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Abstract. The structure-based Virtual Screening (SBVS) campaign has been performed on an enhanced dataset of
ligands and decoys for adrenergic B2 receptor using PLANTS1.2 as the molecular docking software and PyPLIF as an
alternative post-docking scoring function. These approaches resulted in enrichment factor of true positives at 1% false
positives (EF =) values of 24,24 and 8.22 after ranked by using ChemPLP scores from PLANTS1.2 and by using Te-
PLIF values from PyPLIF, respectively. The attempts have also offered possibilities to explore the use of protein-ligand
interaction fingerprint bitstrings resulted from rescoring using PyPLIF. In this article, the construction of classification
trees emploving the ChemPLP scores from PLANST1.2 and the protein-ligand interaction fingerprint bitstrings from
PyPLIF as predictors to identify adrenergic fiz receptor ligands is presented. The best classification tree resulted in
enrichment factor value of 201.64, which was significantly better at a 95% level of confidence compared to the
previously SBVS using the ChemPLP score at the EF e, value as the cutoff.

INTRODUCTION

Computational chemistry aided drug discovery tools to provide powerful complementary approaches to High-
Throughput Screening (HTS) in drug discovery pipelines [1]. One of the frequently used computational methods in
drug discovery is molecular docking simulations to perform Structure-Based Virtual Screening (SBVS) [1-5].
However, the predictive ability of the SBVS employing molecular docking was reported dependent on target [3, 6],
which was related to the docking scores as the objective functions to reduce the number of false positives and
negatives [3, 6, 7]. Protein-Ligand Interaction Fingerprints (PLIF) as a post docking rescoring function has been
introduced and reported could optimize fragment and scaffold docking [8]. Employing this rescoring function,
several SBVS protocol were constructed and successfully validated retro- and prospectively [9-14]. Most targets of
the SBVS using PLIF for rescoring belong to G-Protein Coupled Receptors (GPCRs) family [10]. Notably, PLIF
was very recently emplovyed to predict the functional effect of adrenergic [3; receptor (ADRB2) ligands [15].

Targeting human ADRB2 using SBVS has been of considerable interest since the receptor is the first crystal
structure of human GPCR that was solved and publicly available [12, 16, 17]. Employing PLIF was proven to
increase the quality of SBVS to identify ADRB2 ligands [12. 18]. Interestingly, systematic filtering on the PLIF
bitstrings could also pinpoint the important molecular determinants in the ADRB2-ligand binding [18, 19]. By
correlating the results from the systematic filtering on PLIF bitstrings [18] to the site-directed mutation data stored
in GPCRDB [19], the important molecular determinants in the ADRB2-ligand binding were identified, 7.e. D113,
S203 and N293 [18. 19]. Notably, other machine learning methods, e.g binary quantitative-structure activity
relationship (QSAR) [20]. support vector machine [21] and recursive partitioning [8, 22, 23] can make use of these
PLIF bitstrings to improve the SBVS quality. both in ligand identification [9, 11, 13, 18, 24, 25] and ligand function
prediction [12, 15].

The research presented in this article aimed to employ Recursive Partitioning, and Regression Trees (RPART)
method [23] to increase the quality of SBVS in the ADRB2 ligands identification by using docking poses resulted
from previously SBVS campaigns [18]. Istyastono and Setyaningsih [18] has performed SBVS using PLANTS1.2 as
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the molecular docking software [26, 27] and PyPLIF to identify the PLIF bitstrings of each docked pose [28, 29].
The constructed SBVS protocol was retrospectively validated using ADRB2 ligands and decoys from DUD-e [5].
which consisted of 231 ADRB2 ligands and 15,000 decoys [5. 18]. Together with the ChemPLP scores resulted
from the docking software [26, 27], the PLIF bitstrings were used as the predictors to build classification trees using
RPART method [23]. Notably, the RPART method could result in a significantly better classification between
ligands and decoy compared to previously retrospective SBVS campaign [18].

