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FOREWORD 
 

 

Welcome to this year’s CITEE 2012 in Yogyakarta. 

 

Peace be upon you. First of all, praise to Allah, for blessing us with healthy and ability to come 

here, in the Conference on Information Technology and Electrical Engineering 2012 (CITEE 2012). 

If there is some noticeable wisdoms and knowledge must come from Him.  

 

This conference is the fourth annual conference organized by the Department of Electrical 

Engineering and Information Technology, Faculty of Engineering, Universitas Gadjah Mada. It is 

expected that CITEE 2012 can serve as a forum for sharing knowledge and advances in the field of 

Information Technology and Electrical Engineering, especially between academic and industry 

researchers. 

 

On behalf of the committee members, I would like to say thank you to all of the writers, who come 

here enthusiastically to share experiences and knowledge. I also would like to say thank you to the 

keynote speakers for the participation and contribution in this conference. 

 

According to our record, there are 150 papers from 15 countries are being submitted to this 

conference and after underwent reviewing process there are 78 papers that will be presented. It is a 

52% acceptance rate. There are 15 papers in the field of Power Systems, 26 papers in the area of 

Signals System and Circuits, 11 papers in Communication System and 26 papers in Information 

Technology. Furthermore, the proceedings of this conference is expected to be used as reference for 

the academic and practitioner alike.  

 

Finally, I would like to say thank you to all of the committee members, who worked tirelessly to 

prepare this conference. Special thank to IEEE Computer Society Indonesian Chapter, Department 

of Electrical Engineering and Information Technology UGM and LPPM UGM for the support, 

facility and funds.  

 

Thank you and enjoy the conference, CITEE 2012, and the city, Yogyakarta 
 

 

 

12 July 2012 

 

 

 

Widyawan 
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On The Influence of Random Seeds Evaluation Range 
in Generating a Combination of 

Backpropagation Neural Networks 

Linggo Sumarno 
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Email: lingsum@dosen.usd.ac.id 

 
 

Abstract—A classifier combination, which makes use of 
several backpropagation neural networks can be generated 
by using the same architecture but different weight sets. 
Those neural networks were generated by means of random 
seeds evaluation when they were trained. An experiment has 
been carried out by generating a number of 
backpropagation neural networks by means of random 
seeds evaluation. Based on the experiment it was shown 
that, in general, if the number of neural networks were 
getting bigger, the wider range of random seeds evaluation 
was needed. As a lower limit, a random seeds evaluation 
range 1 to 20 is needed, if 3 or 4 neural networks were 
chosen. 

Keywords: classifiers combination, backpropagation 
neural network, random seed, evaluation range 

I.  INTRODUCTION 
Before 1990, in pattern recognition studies, only one 

classifier was usually used to solve a classification 
problem. Since early 1990’s, an idea emerged that in a 
pattern recognition not only one classifier but also several 
classifiers could be used together. In accordance with it, 
the idea to use the classifier combination methods has 
been expanding. The research domain of the classifiers 
combination methods examine how several classifiers 
can be applied together in order to obtain the better 
classification systems. It was shown that the classifier 
combination methods might improve the recognition 
performance in difficult pattern recognition problems [1], 
[2].  The classifier combination methods may also be 
used to increase the speed of the systems [3], [4] or to 
reduce the time taken for the design of classification 
system [5].  

In the classifier combination methods, there are two 
issues need to be considered. The first one is how the 
classifiers are generated, and the second one is how they 
are combined. Sumarno [6] has addressed the first issue, 
i.e. how a combination of classifiers which made use of 
backpropagation neural networks are generated by means 
of random seeds evaluation. In this paper, it will be 
discussed further by exploring the influence of random 
seeds evaluation range in generating a combination of 
backpropagation neural networks. 

II. THEORY 

A. Classifier Combination 
In order to improve the performance of pattern 

recognition applications, classifier combination methods 
have proved to be an effective tool. In terms of classifier 
combination members, theoretical research by Hansen 
and Salomon [7] and also Krogh and Vedelsby [8], as 
well as empirical research by Hashem [9] and Optiz [10] 
have demonstrated that the best combination is 
combination of several different classifiers. There were 
no advantages in combining several identical classifiers. 

