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A W H I T E N O I S E A P P R O A C H T O T H E 
S E L F - I N T E R S E C T I O N L O C A L T I M E S O F A G A U S S I A N 

P R O C E S S 

H E R R Y P R I B A W A N T O S U R Y A W A N 

Department of Mathematics, 
Sanata Dharma University, 

Yogyakarta, Indonesia, 
herrypribs@usd.ac.id 

Abstract. In this paper wc show that for any spatial dimension, the r e n o r m a l 

ized self-intersection local t imes of a certain G a u s s i a n process defined by indefinite 

W i e n e r integral exist as H i d a distributions . A n explicit expression for the chaos de

composit ion in terms of W i c k tensor powers of white noise is also obtained. W c also 

s tudy a rcgularizat ion of the self-intersection local t imes and prove a convergence 

result in the space of H i d a distributions . 

Key words: b - G a u s s i a n process, white noise analysis , sclf - intcrscction local t ime. 

Abstrak. D i d a l a m makalah ini d ibukt ikan b a h w a untuk s c b a r a n g d imcnsi spasia l 

rcnormal isas i dari w a k t u lokal pcrpotongan-dir i dari scbuah proses G a u s s i a n yang 

didefinisikan melalni integral W i e n e r tak tentu m e n i p a k a n distribusi H i d a . D e k o m -

posisi chaos dari distribusi H i d a tcrscbut j u g a dibcrikan s c c a r a ckspl is i t . S t u d i 

t e r h a d a p s c b u a h rcgularisasi dari w a k t u lokal pcrpotongan-dir i j u g a d i lakukan d a n 

d i b u k t i k a n s c b u a h basil terkait kckonvergcnan dari rcgularisasi tcrscbut di r u a n g 

distr ibusi H i d a . 

Kata kunci: proses G a u s s i a n - b , analisis white noise, w a k t u lokal pcrpotongan-dir i . 

1 . I N T R O D U C T I O N 

As an infinite-dimensional stochastic distribution theory, white noise analy
sis provides a natural framework for the study of local times and self-intersection 
local times of Gaussian processes, see e.g. [4]. The concept of self-intersection local 
times itself plays important roles in several branches of science. For example, it is 
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used in the construction of certain Euclidean quantum field [ 1 0 ] . I n the Edwards 
polymer theory self-intersection local times appeared in the path integral to model 
the excluded volume effects of t i ie polymer formations [3]. The first idea of analyz
ing local times and self-intersection local times using a white noise approach goes 
back at least to the work of Watanabe [ 1 1 ] . He showed that as the dimension of 
the Brownian motion increases, successive omissions of lowest order chaos in the 
Wiener-Ito decomposition are sufficient to ensure that the truncated local t ime is 
a white noise d istr ibut ion . A further investigation was given by Da Faria et al i n 
[1[ . They gave the chaos decomposition in terms of Wick tensor powers of white 
noise. Their results were later generalized to fractional Brownian mot ion for any 
Hurst parameter H 6 ( 0 , 1 ) by Drumond et al [2 [ . I n the present paper we pro
vide another direction of generalization of some results in [I] to a certain class of 
Gaussian process defined by indefinite Wiener integrals (in the sense of l t d ) . 

First of al l , lot us fix 0 < T < oo. The space of real-valued square-integrahle 
function w i t h respect to the Lebesgue measure on [0 , T] w i l l he denoted by L^\0, T]. 
Let / e L ^ [ 0 , T [ and B = iBt)telo,T] be a standard one-dimensional Brownian mo
tion defined on some complete probabil ity space ( n , F , P). I t is a fundamental fact 
from Ito 's stochastic integration theory that the stochastic process X = {Xt)te[o,T] 
defined by the indefinite Wiener integral Xt := f f{u) clB^ is an L^(P)- continuous 
martingale w i t h respect to the natural filtration of B. I t is also a centered Gaussian 
process w i t h covariance function E{XsXt) = /g*^* \ f{u)\^ du, s,t > 0, see e.g. [7 [ . 
Here E denotes the expectation w i t h respect to the probabil ity measure P. I n this 
work we further assume that / is bounded and never takes value zero on [ 0 , T [ . We 
call the corresponding stochastic process as b-Gaussian process. By choosing / to 
be the constant function 1 , we see that our new class of Gaussian processes contains 
Brownian motion as an example. Moreover, by d-dimensional b-Gaussian process 
we mean the random vector {X^,...,Xf where X^,...,X'^ are d independent 
copies of a one-dimensional b-Gaussian process. Motivated by similar works on 
self-intersection local times of Brownian motion and fractional Brownian motion, 
see e.g. da Faria et al [ 1 ] , Drumond et al [2] and Watanabe [ 1 1 ] , we consider the 
self-intersection local time of b-Gaussian process X, which is informally defined as 

