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ABSTRACT 
One of well-established biological activities for chalcone 

derivatives is as acetylcholinesterase inhibitors, which can be 
developed for the therapy of Alzheimer’s disease. Assisted by 

retrospectively validated structure-based virtual screening 

(SBVS) protocol to identify potent acetylcholinesterase 
inhibitors, 80 chalcone derivatives were designed and virtually 
screened. The F-measure value as the parameter of the 
predictive ability  of the SBVS protocol developed in the 
research presented in this article was 0.413, which was 
considerably better than the original SBVS protocol (F-
measure=0.226). Among the screened chalcone derivatives two 

were selected as potential lead compounds to design potent 
inhibitors for acetylcholinesterase: 3-[4-(benzyloxy)-3-
methoxyphenyl]-1-(4-hydroxy-3-methoxy-phenyl)prop-2-en-1-
one(3k) and 3-[4-(benzyloxy)-3-methoxyphenyl]-1-(4-
hydroxyphenyl)prop-2-en-1-one (4k).  
 
Key words: Computer-aided drug design, virtual screening, chalcone 

derivatives, acetylcholinesterase, Alzheimer’s disease 

 

INTRODUCTION 
Alzheimer’s disease (AD), a progressive 

brain disorder, is a neurodegenerative disease 
which becomes symptomatic after brain 
changing happened over the years (Aggarwal et 
al., 2015). The prevalence of dementia, as AD 
symptom were varied (Rizzi et al., 2014) and the 
number of people living with AD have been 
predicted to be increased two times every two 
decades from 46.8 million by 2015 to 74.7 
million people by 2030 (Prince et al., 2015). The 
deficiency of the brain neurotransmitter 
acetylcholine (ACh) is often associated with 
pathogenesis of AD (Tabet, 2006). 
Acetylcholine plays important roles in the 
nervous system such as increasing 
neurotransmitter release, supporting synaptic 
transmission, inducing synaptic plasticity, and 
coordinating firing of groups of neurons 
(Picciotto et al., 2012; Tsuda, 2012). The 
hydrolysis of ACh into choline and acetic acid, 
a reaction needed to allow the returning of 
cholinergic neuron to the resting state, was 
catalyzed by a family of enzymes called 
cholinesterase (Colovic et al., 2013). 
Acetylcholinesterase (AChE), one of 
cholinesterase types found in many types of 

conducting tissue, is a highly possible 
therapeutic target of Alzheimer disease (Mehta 
et al., 2012).  

Recently, research on AChE inhibitor 
has been rapidly developed due to the 
availability of supporting facilities for designing 
AChE inhibitor compounds in the treatment of 
AD (Singh et al., 2013). Promising compounds 
to be developed as AChE inhibitor were 
chalcone derivatives (Sukumaran et al., 2016; 
Tran et al., 2016). Chalcones or 1,3-diphenyl-2-
propene-1-one can be obtained both from the 
plants (Abdelwahab, 2013; Adewusi et al., 2010) 
and from the synthetic way due to 
condensation reaction between substituted 
aromatic aldehyde with substituted 
acetophenones in alkaline condition (Jayapal 
and Sreedhar, 2010). Nevertheless, it is 
important to consider the structure-activity 
relationship and computational approach in 
designing more active AChE inhibitors 
(Andersson et al., 2013; Ece et al., 2015). 