In order to generate several different classifiers, it can 
be carried out by only based on a base classifier. This 
generation can be carried out by changing the training sets 
[11], changing the input features [12], [10], or changing 
the parameters and architecture of a base classifier [13]. 

B. Backpropagation Neural Network 
A neural network is as a computational structure that 

consists of parallel interconnections of neural processors, 
which have adaptation ability. Backpropagation neural 
network is a neural network that commonly used. Fig. 1 
shows an example of a backpropagation neural network 
that used in this research. It consists of C0 input unit, C1 
and C2 neurons in the hidden layer 1 and 2 respectively, 
and also C3 neurons in the output layer. 
 

 
Figure. 1. An example of a backpropagation neural network with two 

hidden layers. 
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1)  Training: Neural network in Fig. 1 needs to be 
trained first, before it can be used in recognizing the 
input. Resilient propagation [14] is one of many training 
algorithms to train it. 

 
2) Initial weights: One thing that carried out during 

the early step neural network training is assigning the 
initial weights of the neurons. The choice of the weights 
will influence the convergence rate or even the 
convergence failure of the neural network training [16]. 

a) If the initial weights are set at the same values, 
the resulted error values will be constant over all 
training period. This situation will cause the 
neural network training trapped in the saturation 
that resist weights changing. Therefore, it can be 
judged that a convergence failure has been 
happened. 

b) If the initial weights are set at the different values 
(however they are inappropriate), it will cause a 
phenomenon called premature saturation [15]. 
This phenomenon refers to a situation where the 
resulted error values almost constant over a 
training period. This phenomenon cannot be 
judged as a local minimum, since error value will 
be reduced after that almost constant period over. 
This premature saturation phenomenon will slow 
down the convergence rate. 

In order to avoid the two things above, in general 
practice, researchers used initial weights from random 
numbers that uniformly distributed in the small range 
[16]. 
 

3) Random Numbers and Random Seeds: One of 
computer property is deterministic property. Therefore, it 
cannot generate the real random numbers. Computer uses 
a pseudorandom generator, in order to mimic the real 
random number generator. By using this kind of 
generator, it can be generated a series of exact 
pseudorandom numbers, as long as the generator is 
initialized using the same initial number. This initial 
number called random seed. 

When a process that make use a series of 
pseudorandom numbers is executed, it is possible to get 
an identical track record of the process. The neural 
network also makes use a series of pseudorandom 
numbers in the training process. Therefore, it is possible 
to get an identical track record of the training process, 
even though the training process is repeated again. On the 
other hand, by using a different series of pseudorandom 
numbers in the training process, it is possible to get a 
different track record of the training process. In the 
neural network training, a different track record means a 
different neural network, since it will has a different 
performance. 

 

III. RESEARCH METHODOLOGY 
A. Materials and Equipments 

Materials in this research are isolated handwritten 
characters in binary format. These materials came from 
data acquisition sheets scanned at resolution of 300 dpi. 
The data were taken from 100 writers, from various 
levels of age (10 to 70 years) and sex. From 100 writers, 
each of them wrote 78 characters, which divided into 
three groups where each group consists of ‘a’ to ‘z’ 
characters. Therefore, there were 7,800 isolated character 
images. Equipments in this research was a set of 
computer based on processor Intel Core2Duo E7500 
(2,93GHz) and 4GB RAM, that equipped with MATLAB 
software. 

 
B.  System Development 

By using materials and equipments above, a system of 
handwritten character recognition has been developed (see 
Fig. 2). In that system, the input is an isolated character 
image in binary format, whereas the output is a character 
in the text format. 

 
1)   Character Normalization: Character normaliza-

tion in Fig. 2 is carried out in order to correct problems of 
slant, size, shift, and stroke-width. In this research 
character normalization from Sumarno [17] was used. 
Fig. 3 shows some steps in character normalization. 
 