where 6 denotes the Dirac delta distr ibut ion at 0. The (generalized) random vari 
able ( 1 ) is intended to measure the amount of t ime in which the sample path of a 
b-Gaussian process X spends intersecting itself w i t h i n the t ime interval [ 0 , T [ . A 
pr ior i the expression ( 1 ) has no inatiiematicai meaning since Lebesgue integration 
of Dirac delta d is tr ibut ion is not defined. One common way to give a mat i i emat i -
cally rigorous meaning to such an expression, as in [I] and [ 2 ] , is by approximation 
using a Dirac sequence. More precisely, we interpret ( 1 ) as the l i m i t i n g object of the 
approximated self-intersection local t ime Lx,e (T) of b-Gaussian process X defined 
as 

(1) 

£ > 0 , 
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as £ —> 0, where Pe is the heat kernel given by 

1 ( x^S 
Pe{x) •- —f= exp - — , X 6 K. 

V 27r£ V 2£ / 

This approximation procedure w i l l make the l i m i t i n g object, which we denote by 
L x ( T ' ) , more and more singular as the dimension of the process X increases. Hence, 
we need to do a renormalization, i.e. cancelation of the divergent terms, to obtain 
a well-defined and sufficiently regular object. 

Now we describe briefly our main results. Under some conditions on the spa
t ia l dimension of the b-Gaussian process X and the number of subtracted terms 
in the truncated Donsker's delta function, we are able to show the existence of the 
renormalized (or truncated) self-intersection local t ime Lx (T) as a well-defined ob
ject in some white noise distr ibut ion space. Moreover, we derive the chaos decompo
sition of Lx{T) i n terms of Wick tensor powers of white noise. This decomposition 
corresponds to that in terms of multiple Wiener-Ito integrals when one works in 
the classical stochastic analysis using Wiener space as the underlying probabi l i ty 
space and Brownian motion as the basic random variable. Finally, we also analyze 
a regularization corresponding to the Gaussian approximation described above and 
prove a convergence result. The organization of the paper is as follows. I n section 
2 we summarize some of the standard facts from the theory of white noise analysis. 
Section 3 contains a detailed exposition of the main results and their proofs. 

2. B A S I C S O F W H I T E N O I S E A N A L Y S I S 

I n order to make the paper self-contained, we summarize some fundamental 
concepts of wi i i te noise analysis used throughout this paper. For a more compre
hensive explanation including various applications of white noise theory, see for 
example, the books of Hida et al [4], Kuo [6] and Obata [9]. Let (5^(R) ,C, / i ) be 
the R'^-valued white noise space, i.e., 5^(]R) is tfie space of R'^-valued tempered 
distributions, C is the Borel cr-algebra generated by weak topology on <S^(R), and 
the white noise probabi l i ty measure p is uniquely determined through the Bochner-
Minios theorem (see e.g. [6]) by fixing the characteristic function 

C { f ) : = / exp Ua, /)) dp{5j) = exp {-\\S\l 
Js'gR) ^ ^ V 2 

for ai l R'^-vaiued Schwartz test function / G iSd(R). Here |-|g denotes the usual 
norm in the real Hi lbert space L^(R) of all R"^-valued Lebesgue square-integrable 
functions, and (•, •) denotes the dual pairing between S'fR) and 5d(R) . The dual 
pairing is considered as the bilinear extension of the inner product on L'^{R), i.e. 

d 
9,f) = Y . 9j{x)fj{x)dx, 

j=i •'^ 

file://{-//S/l
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for all .9 = ( f l i , . . . ,3d) 6 LUR) and / = ( / i , . . . , / d ) 6 Sd{R). We should remark 
that we have the Gel'fand tr iple , i.e. the continuous and dense embeddings of 
spaces 