Some strategies to optimize predictive 
abilities of Structure-based Virtual Screening 
(SBVS) protocols have been developed (de 
Graaf et al., 2011; Istyastono, 2015; Istyastono 
et al., 2015a; Istyastono and Setyaningsih, 2015; 
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Radifar et al., 2013b; Sirci et al., 2012). Some of 
the strategies have been employed successfully 
in the prospective screenings to discover novel 
potent fragments for histamine H1 (de Graaf et 
al., 2011), H3 (Sirci et al., 2012) and H4 receptors 
(Istyastono et al., 2015a), and in the repurposing 
selective cyclooxygenase-2 inhibitor celecoxib 
as a potent ligand for estrogen α receptor 
(Istyastono et al., 2015b; Radifar et al., 2013b). In 
2011, by combining ChemPLP score (Korb et 
al., 2009) and the post-docking scoring 
functions of the interaction fingerprint (IFP) 
program (Marcou and Rognan, 2007) as the 
cutoff values, de Graaf et al. could reach F-
measure value of about 0.515 and discover 19 
novel fragments with Ki ranging from 10 μM 
to 6 nM for histamine H1 receptor after 
virtually screened about 13 million compounds 
and tested only 26 hits resulted from the 
prospective virtual screening (de Graaf et al., 
2011). In 2012, employing Fingerprint for 
Ligand and Protein (FLAP) software as the 
post-docking modeling strategy to identify 
active histamine H3 fragments Sirci et al. could 
discover 18 novel fragments out of 29 tested 
hits resulted from prospective virtual screening 
of 156,090 compounds (Sirci et al., 2012). In 
2015, by employing several homology models 
with different reference ligands, using post-
docking scoring functions of the IFP program 
(Marcou and Rognan, 2007), Istyastono et al. 
could optimize the F-measure value from 0.018 
to 0.553 and discover 9 novel histamine H4 
fragments after virtually screen 43,326 
fragments and tested 37 hits resulted from the 
prospective virtual screening (Istyastono et al., 
2015a). Fortunately the structure of histamine 
receptors was well-studied, which established 
ASP3.32 as the anchor of the receptor-ligand 
binding (Istyastono et al., 2011a; Jongejan et al., 
2008). These success stories employed the 
anchor interaction to filter the docking poses 
before proceeding to the subsequent step in the 
SBVS protocols (de Graaf et al., 2011; 
Istyastono et al., 2015a; Sirci et al., 2012). 
However, the information of the anchor 
interaction is still rare for other targets in drug 
discovery. Moreover, instead of having anchor 
interaction, some targets accept more poses for 
their potent ligands (Istyastono, 2015). Several 
attempts to optimize SBVS protocols by taking 

into account several poses of active ligands 
(Istyastono   et al.,  2011b;  Wang et al.,  2015) by  
decision trees construction have been 
performed targeting estrogen α receptor and 
could optimize the F-measure value from 0.215 
to 0.642 (Istyastono, 2015; Setiawati et al., 
2014). Notably, the same strategy could not be 
applied in this research since no decision tree 
could be constructed. Another strategy to 
optimize the predictive ability of the SBVS 
protocol in this research should be developed 
and tested. 

The research presented in this paper was 
aimed to design chalcone derivatives as potent 
AChE inhibitors by utilizing retrospectively 
validated SBVS protocols constructed by 
employing PLANTS1.2 as the molecular 
docking software (Korb et al., 2009, 2007)and 
PyPLIFas the Protein-Ligand Interaction 
Fingerprints (PLIF) identification software for 
re-scoring (Radifar et al., 2013a; Radifar et al., 
2013b). New post PLIF identification descript 
or employing ensemble PLIF (abbreviated to 
ensplif) was introduced and employed here to 
construct and optimize SBVS protocols 
(Istyastono et al., 2017), which was then 
assessed (Cannon et al., 2007; de Graaf et al., 
2011; Desaphy et al., 2013; Powers, 2011) and 
compared to the original SBVS accompanying 
the release of DUD-E (Mysinger et al., 2012). 
The best SBVS protocol constructed in this 
research could outperform the predictive ability 
of the SBVS protocol of DUD-E. The protocol 
was subsequently employed to assist the 
selection of chalcone derivatives as lead 
compounds in the development of 
acetylcholinesterase inhibitors 

 

MATERIALS AND METHODS 
The crystal structure of AChE obtained 

from the protein data bank (PDB) with PDB id 
of 1E66 was used as the reference structure 
(Dvir et al., 2002; Mysinger et al., 2012). Active 
AChE inhibitors (453) and the decoys (26,350) 
from DUD-E (Mysinger et al., 2012) were 
employed to perform retrospective validations 
for the SBVS protocol. Chalcone derivatives 
inspired from Imran et al (Imran et al., 2015) 
which were designed manually (Table I) were 
used as entry points for lead compounds 
selection.  All  calculations and computational  