In Fig. 3, the input is an isolated handwritten 
character in binary format, whereas the output is 
normalized handwritten character in binary format which 
has 64x64 pixels in size. Sumarno [17] suggested the 
following parameters. 

a) Slant correction was carried out by using 
evaluation of vertical projection histogram of 
handwritten character that had been undergone 
shearing operation by using shearing coefficients 
{-0.4, -0.35, … , 0.4}.  

b) Character scaling was set to 48x48 pixels. 
c) The template size was set to 64x64 pixels. 
d) Thinning operation used thinning algorithm from 

Zhang-Suen [18]. 
e) Dilation operation used square structure-element 

3x3. 
 

2)  Feature Extraction: Feature extraction is a 
process to extract features that exist in each of the 
character image. In this research feature extraction from 
Sumarno [17] was used. Fig. 4 shows some steps in 
feature extraction. 

 
 
 
 

 
Figure. 2.  A character recognition system. 
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Figure. 3.  A character normalization steps. 
 

In Fig. 4, the input is normalized character in binary 
format that has 64x64 pixels in size. The output is a set of 
values that represents the input image that has 64 
elements. Sumarno [17] suggested the following 
parameters for the feature extraction steps. 

a) Low-pass filtering used 2D Gaussian filter 14x14 
with standard deviation 10. 

b) Block partition used 8x8 pixels block size. 
 

3)  Character Recognition: Character recognition is a 
process to recognize a character. In order to recognize it, 
a recognition method based on a backpropagation neural 
network was used. Backpropagation neural networks in 
this research are described in detail as follow [17]. 

a) Neural network with 2 hidden layers was chosen. 
It was chosen because after the evaluation of 
neural network with 1 and 2 hidden layers, the 
neural network with 2 hidden layers gave the 
highest recognition rate. 

b) Input layer has 64 neurons that correspond with 
the number of feature extraction elements. 

c) Output layer has 26 neurons that correspond with 
the number of alphabet characters ‘a’ to ‘z’. 
Transfer function in this layer is unipolar 
sigmoid, that correspond with the network output 
i.e. in the range of 0 to 1. 

d) The hidden layers 1 and 2 have 64 and 312 
neurons respectively. The number of neurons in 
each hidden layer were found from an evaluation 
procedure, where by using 64 and 312 neurons in 
hidden layer 1 and 2 respectively, it gave the 
highest recognition rate. 

e) Transfer functions in each hidden layer is bipolar 
sigmoid, that correspond with internal data 
processing in neural network which in the range  
-1 to 1. 

 
Remarks 
a) Sigmoid function is a function that commonly used in a 

backpropagation neural network [20]. 
b) Training of a backpropagation neural network can be more 

effective by using bipolar data processing in the range of        
-1 to 1 [19]. 

 
 

Figure. 4. Feature extraction steps. 
 
Patterns in training and testing 

Patterns that used in training and testing the neural 
network were images of isolated handwritten character, 
which come from 100 persons that further processed into 
three pattern sets as follows [17].  

a) Training set 
This set used in training (in updating the 
neuron’s weights). This set consists of 13,000 
patterns as follows. 

i) There are 2,600 corrected patterns from 
group 1. 

ii) There are 5,200 corrected patterns from 
group 2. They come from corrected 
patterns from group 2 that rotated -50 and 
50. 

iii) There are 5,200 corrected patterns from 
group 3. They come from corrected 
patterns from group 3 that rotated  -100 
and 100. 

Remarks 
i) Every group consists of 2,600 patterns. 

ii) Corrected patterns are original patterns that have 
undergone slant, size, shift, and stroke width 
corrections. 

iii) It was assumed that the rotation in input patters is in 
the range of -100  to 100. 

b) Validation set 
This set also used in training (in stopping the 
training process). They consist of 2,600 corrected 
patterns from group 2. 

c) Test set 
This set used in testing the trained neural 
network. They consist of 2,600 corrected patterns 
from group 3. 