SfR) ^ LliR) ^ S'fR). 
Let / be a function in the subset of L ^ [ 0 , T ] consisting ail real-valued bounded 
functions on [0, T ] which has no zeros. I n the white noise analysis setting a d-
dimensioiial b-Gaussian process can be represented by a continuous version of the 
stochastic process X = {Xt)^^^Q J'^ w i t h 

Xt:= ((•, 1 ( 0 , 1 1 / ) , . . . , ( - . l i o d i / ) ) , 

such that for independent d-tuples of Gaussian white noise to = ( w i , . . . , W d ) G 

s'dim 
Xt{uj) = ( ( w i , l [ o , t ] / ) , . . . , (wd, l [ o , t ] / ) ) , 

where 1,4 denotes the indicator function of a set A C R . 
Recall that the complex Hi lbert space L ^ ( / i ) : = L ^ ( 5 ^ ( K ) , C , / i ) is canonicaiiy 

uni tary isomorphic to the d-foid tensor product of Fock space of symmetric square-
integrable function, i.e. 

L ^ ( M ) = 0 L ^ ( R ^ f c ! d % • ) , 
\fe=o / 

via the so-called Wiener-Ito-Segai isomorphism. Thus, we have the unique chaos 
decomposition of an element F 6 L ^ ( M ) i 

Fiup,. . . , Old) = ^ f " ' ' ^ r ^ / ( m i , . . . , m . ) ) , (2) 
( m i m d ) e N ; ; 

w i t h kernel functions f(mi,...,ma) of the m - t h chaos are in the Fock space. Here 
: w®'"^ : denotes the nij-th Wick tensor power of ujj € 5](IR). We also introduce 
the following notations 

d d 
m = ( m i , . . . ,md) G Ng, m-'Y'tnj, m! = J) mf, 

1 = 1 3 = 1 
which simplify (2) to 

Using, for example, the Wiener-Ito chaos decomposition theorem and the second 
quantization operator of the Hamil tonian of a harmonic oscillator we can construct 
the Gel'fand tr iple 

(5) ^ Lfp) ^ {sr 
where {S) is the space of white noise test functions obtained by taking the inter
section of a family of Hi lbert subspaces of L'^{p). I t is equipped w i t h the projective 
l i m i t topology and has the structure of nuclear Frechet space. The space of white 
noise distributions [S)" is defined as the topological dual space of (S). Flements 
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of [S) and ( 5 ) ' are also known as Hida test functions and Hida distributions, re
spectively. 

The rest of this section is devoted to the characterization of a Hida d i s t r i 
but ion via the so-called S-transforrn, wiiich can be considered as an analogue of 
the Gauss-Laplace transform on infinite-dimensionai spaces. The S-transfonn of 
an element 4> G (S)' is defined as 

where 

( 5 $ ) ( / ) : = ( ( $ , : exp ( ( , / ) ) : ) ) , / G 5d(IR), 

: exp ( ( , / ) ) : := ^ ( : - ^ ^ :, Z ® ' " ) = G ( / ) exp ( ( , / ) ) , 

is the so-called Wick exponential and ((•, )) denotes the dual pairing between (iS)* 
and {S). We define this dual pairing as the bilinear extension of the sesquilinear 

inner product on L'^{p). The decomposition S^{f) = J^meN^ ^ E m , / ® ' " ^ extends 
the chaos decomposition to $ G (<S)* w i t h distribution-valued kernels such 
that {{<!', (fi)) = Z^^ng^rf m! ( F m . F m ) , for every Hida test function ip G {S) w i t h 
kernel functions ipm- The S-transform provides a quite useful way to identify a 
Hida distr ibut ion $ G {S)*, in particular, when i t is very hard or impossible to find 
the explicit form for the Wiener-Ito chaos decomposition of $. 

T h e o r e m 2.1. [5] A function F : SaiR) —> C is the S-transforrn of a unique Hida 
distribution in {S)' if and only if it satisfies the conditions: 

( 1 ) F is ray analytic, i.e., for every f,g£ Sd{R) the mapping R 9 A i-> 

F ^ A / + 5^ has an entire extension to X £C, and 

(2) F has growth of second order, i.e., there exist constants K\,K2 > 0 and a 
continuous seminorm ||-|| on SdfR) such that for all z eC, / G >Sd(R) 

F{zf) < / G e x p f / G U P / " 

There are two important consequences of the above characterization theorem. The 
first one deals w i t h the Bochner integration of a family of Hida distributions which 
depend on an additional parameter and the second one concerns tl ie convergence 
of sequences of Hida distributions. For details and proofs see [5]. 