Computer-Aided Design of Chalcone Derivatives 

102   Volume 28 Issue 2 (2017) 

simulations were performed on a Linux 
(Ubuntu 12.04  LTS Precise Pangolin)  machine  
with Intel(R) Xeon(R) CPU E31220 (@ 
3.10GHz) as the processors and 8.00GB of 
RAM. Computational medicinal chemistry 
applications employed in this research                
were SPORES (ten Brink and Exner,           
2009), PLANTS1.2 (Korb et al., 2009; Korb et 
al., 2007), Open Babel 2.2.3 (O’Boyle et al., 
2011), PyPLIF0.1.1 (Radifar et al., 2013a; 
Radifar et al., 2013b), MarvinSketch 14.11.10.0 
(ChemAxon, 2014) and PyMOL 1.2r1 (Lill and 
Danielson, 2011). Statistical analysis was 
performed by using R 3.3.0 (R Core Team, 
2016). 

 
Computational methods 
Virtual molecular target preparation 

Previously published method to prepare 
cyclooxygenase-2 as virtual target (Istyastono, 
2016) was adopted to prepare virtual target 
AChE. The crystal structure of AChE was 
downloaded from http://www.rcsb.org/            
pdb/ explore.do?structureId=1e66. Then,            
the module splitpdb in SPORES was 
subsequently used to split the pdb file and to 
convert the splitted files into mol2 files                  
the virtual AChE (protein.mol2), the co-              
crystal ligand3-chloro-9-ethyl-6,7,8,9,10,11-
hexahydro-7,11-methanocy-cloocta[B]quinolin-
12amine (ligand_HUX803 _0.mol2), and the 
water molecules. The mol2 files were then ready 
to be employed in molecular docking 
simulation employing PLANTS1.2 docking 
software.  

 

Ligands preparation for retrospective 
virtual screening 

Similar to virtual target preparation, 
previously published methods for ligands 
preparation (Istyastono, 2016; Istyastono and 
Yuniarti, 2016) were adopted and modified.  
Known AChE active inhibitors and their 
decoys were downloaded in their SMILES 
format from DUD-E (Mysinger et al., 2012). 
They were stored locally as actives_final.ism, and 
decoys_final.ism. Each compound in the files was 
then subjected to Open Babel 2.2.3 conversion 
software to be converted in its three 
dimensional (3D) format as a mol2 file. The 
reprot module in SPORES was subsequently 
employed to properly check and assign the 

protonation state of the mol2 file into a proper 
mol2 file ready to be docked by using 
PLANTS1.2 docking software. 
 

Automated molecular docking and 
virtual screening  

Similar to previously published 
procedures (Istyastono et al., 2015b; Istyastono 
and Setyaningsih, 2015; Setiawati et al., 2014), 
all virtual screenings were performed by 
docking program PLANTS1.2. For each 
compound, 50 poses were produced and 
clustered at root mean square deviation 
(RMSD) of 1.0 Å. The ChemPLP scoring 
function was used at speed setting 2. The 
binding pocket was defined by the coordinates 
of the center of the co-crystal 
ligand_HUX803_0.mol2 and a radius of 5 Å. All 
other options of PLANTS1.2 were left at their 
default setting. Every compound was virtually 
screened five times independently. Seven 
different interaction types (negatively charged, 
positively charged, hydrogen bond  (H-bond) 
acceptor, H-bond donor, aromatic face-to-
edge, aromatic face-to-face, and hydrophobic 
interactions) were subsequently identified by 
employing PyPLIF for each docking pose 
(Radifar et al., 2013a; Radifar et al., 2013b). 

