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Abstract. In this paper we propose the use of Adomian decomposition method to solve one-
dimensional acoustic equations. This recursive method can be calculated easily and the result
is an approximation of the exact solution. We use the Maple software to compute the series
in the Adomian decomposition. We obtain that the Adomian decomposition method is able to
solve the acoustic equations with the physically correct behavior.

1. Introduction

Physical phenomena are interesting study for the last decades. Many methods have been
developed successfully to solve partial differential equations that help to analyze real-world
problems. One interesting real-world problem is wave propagation. This paper considers the
one-dimensional wave equations, in particular the one-dimensional acoustic equations. Acoustic
equations can be derived from the nonlinear elastic equations, as described by LeVeque [1].

In this paper, the acoustic equations are solved using the Adomian decomposition method.
Series in the Adomian decomposition method converges to the exact solution. The method
attacks the problem in a straightforward way without any transformation formulas [2]. The
method implements an integral operator to solve differential equations. When the exact solution
cannot be expressed explicitly, the Adomian decomposition method results in approximations
of the exact solution [3–6]. More terms involved in the Adomian decomposition solution series
result in a more accurate approximation. To our knowledge, our work is the first in applying
the Adomian decomposition method to solve the acoustic equations.

The rest of the paper is organized as follows. First, we write the problem description. Then
we present the Adomian decomposition method. After that, we provide some computational
results and discussion. Finally, concluding remarks are drawn.

2. Problem description

In this section, we describe the problem (the mathematical model) that we want to solve.
Starting from the general model, we simplify the model into the simplest form of acoustic
equations.

The general form of the acoustic equations are [7, 8]

pt +K (x)ux = 0, (1)



2

1234567890

Conference on Theoretical Physics and Nonlinear Phenomena 2016 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 856 (2017) 012003 doi :10.1088/1742-6596/856/1/012003

ρ (x)ut + px = 0. (2)

Here p (x, t) denotes the pressure, u (x, t) represents the velocity, x is the one-dimensional space
variable, and t is the time variable. In addition, K(x) is the bulk modulus of compressibility
and ρ(x) is the density. We use derivative operators pt = ∂p/∂t, px = ∂p/∂x, ut = ∂u/∂t and
ux = ∂u/∂x.

Taking K(x) = 1 and ρ(x) = 1, we obtain the acoustic equations in the simplest form

pt + ux = 0, (3)

ut + px = 0. (4)

Our goal in this paper is to solve (3) and (4) using the Adomian decomposition method.

3. Adomian decomposition method

In this section, we present the Adomian decomposition method to solve the acoustic equations.
To see how the Adomian decomposition method works, let us start by noting derivative

operators Lt = ∂/∂t and Lx = ∂/∂x, so (3) and (4) become

Ltp+ Lxu = 0, (5)

Ltu+ Lxp = 0. (6)

The inverse for derivative operators for Lt and Lx are L−1
t

=
∫

t

0
(.)dt and L−1

x =
∫

t

0
(.)dx. In

this paper, we only take the inverse with respect to the t variable. Applying the L−1
t

to the
both sides of (5) and (6), we obtain

L−1
t

Ltp+ L−1
t

Lxu = 0, (7)

L−1
t

Ltu+ L−1
t

Lxp = 0, (8)

or
p (x, t) = p (x, 0)− L−1

t
Lxu, (9)

u (x, t) = u (x, 0) − L−1
t

Lxp. (10)

The variables p (x, t) and u (x, t) have to be written in series of Adomian polynomials

p (x, t) =
∞
∑

n=0

pn (x, t), (11)

u (x, t) =

∞
∑

n=0

un (x, t). (12)

Applying the Adomian polynomials to the both sides, where p0 = p (x, 0) and u0 = u(x, 0), we
obtain

∞
∑

n=0

pn = p (x, 0)− L−1
t

Lx

∞
∑

n=0

un , (13)

∞
∑

n=0

un = u (x, 0) − L−1
t

Lx

∞
∑

n=0

pn , (14)

or
p0 + p1 + p2 + p3 + · · · = p (x, 0)− L−1

t
(Lx (u0 + u1 + u2 + u3 + · · · )) , (15)
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u0 + u1 + u2 + u3 + · · · = u (x, 0)− L−1
t

(Lx (p0 + p1 + p2 + p3 + · · · )) . (16)

The results of p and u decompositions are

p0 (x, t) = p (x, 0) , (17)

p1 (x, t) = −L−1
t

(Lx (u0 (x, t))) , (18)

p2 (x, t) = −L−1
t

(Lx (u1 (x, t))) , (19)

p3 (x, t) = −L−1
t

(Lx (u2 (x, t))) , (20)

...

u0 (x, t) = u (x, 0) , (21)

u1 (x, t) = −L−1
t

(Lx (p0 (x, t))) , (22)

u2 (x, t) = −L−1
t

(Lx (p1 (x, t))) , (23)

u3 (x, t) = −L−1
t

(Lx (p2 (x, t))) , (24)

...