C o r o l l a r y 2.2. [5] Let {U,A,ir) be a measure space and A $ A 6e a mapping 
from n to [Sy. If the S-transform O/4>A fulfds the folloviing two conditions: 

(1) the mapping A i-> 5 ( $ A ) ( / ) is measurable for all f G «Sd(R), and 
(2) there exist C i ( A ) G L^{n,A,ir), C2(A) G L°°{n,A,u) and a continuous 

seminorm \\-\\ on Sd{R) such that for all z £C, f£ Sd{R) 

5 ( $ A ) U / ) < C i ( A ) e x p C 2 ( A ) | 2 
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then <I>A is Bochner integrable with respect to some Hilbertian norm which topolo-
gizing ( 5 ) * . Hence j^^\dv{\) G ( 5 ) * , and furthermore 

s( f C F A I M A ) ) = / 5 ( $ A ) r M A ) . 
\Jn J Jn 

C o r o l l a r y 2.3. [5] Let (<hji)„g[^ be a sequence in {S)' such that 

( 1 ) for all f G 5 d ( R ) , ( 5 ( $ „ ) ( / ) ) is a convergent sequence in C, and 

( 2 ) there exist constants Ki, K2 > 0 and a continuous seminorm \\-\\ on SdfR) 

S{^„){zf) < Ki exp (K2\Z\^ /I ^], for all 2 G C, / G 5 d ( R ) , such that 

n G N . 

Then {^n)neN converges strongly in {S)' to a unique Hida distribution <I> G ( 5 ) * . 

3. M A I N R E S U L T S 

I n several applications, we need to " p i n " a b-Gaussian process at some point 
c G R*̂ . For this purpose, we consider the Donsker's delta function of b-Gaussian 
process which is defined as the informal composition of the Dirac delta d is tr ibut ion 
6d £ ^^R"^) w i t h a d-dimensionai b-Gaussian process (X()jg[o7-], i.e., Sd {Xt - c). 
We can give a precise meaning to the Donskers's delta function as a Hida d is t r ibu
t ion. 

P r o p o s i t i o n 3.1. Let X = {Xt)t£io,T] be a d-dimensional b-Gaussian process and 
c G R*̂ . The Bochner integral 

( 1 \ 

V27r ; 7 6d [Xt -X,-c) := 

is a Hida distribution with S-transforrn given by 

S{6d{Xi-Xs-c)){f) 

I 1 

e x p ( i A ( A t - X , - c ) ) dA, tfs 

(3) 

sAt 
/ 

exp Y[ fj(u)f{u)du-c, 

\ 

for allf= ( / i , . . . , / d ) G5d (R) . 

P R O O F . W i t h o u t loss of generality, we may assume t > s. Define a mapping F A : 
5 d ( R ) ^ C by F A : = S (exp {iX{Xt - X, - c))) . Then we have for any / G Sd{R) 

Fxif) = ( ( e x p [iX {{; l [ o , t ) / ) - (•, 1 ( 0 , . ] / ) - c)) , : exp ( (• , / " ) ) : ) ) 
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= exp 
/ 1 

2 
/ ^ exp i-iXc) exp ( (w, i A l [ s , t ] / + fj^ dp{Q) 

= exp [ - \ | A p l / M p d n ) exp (zA ( ( / , - c ) ) . 

The mapping A i-4- % ( / ) is measurable for all / e 5d(R). Furthermore, let 2 G C 
and / G SfR), then 

rt 
Fxizf) < exp ( - ^ | A p r\f{u)fdu\exp ([AjUl | ( / , l [ . , q / ) |) 

< exp ( - - I 

< exp I - ^ 1 

|/(u)p du ) exp | 2 | / ? ( t - 6 ' ) ^ s u p | / , ( n ) 

| / (n)pdn exp 
\rjf{uwdu 

< e x p ( - l | A | V ( t - 5 ) ) exp 

for some positive constants a and f, and || • 
defined as 

d 
| | / | | o o : = $ 7 s u p | / , ( K ) | . 

is a continuous seminorm on Sf 

1 = 1 

The first factor is an integrable function of A, and the second factor is constant 
with respect to A. Hence, according to the Corollary 2.2 dU {Xt - X^ - c) £ (5)* . 
Now, we integrate F A over Rf to obtain an explicit expression for tfie S-transforrn. 