 
Predictive ability of the SBVS protocols 

The predictive ability of the SBVS 
protocols was determined by their F-measure 
value of the retrospective validation (Cannon et 
al., 2007; Desaphy et al., 2013). The SBVS 
protocols predict screened compound as active 
or inactive. Since the biology activity as AChE 
inhibitor of the compounds in the retrospective 
validation attempts using DUD-E has already 
known (Mysinger et al., 2012), the confusion 
matrix could be constructed (Cannon et al., 
2007): (i) Active compounds which were 
predicted as active were assigned as true 
positives (TP); (ii) Active compounds which 
were predicted as inactive were assigned as false 
negatives (FN); (iii) Decoys which were 
predicted as active were assigned as false 
positives (FP); and (iv) Decoys which were 
predicted as inactive were assigned as true 
negatives (TN). The F-measure value             
(Cannon et al., 2007; Desaphy et al., 2013)           
was calculated as follows: (2 × TP)/((2 × TP) 
+ FN + FP). 
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Predictive ability optimization of the 
SBVS protocols 

For comparison as the standard, the 
compounds in the retrospective SBVS were 
ranked based on the best ChemPLP score and 
the ChemPLP score of the 1% identified FP 
was used as the cutoff to predict as active or 
inactive (de Graaf et al., 2011; Istyastono et al., 
2015a; Korb et al., 2009; Mysinger et al., 2012). 
The optimization of the SBVS protocols was 
performed by optimizing the post SBVS 
decision trees constructed in RPART package 
(Istyastono, 2015; R Core Team, 2016; 
Therneau et al., 2015) by using ensplif as the 
descriptors. Besides considering all poses 
resulted in the SBVS, ensplif as descriptors 
were calculated by selecting poses by using 
ChemPLP scores systematically from -125 to 0. 
The algorithm of the ensplif calculation was as 
follows: (i) Poses selection based on the 
ChemPLP score as the cutoff; (ii) In every 
PLIF bitstring, all “on” interactions were 
counted; (iii) The numbers resulted from point 
(ii) were divided by 250 since the molecular 
docking resulted in 50 docking poses in each 
run and every compound was screened 5 times 
(see subsection Automated molecular docking 
and virtual screening).  

 
Computer-aided identification of chalcone 
derivatives as lead compounds to discover 
potent AChE inhibitors 

Eighty chalcone derivatives were 
designed (Table I). Every structure in table I 
was built and converted to SMILES format by 
using module Copy as smiles in Marvin Sketch 
14.11.10.0 (ChemAxon, 2014). The structure 
was then undergone ligand preparation process 
as presented in the subsection Ligands 
preparation for retrospective virtual screening. 
The best SBVS protocol to identify potent 
AChE inhibitors resulted from the subsection 
Predictive ability optimization of the SBVS 
protocols was used to virtually screen the 
designed compound. Based on the results of 
the virtual screening, some lead compounds 
were selected. The synthesis feasibility of the 
selected lead compounds was subsequently 
analyzed.  

 
 

 

RESULTS AND DISCUSSION 
Aimed to initiate the discovery and 

development of potent AChE inhibitors, this 
research constructed and optimized the 
predictive ability of SBVS protocol to identify 
potent AChE inhibitors and employed the best 
protocol to select best potential inhibitors from 
80 chalcone derivatives presented in Table I as 
lead compounds. The construction and 
optimization of the SBVS protocol to identify 
potent AChE inhibitors employed potent 
AChE inhibitors with IC50 value of less than 1 

M and their decoys organized and stored in 
DUD-E (Mysinger et al., 2012) as the 
retrospective compounds for the validation. 
Chalcone derivatives were selected since          
the synthesis expertise in the field is accessible 
for further investigation in the subsequent 
discovery and development process (Imran et 
al., 2015). 

