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Abstract. The Burgers equation is considered. The equation is solved using finite difference 

methods. The standard finite difference method may lead to inaccurate solutions, unless a very 

fine mesh is used, which results in expensive computations. Therefore, we implement an 

adaptive finite difference moving mesh method as an alternative numerical method to solve the 

equation. The advantages of implementing the adaptive method are investigated. 

1. Introduction 
The Burgers equation has been widely used to model some problems in gas dynamics and traffic 

flows. Therefore, accurately solving the equation is useful. It is well-known that the behaviour of the 

solutions is influenced by the viscosity factor involved in the equation [1].  

Based on the viscosity factor the Burgers equation is of two types, namely, viscous and 

inviscid [2]. When the viscosity factor is nonzero, the equation is viscous and so have a source term. 

Otherwise it is inviscid and does not have any source terms. This paper deals with the viscous type of 

the equation. 

We solve the Burgers equation using finite difference methods and refer to the work of Huang and 

Russell [1] (see [3]-[5] for kinds of adaptive strategy). The standard finite difference method may lead 

to inaccurate solutions for coarse mesh. Therefore, an alternative finite difference method is 

considered. We implement an adaptive moving mesh finite difference method as the alternative. In this 

paper, this numerical method is called the adaptive moving mesh method or simply the adaptive 

method. Our contribution is identifying the advantages of this adaptive method.  

This paper is structured as follows. We first write the problem and numerical methods that shall be 

used to solve the problem. Numerical results are then presented and discussed. Some concluding 

remarks are given at the final part.   

2. The considered problem and solvers 

In this section, we present the Burgers equation and the numerical methods to solve the equation.   

2.1. The considered problem 

The Burgers equation is well-known to be a simplification of the Navier-Stokes equation. The 

equation is named after Johannes Martinus Burgers, a Dutch scientist, for his fundamental work on the 

theory of turbulence [6]. The Burgers equation is 
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where the space domain is all )1,0(∈x  and the time domain is all 0>t . The notation tu  means the 

first partial derivative of the quantity ),( txu  with respect to t . The notations xxu  and xu )2/( 2
 are 

understood similarly. The parameter ε  is positive, so that the Burgers equation (1) is viscous. 

Following Huang and Russell [1], we take the boundary condition 

0),1(),0( == tutu  (2) 

and the initial condition 
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)2sin()0,( xxxu ππ += . (3) 

Equations (1)-(3) form an initial-boundary value problem. 

2.2. The standard finite difference method 

To solve the Burgers equation (1), we discretize the space domain pointwisely into N  equidistant 

points, as 

hjx j )1( −=  (4) 

for .,...,1 Nj =  When we use central finite difference approximations for all spatial derivatives, we 

obtain the semi-discrete finite difference method 
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 (5) 

for 1,...,2 −= Nj . This is a standard finite difference method. The numerical boundary conditions are 

0)(1 =tu  and 0)( =tuN  for 0>t . The numerical initial conditions are 

)sin(
2

1
)2sin()0( jjj xxu ππ +=  (6) 

for .,...,1 Nj =   
With the initial conditions (6), we can solve the semi-discrete equation (5) using an ODE solver. 

One can use ODE solvers available in some computer programming language, such as MATLAB, 

Python, or any others. In this paper, for simplicity, we use the Euler method to solve equation (5). We 

present the numerical results later in Section 3. 

2.3. An adaptive moving mesh finite difference method 

Alternatively, we use an adaptive moving mesh method (see mainly [1] and further [3-5]). We 

discretize the space domain pointwisely into N  points as follows. We consider the transformation of 

the quantity 

)),,((),(ˆ ttxutu ξξ = , (7) 

with the transformation of the space 

),()( txtx jj ξ=  (8) 

for .,...,1 Nj =  Here 

1

1

−

−
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j
jξ  (9) 

for .,...,1 Nj =  We then have 

ξξ xuu x=ˆ     and    txtt xuuu +=ˆ . (10) 

Note that ,/ txxt ∂∂= where ).,( txx ξ=  Substitution of the transformed variables into the Burgers 

equation leads to 
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When we use central difference approximations for all spatial derivatives, we obtain the adaptive 

finite difference moving mesh method 
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for ,1,...2 −= Nj where ).),((:),(ˆ)( ttxututu jjj =≈ ξ  The time derivative in the computational domain 

is defined by   
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for 1,...,2 −= Nj , and also, 01 =
dt
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The spatial derivatives are taken as 
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for 1,...,2 −= Nj , and also, 
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as well as 

.
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2

1
: 1 NNN ρρρ += −  (24) 

We solve equation (12) using the ode15i MATLAB function, which is an implicit method [1]. The 

numerical results are presented in the next section.  

 

3. Numerical results 

We shall compare the results of the adaptive moving mesh method with the standard finite difference 

method in this section. 