S{bd{Xt-X,-c)){f) 

= ( y ^ ) S (exp {iX{Xt - X , - c))) ( / ) riA 

271 
271 V^'AL (U{!lfj{u)J{u)du-c,)) 

I exp 

2 \ 

2 7 i / ; | / ( u ) P d n 

\ D2 / 

exp 

/ \ 2 / ; i / ( i i ) P r f i x ^ t t 

2 / ;| / ( i z )|2dn 

ffu)J{u)du-c, 
2\ 

I 
Now we prove our main results on self-intersection local times Lx{T) and their 

subtracted counterparts L ' ' Y { T ) - In the sequel we fix tlie following notations: 
A := {(s , t) G R % 0 < s < t < T } and d'^{s, t) is the Lebesgue measure on A. For 
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simplicity, we also take c = 0. Moreover, we define the truncated exponential series 

e x p ( ^ ) ( x ) : = Y -

and the truncated Donsker's delta function 

AM sT'i^t-xf 

via 

5 (<5f) ( X , - X , ) ) ( / ) 

1 

2 ^ / ; i / ( n ) | 2 d u , 
exp (N) 

2 / . 
T-^ Y( t fjiu)fiu) du] 
l\f{u)?dujr{\Js J 

for every / G <Sd(R). Using Theorem 2 . 1 , one can verify easily that d^^^ ( X t - X^,) 
is a well-defined element from ( 5 ) * . 

T h e o r e m 3.2. Let X = (Xf)jgjQ j , j be a d-dimensional b-Gaussian process. For 
any pair of integers d> I and N >0 such that 2N > d - 2, the Bochner integral 

L'PiT) : = jjT{Xt-Xf d\s,t) 

is a Hida distribution. 

P R O O F . From the definition of the truncated Donsker's delta function we see 
immediately that S (Xt - Xs)j ( / ) is a measurable function for every / G 

S d { R ) . Furthermore, for every 2 G C and / G 5 d ( R ) 

< 

< 

< 

{Xt - Xf) {zf) 

( 1 Y'^ 
\2nfl\f{uWdu) 

exp 

( 1 

v 

d/2 1 

27ra2 ) j t -

( 1 j-^i^ (xV" 

exp 

2 / ; | / ( n ) | 2 d n ' 

d^ n - I 2 \ 

2 \ 
f 

O O 

2a2 

27ra2 
( t - s O ^ - ' ^ / ^ e x p f ^ l z P 

V 2Q2 

o o / 

2 

where {t-s)'^ "̂ /̂  is integrable w i t h respect to d^(s, t) on A i f and only i f N-d/2 > 
- 1 . Therefore we can conclude, using Corollary 2 .2 , that L { ^ \ T ) G ( 5 ) * . • 

Moreover, we are able to derive the chaos decomposition for the (truncated) self-
intersection local times L ' ' Y { T ) . 
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P r o p o s i t i o n 3.3. Lei X = (Xt)jgjQ be a d-dimensional b-Gaussian process. For 
any pair of integers d>l and N > 0 such that 2N > d - 2, the kernel functions 
F2m of ^Y {T) are given by 

L2m (wi , • • • ,'"2m) = 
{-\r ( 1 Y " f n ? r i ( i M / ) ( ^ o 

m! V27r, 
/' [[i=i\---is,t\j J y-ii ,2/ 

( / : i / ( a ) P d « ) 

for each m £ NQ such that m> N. All other odd kernel functions Fm vanish. 

P R O O F . Let / = ( / i , . . . , ff e SfR). The S-transform of L ) ^ ' ( T ) is obtained as 
follow: 

1 
S Y^x^'iT)) if) = 1^ 

(2nJl\f{uydu) 
d/2 

I 
X exp {N) 

\ 2 / ; i / ( 

YY 

dfs,t) 

[rjfiuWdu) 

mj,...,md ^ j=l Ms J mi+...+md=m 

Remember the general form of the chaos decomposition 

FTY)= Y (••^^'"••:Fm) and sYx^\T)){f)= Y {Fm, f^"" 

m+d/2 

2m i 

meN: '0 

Hence, we can read ofi' the kernel functions F ^ for L ^ Y Y ) : 

F , . = ^ 
m! V27r/ IA f ft 

®2m 

Y'lfiuWdu) 
m+d/2 d^(s,t). 