 
Construction and Predictive Ability 

Optimization of the SBVS Protocol 

During molecular docking and PLIF 
identification phases in the retrospective SBVS 
campaign, nineteen ligands and 1,735 decoys 
could not pass the protocol, which were then 
predicted as inactive compounds. Therefore, 
the protocol has resulted in 19 FN and 1735 
TN during the molecular docking and the PLIF 
identification phases. In every remaining result, 
the docking pose with the best ChemPLP score 
was collected and ranked based on the 
ChemPLP score. In this ranked database, at 1% 
FP (263 compounds) there were 52 TP, 401 
FN, and 25,987 TN. Therefore the F-measure 
value of this ranked database was 0.135, which 
was corresponded to the enrichment factor 
value of 11.46. This predictive ability of the 
SBVS protocol by using 1% FP as the cutoff to 
predict the activity was much worse than the 
original protocol accompanying the release of 
DUD-E, which showed F-measure and 
enrichment factor values of 0.226 and 20.1, 
respectively (Mysinger et al., 2012). Moreover, 
with this predictive ability, the SBVS protocol 
is not suggested to be used for prospective 
virtual screening campaigns (Chen, 2015; de 
Graaf et al., 2011; Istyastono et al., 2015a; Sirci et 
al., 2012). Predictive ability optimization of this 
SBVS protocol was therefore required. 
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Equipped with the facts that some 
ligands could interact with their protein targets 
in more than one pose (Istyastono et al., 2011b; 
Wang et al., 2015) and inspired by the lock-and-
key theory (Koshland, 1994; Stoddard and 
Koshland, 1992), we introduce a novel post 
PLIF identification technique to optimize the 
predictive ability of the SBVS protocol by using 
ensplif. This strategy was successfully utilized 
to slightly increase the SBVS protocol to 
identify potent ligands for estrogen α receptor 
(Istyastono, 2015; Istyastono et al., 2017). 
Therefore, we were tempted to apply the same 
technique in this research since employing the 

technique used by Istyastono (2015) could not 
result in any constructed decision tree in this 
research. Taking into account all docking poses 
in every retrospective screened compound in 
this research resulted in a post SBVS decision 
tree using ensplif as the descriptors with F-
measure value of 0.371, which was better than 
the ChemPLP-based ranked database at 1% FP 
and to the original protocol accompanying the 
release of DUD-E(F-measure = 0.226; 
Mysinger et al., 2012). Notably, with this F-
measure value the SBVS protocol has already 
accepted for further prospective virtual 
screening. However, the protocol could still be 

Table I. Designed and virtually screened chalcone derivatives in this research. 
 

 
 

Code R1 R2 R3 R4 R5 

a -H -OH -H -OH -H 
b -H -H -F -H -H 
c -H -NO2 -H -H -H 
d -H -OCH3 -OH -H -H 
e -H -H -OH -H -H 
f -H -H -OCH3 -H -H 
g -H -OCH3 -OCH3 -OH -H 
h -OCH3 -OCH3 -OCH3 -H -H 
i -OCH3 -H -OCH3 -OCH3 -H 
j -H -H -O-(CH2)3-CH3 -H -H 
k -H -OCH3 -O-CH2-C6H5 -H -H 
l -NO2 -OH -H -H -H 

m -OCH3 -H -OCH3 -H -H 
n -OCH3 -H -OCH3 -H -OCH3 
o -OCH3 -CH3 -OCH3 -H -H 
p -OCH3 -H -OCH3 -H -CH3 
q -OCH3 -H -OCH3 -OCH3 -H 
r -H -OCH3 -OCH3 -OCH3 -H 
s -H -OH -OH -H -H 
t -OH -OH -H -H -H 
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optimized by selecting the more plausible 
docking poses with a certain ChemPLP score as 
the cutoff (de Graaf et al., 2011). 

The optimization by systematically 
assessing the predictive ability of employing 
ChemPLP scores from -125 to 0 as the cutoff 
for pose selection resulted in F-measure values 
ranging from 0.103 to 0.413. The best SBVS 
protocol with F-measure value of 0.413 was 
comprised of molecular docking simulation 
using PLANTS1.2 (Korb et al., 2009), PLIF 
identification of the docking poses using 
PyPLIF (Radifar et al., 2013a; Radifar et al., 
2013b), and the decision tree constructed using 
RPART (Therneau et al., 2015) with ensplif 
calculated from PLIF of docking poses with 
ChemPLP score ≤ -33 (Figure 1). 