MATERIALS AND METHODS

The docking poses completed with their ChemPLP scores [26] and PLIF bitstrings [28, 29] were obtained from
previously published retrospective SBVS campaigns on ADRB2 ligands and decoys [5, 18]. This previously
published SBVS protocol [18] was used as the reference protocol in this research. The packages “rpart” [21,23] and
“earet” [22.23] were employed in the statistical analysis using R computational statistics software version 3.2.1 (R-
3.2.1) [23. 30].

A data set consisted of the ChemPLP scores and PLIF bitstrings of the ligands and decoys docking poses with
the best ChemPLP score for each compound were compiled. By employving the “rpart™ package in R-3.2.1 [23, 31].
decision trees were constructed. The best decision tree was the one with the lowest cross-validated prediction error
(CV-err). The tree was subsequently used to predict using the predictors in the data set and confusion matrix, i.e.
consisted of true positives (TP), true negatives (TN). false positives (FP), and false negatives (FN), was created [20,
21]. The enrichment factor (EF=(TP/(TP+FN))/(FP/(TN+FP))) value [13] was then calculated and compared to the
value of the reference protocol [18]. At 95% level of confidence, the confidence interval (CI) of the accuracy (ACC)
value and the p-value to examine whether the accuracy was higher than the “no information rate” (the largest class
percentage in the data) were calculated using “confusionMatrix” module in the “caret” package of R-3.2.1 [30] to
examine the significance of the ACC value. McNemar's test was subsequently performed to examine whether the
best classification tree by RPART method was significantly better compared to reference protocol [18, 21].

RESULTS AND DISCUSSION

Aimed to improve the SBVS quality to identify ADRB2 ligands by employing RPART methods, this research
resulted in 5 classification trees (Table 1). The classification tree with the lowest CV-err value, which was selected
as the best classification tree is presented in Fig. 1. Confusion matrices, EF and ACC values resulted from the
reference SBVS and the best classification tree (Fig. 1) are presented in Table 2.

TABLE 1. Decision trees resulted from employing RPART method on the SBVS results to identity ADRB2 ligands.

No. cpv CV-err™ CVostd®
1 0.0346 1.0000 0.0653
2. 0.0173 0.9654 0.0642
3. 0.0144 0.9913 0.0650
4. 0.0108 0.9740 0.0644

5.9 0.0100 0.9524 0.0637

“Complexity parameter of the decision tree; "Cross-validated prediction error; “Cross-validated standard
deviation; YThe decision tree with the lowest CV-err and the lowest CV-std involves the following descriptors:
ChemPLP score and PLIF bitstrings number 31, 39, 63, 92, 166, 197 and 323 (see Figure 1).

TABLE 2. Statistical significances of the best decision tree compared to the reference protocol.

Confusion Matrix

SBVS protocol EF##=* ACC
'l'l)ﬂ * }rNK * 'I'NK * l“l)“ *
Reference [18] 56 175 14850 150 2424 0.979
Employing the best classification tree (see 59 172 14981 19 201.64  0.988"

Table 1 and Figure 1)
*p-value (ACC = "no information rate™) < 0.05; **True positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN). ***The enrichment factor (EF=(TP/(TP+FN))/(FP/(TN+FP)))
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FIGURE 1. The classification tree adopted from the best classification tree resulted from the RPART method (see Table 1). If
the answer to the question in the box is “Yes™, then the path goes to the left arrow, otherwise it goes to the right arrow [23].

Based on Table 2. it can be concluded that based on EF and ACC values the best classification tree built in this
research (Fig. 1) outperforms the reference SBVS protocol [18]. Nevertheless, to examine if the classification tree
could improve the SBVS quality, McNemar’s test was performed [21]. McNemar's test requires numbers of
compound predicted correctly in both protocol (A), predicted correctly in protocol using classification tree but
predicted incorrectly in the reference SBVS (B), predicted incorrectly in protocol using classification tree but
predicted correctly in the reference SBVS (C), and predicted incorrectly in both protocols [21]. These numbers are
presented in Table 3. The test resulted in McNemar’s chi-squared value of 95.616 (p-value < 0.05). This means that
the classification tree constructed in this research is significantly better at a 95% level of confidence than the
reference SBVS protocol to identify ADRB2 ligands [18].

