
obviously correct physically (moving to the right means that the velocity is positive, and moving
to the left means the velocity is negative). In figure 2, the velocity tends to zero for large x

and t.

5. Conclusion

We have solved the acoustic equations using the variational iteration method. This method is
meshless, which means that it does not need any numerical discretization of the domain. To
obtain more accurate results, we just need to do more iterations. Using the variational iteration
method, we can compute the solution to the acoustic equations at every value of time and every
position of space.
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