The RPART method to construct 
decision trees used in the research is one of 
supervised machine learning methods which are 
susceptible for overfitting (Cannon et al., 2007; 
Gabel et al., 2014) and chance correlation(Lim et 

al., 2009; Tarcsay et al., 2013; Zambre et al., 
2007). A model is overfitting if the ratio of the 
cross-validation error rate over the training 
error rate is more than 1.5 (Cappel et al., 2015; 
Istyastono, 2016). Since the ratio of the cross-
validation error rate over the training error rate 
of the best decision tree (Figure 1) was 1.158, 
this model was not overfitting. In order to 
ensure if the best decision tree was not a 
chance correlation, 1000 times y-randomization 
were performed (Lim et al., 2009; Smits et al., 
2010) and there was no y-randomized model 
with F-measure higher than the F-measure of 
the best decision tree (Figure 1). Therefore, 
there was no evidence of overfitting and chance 
correlation of the SBVS protocol comprising 
the best decision tree constructed using 
RPART with ensplif calculated from PLIF of 
docking poses with ChemPLP score ≤ -33 as 
the descriptors.  

There are 11 selected ensplif in the 
decision tree (Table II). Notably, hydrophobic 

 
 

Figure 1.The best decision tree employing ensplif as descriptors to identify potent ligands for 
AChE. Four types ofhow ligands bind to AChE or “key” are identified. 
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interaction to PHE331 is essential for AChE 
ligand since the ligand should have ensplif 
#302 ≥ 0.878 to be predicted active as potent 
ligand for AChE, otherwise it will be predicted 
as inactive (Figure 1). Hydrophobic interactions 
dominate the selected interactions. This 
interaction type is however responsible only for 
the affinity but not for the selectivity because 
of its lack of directionality (Bissantz  et al., 2010;  
Desaphy et al., 2013; Marcou and Rognan, 
2007). Only three out of these 11 interactions 
have directionality (Bissantz et al., 2010; 
Desaphy et al., 2013; Marcou and Rognan, 
2007; Radifar et al., 2013b): (i) Ensplif#193 
(hydrogen bond to TYR130 with tyrosine as the 
donor); (ii) Ensplif#208 (hydrogen bond to 
SER200 with serine as the acceptor); and (iii) 
Ensplif#297 (aromatic edge-to-face interaction 
to PHE330). These three interactions are 
responsible not only for the ligand affinity but 
also for the ligand selectivity (Bissantz et al., 
2010; Istyastono et al., 2011a, 2011b). Hydrogen 
bond and aromatic interaction have been 
identified as the main factors in activity cliffs 
with at least 100-fold activity increase 
(Furtmann et al., 2015). Based on the decision 
tree presented in Figure 1, there are 4 types of 
“key” that can bind to the “lock” AChE. 
Notably, all branches leading to active 
compound in the decision tree (Figure 1) or the 
“keys” involve either the hydrogen bond 
(ensplif#208 or #193) or the aromatic 
interaction (ensplif#297). Oddly, in         

contrary with the hydrogen bonds, which are 
favorable, the aromatic interaction here is 
unfavorable.    

In the retrospective attempts, the 
optimized protocol resulted in F-measure value 
of 0.413 from 124 TP; 329 FN; 26,226 TN and 
24 FP. By employing the retrospective results, 
the sensitivity (true positive rate) and the 
specificity (true negative rate) can be calculated 
(Cannon et al., 2007) and get the following 
results: 0.274 and 0.999, respectively. This 
indicates that the optimized protocol tends to 
correctly predict inactive compounds. A 
predicted active compound using the optimized 
protocol is therefore highly probable to be an 
active AChE inhibitors but it is highly 
suggested to further investigate a predicted 
inactive compound especially the one that has 
ensplif number 302 of more than or equal to 
0.878 (Figure 1).   
 

 

Virtual Screening on Designed Chalcone 
Derivatives Employing the Optimized 
Protocol 

Eighty chalcone derivatives presented         
in Table I were virtually screened employing 
the optimized SBVS protocol (Figure 1). 
However, none of these compounds were 
predicted as active. Therefore, selection of lead 
compounds instead of identification of potent             
AChE inhibitors from the chalcone          
derivatives (Table I) was the subsequent step. 
As   mentioned  in  the   previous  subsection,  

Table II. The ensplif as selected descriptors in the decision tree (Figure 1) and their corresponding 
interactions in the AChE binding pocket 
 