TABLE 3. Matrix for McNemar’s test.

Reference SBVS [18]

The Classification Tree

True False
True A* = 14,881 B** =159
False CH¥¥ =26 DA*+* = 165

*Numbers of compound predicted correctly in both protocol (A): **Numbers of compound predicted correctly in protocol
using classification tree but predicted incorrectly in the reference SBVS (B). ***Numbers of compounds predicted incorrectly
in protocol using classification tree but predicted correctly in the reference SBVS (C): ****Numbers of compounds predicted
incorrectly in both protocols [21].

The results of the reference SBVS.protocol were subjected to systematic filtering and could identify
retrospectively some molecular determinants m the ADRB2-ligand binding [18]. In line with this research,
ChemPLP score emerges as the most determining predictors (Fig. 1). On the other hand, similar molecular
determinants in ADRB2-ligand binding, 7 e. bitstrings #39 (hydrogen bond with T110 as the donor) and #63 (ionic
interaction with D114 as the anion) [18, 19], were also identified here. This indicates that combining systematic
filtering on PLIF bitstrings and subsequently employing RPART method to create robust classification trees could
maximize the SBVS quality. These approaches are therefore suggested to be employed in other relevant targets,
especially in targeting GPCRs.
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CONCLUSIONS

Significant improvement in the SBVS quality to identify ADRB2 ligands could be achieved by using the best

classifi

cation tree which was built by using RPART method. The classification tree could be employed in

pinpointing the molecular determinants in ADRB2-ligand binding. Together with systematic filtering on PLIF

bitstrin

Thi

gs, these approaches were suggested to be employed in other relevant SBVS campaigns.

ACKNOWLEDGMENTS

s research was financially supported by Faculty of Pharmacy. Sanata Dharma University (Internship Grant

FAR/137/VIII/2015/D).

e Mot ol

Moo

10.
I

12.
13.

14.

15:
16.

17.

18.
19.

20.
21.

22.
23.

26
27
28
29

REFERENCES

G. Shiwoski, S. Kothiwale, J. Meiler, E. Lowe, Pharmacol. Rev. 66, 334-395 (2014).

Y. Chen and B.K. Shoichet, Nat. Chem. Biol. 5, 358-364 (2009).

Y. Chen, Trends Pharmacol. Sci. 36, 78-95 (2015).

N. Huang, B.K. Shoichet, IL.J. Irwin, J. Med. Chem. 49, 6789-6801 (2006).

M.M. Mysinger, M. Carchia, J.J. Irwin, B.K. Shoichet, J. Med. Chem. 55, 6582-6594 (2012).

M.H.J. Seifert, Drug Discov. Today 14, 562-569 (2009).

N. Moitessier, P. Englebienne, D. Lee, J. Lawandi, C.R Corbeil, Br. J. Pharmacol. 153(Suppl. 1), §7-526

(2008).

G. Marcou and D. Rognan, J. Chem. Inf. Model. 47, 195-207 (2007).

F. Sirci, E.P. Istyastono, H.F. Vischer, A.J. Kooistra, 8. Niymeijer, M. Kuijer, M. Wijtmans, R. Mannhold,

R. Leurs, I.1.P. de Esch, C. de Graaf, J. Chem. Inf. Model. 52, 3308-3324 (20112).

C. de Graaf and D. Rognan, Curr. Pharm. Des. 15, 4026-4048 (2009).

E.P. Istyastono, A.J. Kooistra, H. Vischer, M. Kuijer, L. Roumen, S. Nijmeijer, R. Smits, 1. de Esch, R.

Leurs, C. de Graaf, Med. Chem. Commun. 6, 10031017 (2015).

C. de Graaf and D. Rognan, J. Med. Chem. 51, 4978-4985 (2008).

C. de Graaf, A.J. Kooistra, H.F. Vischer, V. Katritch, M. Kuijer, M. Shiroishi. 8. Iwata, T. Shimamura,

R.C. Stevens, [.IP. de Esch, R. Leurs, J. Med. Chem. 54, 8195-8206 (2011).