 

 

 

 

 

Figure 1. Results of the standard method with 

21 points and viscosity 210−
 for time instants 

1,64.0,3.0,15.0,07.0,0=t . 

 Figure 2. Results of the standard method with 

101 points and viscosity 210−  for time instants 

1,64.0,3.0,15.0,07.0,0=t . 

   

 

 

 
Figure 3. Results of the standard method with 

1001 points and viscosity 410−
 for time instants 

1,64.0,3.0,15.0,07.0,0=t . 

 Figure 4. Results of the standard method with 

5001 points and viscosity 410−
 for time instants 

1,64.0,3.0,15.0,07.0,0=t . 

   

 

 

 
Figure 5. Results of the adaptive method with 21 

points and viscosity 410−
 for time instants 

1,64.0,3.0,15.0,07.0,0=t . 

 Figure 6. Mesh evolution of the adaptive method 

with 21 points and viscosity 410−  for time 

instants 1,64.0,3.0,15.0,07.0,0=t . 
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Table 1. Results for the largest magnitude of the solutions produced by the adaptive method with 21 

points and the standard method with 5001 points. Here the results of the standard method is 

considered as the reference solution, so the absolute and relative errors can be computed. 
 

The 

considered 

time 

(second) 

The maximum magnitude 

of the solution produced 
Absolute 

error 

Relative 

error 
by the adaptive 

method 

with 21 points 

by the standard 

method 

with 5001 points 

0.00 1.3555650 1.3679074 0.0123424 0.0090228 

0.07 1.3648793 1.3678883 0.0030090 0.0021997 

0.15 1.3657246 1.3678663 0.0021417 0.0015657 

0.30 1.3228471 1.3350550 0.0122078 0.0091440 

0.64 0.9630831 0.9497996 0.0132834 0.0139855 

1.00 0.7684366 0.7553905 0.0130460 0.0172706 

 The average 

absolute error is 

0.0093384 

The average 

relative error is 

0.0088647 

 

We consider two cases. The first is the Burgers equation with the viscosity factor 
2

10
−=ε . The 

second is with the viscosity factor 
4

10
−=ε . A smaller viscosity factor results in a solution containing 

a sharper "discontinuity-like" as time evolves. We call a discontinuity-like, because it resembles a 

shock discontinuity, but in fact the exact solution is continuous. If the viscosity factor is zero, then the 

exact solution contains a shock discontinuity, which is not a discontinuity-like solution. 

When the first case with 
2

10
−=ε  is solved using the standard finite difference method, there is no 

obvious a discontinuity-like in the solution. The results for the first case is shown in Figure 1 

and Figure 2. Figure 1 is produced using 21 uniform spatial points. We see in Figure 1 that the 

solution is oscillatory, because the number of spatial points does not give enough resolution for this 

case. However if we refine the space discretization by taking more number of points we have the 

solution with the correct behaviour. That is, no oscillation appears in the solution, as shown in 

Figure 2. Here Figure 2 is produced using 101 uniform spatial points. 

The problem becomes more difficult to solve when the viscosity factor is smaller, such as where 
4

10
−=ε  which we consider as the second case. Even when we discretize the spatial domain into 1001 

points, the resolution is not enough. This is illustrated in Figure 3, where oscillation appears around 

the position of the discontinuity-like. This artificial oscillation does not occur in the solution if we 

discretize the space into much finer mesh, such as 5001 uniform points. With this excessive number of 

points, the solutions are very accurate. This is shown in Figure 4. However, this fine mesh makes the 

computation is very expensive. The average computational time with 5001 points using the standard 

method is 10 seconds. 

In contrast, fine mesh is not necessary in the adaptive moving mesh method. For example we solve 

the second case, which has the viscosity factor 
4

10
−=ε . We use only 21 computational points to 

obtain relatively the same accurate solutions. The numerical solutions are shown in Figure 5. The 

corresponding moving meshes are shown in Figure 6. The average of relative ∞L  errors between the 

reference solutions in Figure 4 and the numerical solutions in Figure 5 is 0.89 % (see Table 1 for 

detailed results). Therefore, the adaptive moving mesh method results in very accurate solutions. 

Furthermore we note that the average computational time with 21 points using the adaptive method is 

about 3 seconds. This means that the adaptive method is not only accurate, but also efficient in terms 
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of computer memory as well as the computational time. These give great advantages for us, as 

accurate results and fast computation are always desired in practice. 

4. Conclusion 
The adaptive moving mesh method is very accurate and efficient, and in addition, it requires small 

computer memory. We have demonstrated these advantages by solving the Burgers equation using the 

adaptive method. That is, the adaptive moving mesh method has better performance than the standard 

finite difference method. Extending the adaptive moving mesh method to solve higher dimensional 

problems could be a future direction of this research. 
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