For computational experiments in the next section, we choose initial conditions

p(x, 0) = 0.1 sech2(0.2x), (25)

u (x, 0) = 0, (26)

for (3) and (4). We choose hyperbolic secant function because the function is smooth, so it
has continuous derivatives. The amplitude phase and constant are taken to be 0.1 and 0.2,
respectively. In all calculations in this paper, all quantities are assumed to have SI units with
the MKS system.

4. Computational results

Adomian decomposition method needs some recursive iterations to get the approximation to the
exact solution. We note that more iterations lead to more accurate solution with this method if
the series is not yet convergent to the exact solution.

Using initial conditions (25) and (26), Adomian decomposition method leads to the following
series formulas

pk+1 (x, t) = −L−1
t

Lx

∞
∑

k=0

uk , k ≥ 0 , (27)

uk+1 (x, t) = −L−1
t

Lx

∞
∑

k=0

pk , k ≥ 0 , (28)

where the exact solution is given by

lim
n→∞

Pn = p (x, t) , (29)

lim
n→∞

Un = u (x, t) . (30)

The n-term approximations of the density p and the velocity u are

Pn[p] =

n−1
∑

k=0

pk (x, t), n ≥ 0, (31)
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Un[u] =
n−1
∑

k=0

uk (x, t), n ≥ 0. (32)

Using the Maple software, we obtain that the results of the iterations (up to p4) for the
pressure solution to our problem are expressed as follows:

p0 =
1

10
sech

(

1

5
x

)2

, (33)

p1 = 0, (34)

p2 =
1

125
sech

(

1

5
x

)2

tanh

(

1

5
x

)2

t2 −
1

50
sech

(

1

5
x

)2
(

1

5
−

1

5
tanh

(

1

5
x

)2
)

t2, (35)

p3 = 0, (36)

p4 =
1

9375
sech

(

1

5
x

)2

tanh

(

1

5
x

)4

t4 −
11

3750
sech

(

1

5
x

)2

tanh

(

1

5
x

)2
(

1

5
−

1

5
tanh

(

1

5
x

)2
)

t4

+
1

375
sech

(

1

5
x

)2
(

1

5
−

1

5
tanh

(

1

5
x

)2
)2

t4.

(37)

Furthermore, the results of the iterations (up to u4) for the velocity solution to our problem
are expressed as follows:

u0 = 0, (38)

u1 =
1

25
sech

(

1

5
x

)2

tanh

(

1

5
x

)

t, (39)

u2 = 0, (40)

u3 =
2

1875
sech

(

1

5
x

)2

tanh

(

1

5
x

)3

t3

−
4

375
sech

(

1

5
x

)2

tanh

(

1

5
x

)

(

1

5
−

1

5
tanh

(

1

5
x

)2
)

t3,

(41)

u4 = 0. (42)
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Figure 1. The approximate pressure P5[p] of the Adomian decomposition.

Figure 2. The approximate velocity U5[u] of the Adomian decomposition.
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Now, we compute P5[p] = p0 + p1 + p2 + p3 + p4 and U5[u] = u0 +u1 + u2 +u3 + u4 using the
above results. Therefore, we obtain that the approximate pressure and velocity are

P5 =
1

10
sech

(

1

5
x

)2

+
1

125
sech

(

1

5
x

)2

tanh

(

1

5
x

)2

t2

−
1

50
sech

(

1

5
x

)2
(

1

5
−

1

5
tanh

(

1

5
x

)2
)

t2

+
1

9375
sech

(

1

5
x

)2

tanh

(

1

5
x

)4

t4

−
11

3750
sech

(

1

5
x

)2

tanh

(

1

5
x

)2
(

1

5
−

1

5
tanh

(

1

5
x

)2
)

t4

+
1

375
sech

(

1

5
x

)2
(

1

5
−

1

5
tanh

(

1

5
x

)2
)2

t4,

(43)

and

U5 =
1

25
sech

(

1

5
x

)2

tanh

(

1

5
x

)

t+
2

1875
sech

(

1

5
x

)2

tanh

(

1

5
x

)3

t3

−
4

375
sech

(

1

5
x

)2

tanh

(

1

5
x

)

(

1

5
−

1

5
tanh

(

1

5
x

)2
)

t3,

(44)

respectively.

Results of the pressure P5 the velocity U5 are plotted in figure 1 and figure 2, respectively.
From these figures, the pressure from the origin point propagates to the left and to the right
directions as the time evolves. The velocity mimics the pressure wave propagation, because the
velocity is negative when the pressure wave propagates to the left, and the velocity is positive
when the pressure wave propagates to the right. This is the correct behavior that we expect. In
figure 2, the velocity tends to zero for large x and t.

5. Conclusion

We have solved the acoustic equations using the Adomian decomposition method. The method
produces solutions any time and space point. The Adomian decomposition method can be
implemented in a computer software with an inexpensive computation. The method is projected
to be successful for solving multidimensional problems of acoustics.
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