C. de Graaf, C. Rein, D. Piwnica, F. Giordanetto, D. Rognan, ChemMedChem 6, 2159-2169 (2011).

A.J Kooistra, R. Leurs, [.1.P. de Esch, C. de Graaf, J. Chem. Inf. Model. 55, 1045-1061 (2015).

V. Cherezov, D.M. Rosenbaum, M.A. Hanson, S.G.F. Rasmussen, S.F. Thian. T.S. Kobilka, H. Choi, P.

Kuhn, W.I. Weis, B.K. Kobilka, R.C. Stevens, Science 318, 1258-1265 (2007).

P. Kolb, D.M. Rosenbaum, J.J. Irwin, J.J. Fung, B.K Kobilka, B.K. Shoichet, Proc. Natl. Acad. Sci. USA

106. 68436848 (2009).

E.P. Istyastono and D. Setyaningsih, Indones. J. Pharm. 26, 20-28 (2015).

B. Vroling, M. Sanders, C. Baakman, A. Borrmann, S. Verhoeven, J. Klomp, L. Oliveira, J. de Vlieg, G.

Vriend, Nucleic Acids Res. 39(Suppl. 1), D309-D319 (2011).

M. Luo, X. Wang. B. Roth, A. Golbraikh. A. Tropsha, J. Chem. Inf. Model. 54. 634-647 (2014).

E.O. Cannon, A. Amini, A. Bender, M.JL.E. Stemberg, S.H. Muggleton. R.C. Glen, ].B.O, Mitchell, .

Comput. Aided Mol. Des. 21, 269-280 (2007).

D. Rogers and M. Hahn, J. Chem. Inf. Model. 50, 742-754 (2010).

T. Therneau, B. Atkinson., B. Ripley. rpart: Recursive Partitioning and Regression Trees. R package

version 4.1-9. (2015), http://CRAN.R-project.org/package=rpart.

. E.P.Istyastono, C. de Graaf, I.J.P. de Esch, R. Leurs, Curr. Top. Med. Chem. 11, 661-679 (2011).

. E.P. Istyastono. S. Nijmeijer, H.D. Lim. A. van de Stolpe. L. Roumen, A.J. Kooistra, H.F. Vischer, L.I.P. de
Esch. R. Leurs, C. de Graaf, J. Med. Chem. 54, 8136-8147 (2011).

. O. Korb, T. Stitzle, T.E. Exner, J. Chem. Inf. Model. 49, §4-96 (2009).

. 0. Korb, T. Stutzle, T.E. Exner, Proc. IEEE Swarm Intell. Symp. 1. 115-134 (2007).

. M. Radifar, N. Yuniarti, E.P. Istyastono, Bioinformation 9, 325-328 (2013).

. M. Radifar, N. Yuniarti, E.P. Istyastono, Indo. J. Chem. 13, 283-286 (2013).

080004-4




30. M. Kuhn, J. Wing, S. Weston, A. Williams, C. Keefer. A. Engelhardt, T. Cooper, 7. Mayer, B. Kenkel, R
Core Team. M. Benesty, R. Lescarbeau, A. Ziem, L. Scrucca L. caret: Classification and Regression
Training. R package version 6.0-52. (20135), http://CRAN.R-project.org/package=caret.

31. R Development Core Team, R: A Language and Environment for Statistical Computing (Vienna, 2008),
http://www.r-project.org.

080004-5




1_2E4958512.pdf

ORIGINALITY REPORT

0.. 0.,

SIMILARITY INDEX INTERNET SOURCES

Os

PUBLICATIONS

Os

STUDENT PAPERS

PRIMARY SOURCES

Exclude quotes On

Exclude bibliography  On

Exclude matches

<25%



	1_2E4958512.pdf
	by Istyastono_19 Enade

	1_2E4958512.pdf
	ORIGINALITY REPORT
	PRIMARY SOURCES