 
Training algorithm 

The neural network was trained by using resilient 
backpropagation algorithm [14]. This algorithm is the 
fastest algorithm for pattern recognition [21]. Stopping 
criterion in training was made use of validation, in order 
to avoid under-training or over-training.  
 
Pseudorandom and random seed 

Neural network needs random initial weights in order 
to start the training. The computer generates these initial 
weights. However, since the computer cannot generate 
the real random numbers, therefore the pseudorandom 
numbers were used as initial weights. In this research, 
that pseudorandom numbers have the following 
properties. 
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a) Distribution : uniform [16]. 

b) Range  : -1 to 1 (since bipolar sigmoid 
function has limit numbers  -1 and 1). 

c) Repeatability : 21492 (built-in in the MATLAB 
software). 

 
Initial weights in each layer of neural network should 

be different, in order to remove correlation between 
layers. Therefore, random seed values that used in 
generating pseudorandom numbers in each layer should 
also be different. In this research, random seed values 
that used in hidden layers 1, 2 and output layer were i     
(i are integer numbers),  i+1 and i+2 respectively [6]. 

 

IV. TESTING AND DISCUSSSIONS 
Experiments below were carried out by using a 

number of backpropagation neural networks, which have 
the same architecture and also the same training sets. The 
difference in each experiment only in terms of random 
seeds evaluation range. In the first experiment, there were 
5 neural networks that trained using random seeds 
evaluation range 1 to 5. Table I shows the results of the 
first experiment. Based on the Table I(B), if we choose 
top 3, 4, and 5 neural networks, they will give average 
recognition rate 87.68, 86.56, and 86.25 respectively.  

In the second experiment, Table I was expanded by 
training 10 neural networks using random seeds 
evaluation range 1 to 10. Table II shows the results of the 
second experiment. Based on the Table II(B), if top 3, 4, 
and 5 neural networks are chosen, they will give average 
recognition rate 87.08, 86.98, and 86.88 respectively.  

In the third experiment, Table II was expanded by 
training 15 neural networks using random seeds 
evaluation range 1 to 15. Table III shows the results of 
the third experiment. Based on the Table III(B), if top 3, 
4, and 5 neural networks are chosen, they will give 
average recognition rate 87.26, 87.12, and 87.03 
respectively. 

TABLE I.  (A) TRAINING RESULTS OF 5 NEURAL NETWORKS THAT 
TRAINED USING RANDOM SEEDS EVALUATION RANGE 1 TO 5; (B) 

SORTING OF (A) BASED ON RECOGNITION RATE IN DESCENDING MANNER 

 (A)   
Neural network 

number 
Random 

seed 
Recognition 

rate (%) 
1 1 87.39 
2 2 87.15 
3 3 85.00 
4 4 86.69 
5 5 85.00 

 (B) 
Neural network 

number 
Recognition 

rate (%) 
Random 

seed 
1 87.39 1 
2 87.15 2 
3 86.69 4 
4 85.00 3 
5 85.00 5 

In the fourth to sixth experiments there were 15, 20, 
25, and 30 neural networks that trained using different 
random seeds evaluation ranges. They were trained using 
random seeds evaluation ranges of 1 to 20, 1 to 25, and 1 
to 30 respectively. The results of top 3, 4, and 5 chosen 
neural networks in terms of average recognition rate are 
shown in the Table IV. The results of random seed 
evaluation ranges 1 to 5 and 1 to 10 are shown also in the 
Table IV. 

TABLE II.   (A) TRAINING RESULTS OF 10 NEURAL NETWORKS THAT 
TRAINED USING RANDOM SEEDS EVALUATION RANGE 1 TO 10; (B) 

SORTING OF (A) BASED ON RECOGNITION RATE IN DESCENDING 
MANNER. 