More precisely, for every m G Ng such that m> N and u i , . . . , U2m G R i t holds 

F2m{u\,. . .,U2m) = 
m! V 2 W 4 ( j ; | / ( . ) | 2 , , ) 

while ail other odd kernels are identically equal to zero. • 

m+d/2 dfs,t), 

Theorem 3.2 asserts that for one-dimensional b-Gaussian process ail self-intersection 
local times ^YiT) are well-defined as Hida distributions. For d > 2, self-intersection 
local times only become well-defined after omission of the divergent terms. I n par
ticular, we obtain the generalized expectation of renormalized self-intersection local 
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times L)7' {T) which is given by 

E . ( L 4 m ) = Fo = 7)' '7A 7 ^ ^ - 4 7 ^ 

I t is immediate that the generalized expectation is finite only in dimension one, 
and for higher dimension (d > 2) the expectation blows up. Now we extend the 
result in Theorem 3.2 to local times of intersection of higher order m € N. The 
basic motivat ion for this investigation comes from the situation when we want to 
count the amount of t ime in which the sample path of a b-Gaussian process spends 
intersect itself m-times w i t h i n the t ime interval [0, T ] . The following theorem gives 
a generalization to a result of Mendonca and Streit [8] on Brownian motion. 

T h e o r e m 3.4. Let X = {Xt)t^[Qg\ be a b-Gaussian process. For any pair of 
integers d > 1 and N > 0 such that 2N > d —2 the (truncated) rn-tuple intersection 
local time of X 

4 E m -
AM ( % , - X , J . . . 5 4 ( X , , „ - X , , „ _ , ) d - t , (4) 

where A , „ : = { ( t i , • • • , t,„) e R™ : 0 < G < • • • < t,„ < T } and d'^t denotes the 
Lebesgue measure on A „ , , is a Hida distribution. 

P R O O F . Let 
m - l 

fc=l 
Im:=l[^d''\Xt,,,-Xty 

k--

denote the integrand in (4). Then 

1 m - l / / 

s{im)u)=n 
fc=l \ \ 

\ d/2 

X exp 

2 7 r / ; ; - i / ( u ) | 2 d R y 

/ 
(M 1 

v 
f3{u)f{u)du 

2\ \ 

which is a measurable function for every / G 5d(R) . Now, we ciieck the boundedness 
condition. Let 2 G C and / G «Sd(R). Let us also define a continuous seminorm 
Hoo.fc o n 5 ( R ) by l / jU . f c : = sup„g(t^,t,,^,] |/ j (u)| and a continuous seminorm |M|oo,fc 
on 5rf(R) by ||/|| _̂, : = E •=! UMo.k- Then, we have 

\ d/2 m-\ I ( 
s{im){zf)\ = n 

fc=i V 

1 

\2rrl\Y\f{uydxy 

X exp kM 
2 / ; - ' | / H | 2 d n 

\f{u)\du 
2\ \ 
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m - l 

fc=i 
27ra2(G. 

X d /2 

exp {N) 
/ m - l 

121 

\ 

\ f c = l 

Finally, by defining another continuous seminorm || • ||» on <Sd(]R) by 

4 = E 
l c = l 

114 

we obtain that 

S{Im){zf) < (1 (̂ -O 
d/2 

[TJ 

N \ 
{tk+1 - tk) 

- t,.y-D2 exp ( p k P l l / l P ) , 

for some p > 0. To conclude the proof, we notice that for X — d/2 + 1 > 0 the 
coefficient in the front of the exponential is integrable w i t h respect to d ' " t , that is 

/• Y\(f t xN-dn,m, ( r ( i + / v - r f / 2 ) r - ' 

7 l[ "''^ r ( m + l + ( m - l ) ( i V - d / 2 ) ) ' 
where r ( - ) denotes the usual Gamma function. Therefore we may apply Gorollary 
2.2 to establish the existence of the Bochner integral asserted in the theorem. • 

To conclude the section, we present a regularization result corresponding 
to the renormalization procedure as described in Theorem 3.2. We define the 
regularized Donsker's delta function of b-Gaussian process as 

<3d,e{Xt - Xs) ••= 
1 \ 

27Te 

d / 2 

exp 
V 

\Xt - X , 
2£ 

and the corresponding regularized self-intersection local t ime of b-Gaussian process 
as 

LxAT) := / 5dAXt-Xfdfs,t). 