Ensplif No. 
Corresponding Interactions in the AChE Binding Pocket 

Amino Acid Residue Interaction Typea) 

29 GLN74 hydrophobic interaction 
193 TYR130 hydrogen bond (protein as the donor) 
204 SER200 hydrophobic interaction 
208 SER200 hydrogen bond (protein as the acceptor) 
297 PHE330 aromatic edge-to-face interaction 
302 PHE331 hydrophobic interaction 
316 LEU333 hydrophobic interaction 
337 TRP432 hydrophobic interaction 
358 HIS440 hydrophobic interaction 
365 GLY441 hydrophobic interaction 
386 ILE444 hydrophobic interaction 

a)Ref: (Radifar et al., 2013b) 
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all predicted active compounds must have 
ensplif #302 ≥ 0.878 (Figure 1).  Among the 
virtually screened chalcone derivatives (Table 
I), only compounds 3k and 4k showed ensplif 

#302 ≥ 0.878. The ensplif #302 of compounds 
3k and 4k were 0.956 and 0.944 (Figure 2). 
Therefore, compounds 3k and 4k were selected 
as lead compounds for further investigation in 

 
 

Figure 2. Docking poses of 3k(A) and 4k(B) which show hydrophobic interaction to PHE331 but 
do not show hydrophobic interaction to GLY441 and the corresponding important ensplif values 
(C). Carbon atoms of compounds 3k and 4k are presented in magenta. Carbon atoms of AChE are 
presented in green. Oxygen and nitrogen atoms are presented in red and blue, respectively. 
Hydrogen atoms are not shown for clarity. The ligands are in lines mode, while the enzyme is in 
surface mode with 0.5 transparencies. Important residues following path of key #1 in Figure 1 are 
also shown in stick mode.  

 

 
 

 
 
Figure 3.Retrosynthetic analysis of compound 3k and 4k. Reagents: (1) acetovanillone; (2) 3’-
hydroxyacetophenone; (3) o-benzylvanillin; (4) benzyl bromide; (5) vanillin. 
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thisquest to discover potent AChE inhibitors. 
Since compounds 3k and 4k showed ensplif 
#365 < 0.678 (Figure 2), the shortest path to 
design potent AChE inhibitor by employing 
these lead compounds is the path of key #1 
(Figure 1). Additional hydrogen bond to SER200 
is therefore required (Figures 1 and 2). Based 
on visual inspection using PyMOL in docking 
poses of 3k and 4k which show hydrophobic 
interaction to PHE331 but do not show 
hydrophobic interaction to GLY441 (Figure 2), 
this could be achieved by appending or 
substituting the R2 part of the selected lead 
compounds (Table I) with functional groups 
which have possibility to be hydrogen bond 
donors, e.g., guanidine, amide and isothiourea. 

Synthesis and further verification               
using in vitro analysis should be done in the     
near future to provide evidences that 
compounds 3k and 4k could serve as               
lead compounds. Retrosynthetic analysis or 
synthon disconnection approaches of 
compounds 3k and 4k (Figure 3). We propose 
here o-benzylvanillin (4-(benzyloxy)-3-
methoxybenzaldehyde) to be used as starting 
material which could be synthesized using 
vanillin (4-hydroxy-3-methoxybenzaldehyde) and 
benzylbromide (bromomethylbenzene). Further, 
o-benzylvanillin could be reacted with 
acetovanillone (1-(4-hydroxy-3-methoxyphenyl) 
ethanone) for yielding compound 3k and                  
3’-hydroxyacetophenone (1-(4-hydroxyphenyl) 
ethanone) for yielding compound 4k. 

 

CONCLUSIONS 
Compounds 3k and 4k have been 

identified as potent lead compounds in the 
drug discovery and development for AD 
therapy targeting AChE. The identification of 
these lead compounds employed a 
retrospectively validated SBVS protocol with a 
decision tree employing ensplif resulted from 
molecular docking PLANTS1.2 and PLIF 
identification PyPLIF. In the retrospective 
validation, the SBVS protocol showed F-
measure value of 0.413, which outperformed 
the original SBVS accompanying the database 
used for the retrospective validation. 
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