 (A) 
Neural network 

number 
Random 

seed 
Recognition 

rate (%) 
1 1 87.39 
2 2 87.15 
3 3 85.00 
4 4 86.69 
5 5 85.00 
6 6 86.38 
7 7 85.62 
8 8 86.69 
9 9 86.31 
10 10 86.46 

 
 (B) 

Neural network 
number 

Recognition 
rate (%) 

Random 
seed 

1 87.39 1 
2 87.15 2 
3 86.69 4 
4 86.69 8 
5 86.46 10 
6 86.38 6 
7 86.31 9 
8 85.62 7 
9 85.00 3 
10 85.00 5 

 
 

TABLE III.  (A) TRAINING RESULTS OF 15 NEURAL NETWORKS THAT 
TRAINED USING RANDOM SEEDS EVALUATION RANGE 1 TO 15. 

 (A) 
Neural network 

number 
Random 

seed 
Recognition 

rate (%) 
1 1 87.39 
2 2 87.15 
3 3 85.00 
4 4 86.69 
5 5 85.00 
6 6 86.38 
7 7 85.62 
8 8 86.69 
9 9 86.31 
10 10 86.46 
11 11 82.08 
12 12 85.62 
13 13 85.62 
14 14 86.00 
15 15 87.23 
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TABLE  III. (CONTINUED) (B) SORTING OF (A) BASED ON RECOGNITION 
RATE IN DESCENDING MANNER. 

 (B) 
Neural network 

number 
Recognition 

rate (%) 
Random 

seed 
1 87.39 1 
2 87.23 15 
3 87.15 2 
4 86.69 4 
5 86.69 8 
6 86.46 10 
7 86.38 6 
8 86.31 9 
9 86.00 14 
10 85.62 7 
11 85.62 12 
12 85.62 13 
13 85.00 3 
14 85.00 5 
15 82.08 11 

 

Based on the Table IV, it can be seen that if 3 or 4 
neural networks are chosen, at least a random seeds 
evaluation range 1 to 20 is needed, whereas if 5 to 7 
neural networks are chosen, at least a random seeds 
evaluation range 1 to 25 is needed. These cases are 
happened because certain random seed values that give 
high recognition rates are randomly distributed. 
However, there are limits in its distribution range. For 
example, for 3 and 4 neural networks, the limit is at 20 
random seeds (for random seeds evaluation range 1 to 
20), whereas for 5 to 7 neural networks, the limit is at 25 
random seeds (for random seeds evaluation range 1 to 
25). 

Based on the Table IV, in general, it can be said that 
if more neural networks are chosen, the wider range of 
random seeds evaluation is needed. As a lower limit, a 
random seeds evaluation range 1 to 20 is needed, if 3 or 4 
neural networks are chosen. 

 

V. CONCLUSION 
Based on the above discussions, there are two 

conclusions as follow. 

a) A new study about the influence of random seeds 
evaluation range in choosing a number of 
backpropagation neural networks as classifier 
combination members has been carried out. In this 
case, these neural networks have the same 
architecture but different weight sets. 

b) In general, it can be said that if more neural 
networks are chosen, the wider range of random 
seeds evaluation is needed. As a lower limit, a 
random seeds evaluation range 1 to 20 is needed, 
if 3 or 4 neural networks are chosen. 

 
 

TABLE IV.  AVERAGE RECOGNITION RATE OF CHOSEN NEURAL 
NETWORKS (IN %) 

Number of 
chosen neural 

networks 

Random seeds evaluation range 

1 to 5 1 to 10 1 to 15 1 to 20 1 to 25 1 to 30 

3 87.08 87.08 87.26 87.28 87.28 87.28 
4 86.56 86.98 87.12 87.25 87.25 87.25 
5 86.25 86.88 87.03 87.22 87.23 87.23 
6 - 86.79 86.94 87.13 87.21 87.21 
7 - 86.72 86.86 87.07 87.16 87.16 
8 - 86.59 86.79 87.01 87.11 87.13 
9 - 86.41 86.70 86.95 87.06 87.08 
10 - 86.27 86.59 86.89 87.02 87.05 

Remarks: random seed evaluation range 1 to 5, 1 to 10, 1 to 15, 1 to 20, 1 to 25, and 1 to 30 are 
correspond with the number of evaluated  neural networks 5, 10, 15, 20, 20, and 30 respectively. 
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