J A 
T h e o r e m 3 . 5 . Let X = (Xt)tg[o7-] he a d-dimensional b-Gaussian process. For 
all e > 0 and d > 1 the regularized self-intersection local time Lx,e{T) is a Hida 
distribution with kernel functions in the chaos decomposition given by 

F e , 2 m ( M l , • • • , M 2 m ) = 
m! m + d / 2 dfs,t) 

for each m e Ng, and F j . m is identically to zero if m is an odd number. Moreover, 
the (truncated) regularized self-intersection local times 

LYAT) : = JjZ^ {Xt-Xf d\s,t) 

converges strongly as £ —> 0 in (5 )* to the (truncated) local times L^YiY, provided 
2 X > d - 2 . 
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P R O O F . The first part of the proof again follows by an application of Corollary 2.2 
w i t h respect to the Lebesgue measure on A . For all / € 5,i(R) we obtain 

s{Sd,AXt-xf){f) 

/ 
1 

\ d/2 

2^ ( e + / ; i / ( u ) P d i z ) 

X exp •Y( f Mu)f{u)du 
i = l ^-^^ 

2\ 

2(f + Jl\f{u)\^du) U 

which is evidently measurable. Hence for all 2 6 C we have 

S{6d,AXt-Xf){zf) 

< 

^d/2 I 

exp 
eY\l\!(u)\^du)} \ 2 ( e + / ; | / ( K ) P d n ) 

(t - sfA 

7 
\ d / 2 

IS i n -We observe that , A, j K i , j is bounded on A and ( — 7 — - - , , 1. 
| / ( " ) P d u \^27r(£ + F | / ( u ) P d u ) J 

tegrabie on A . Hence, by Corollary 2.2, we have that Lx.fT) G ( 5 ) * . Moreover, 
for e v e r y / G 5 d ( R ) , 

d/2 

siwAmn-A) LY V V 
1 

[e + Sl\f{uWdu) 
m+d/2 

, d p pt .2mj 

E j A l i i fAAAAdu] dfs,t). 
m i , . . . , m d j - i V 

mi + ...+md=m 

I t follows from tl ie last expression t i i a t the kernel functions F ^ ^ m appearing in the 
chaos decomposition 

LxAT)= E {••^^^'"••'Ym) 

are of the form 

F e , 2 m ( w i , - - - , R 2 m ) = 
m! V 2 ^ y [e + fAfiuWdu) 

m+d/2 dfs,t), 

and are identically equal to zero i f m is an odd number. Final ly we have to check 
the convergence of L ^ l i T ) as e ^ 0. For all 2 G C and all / G Sd{R) we have 

S [ L Y A T ) ) (2/) I < y ^ |S {Xt - Xf) (2/) I dfsA) 
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< 
d/2 . ^ s 

exp 
TA_ 

2E 
2 \ 

giving the boundedness condition. Furthermore, using similar calculations as in the 
proof of Theorem 3.2 we obtain that for ail (s, t) e A 

s {Xt - Xf) if) 
d/2 

\2ir Z\f{u)\^du 
exp (N) 

< 
f 1 \ 

27ra2 

d / 2 

, 2 / ; i / ( w ) P d n 
/ 

2 \ 
/ 

f] 
_ « l Y - d / 2 exp 

YT 
2Q2 

2 \ 

o o / 

The last upper bound is an integrable function w i t h respect to d 2 ( s , t). Finally, we 
can apply Lebesgue's dominated convergence theorem to get the other condition 
needed for the application of Corollary 2.3. Ti l ls finisiies t i ie proof. • 

4. C O N C L U D I N G R E M A R K S 

We have proved under some conditions on tiie number of divergent terms 
must be subtracted and the spatial dimension, that self-intersection local times of d-
dimensionai b-Caussian process as well as their regularizations, after appropriatelly 
renormalized, are Hida distributions. The power of the method of t runcat ion based 
on tiie fact t i i a t t i ie kernel functions in tlie chaos decomposition of decreasing order 
are more and more singular in the sense of Lebesgue integrable function. Fxp i i c i t 
expressions for the chaos decompositions of the self-intersection local times are also 
presented. We also remark that white noise approach provides a general idea on 
renormalization procedures. This idea can be further developed using another tools 
such as Mai i iav in calculus to obtain regularity results. 
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