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Abstract. The vibration of a storey building can be modelled into a system of second order 

ordinary differential equations. If the number of floors of a building is large, then the result is a 

large scale system of second order ordinary differential equations. The large scale system is 

difficult to solve, and if it can be solved, the solution may not be accurate. Therefore, in this 

paper, we seek for accurate methods for solving vibration problems. We compare the 

performance of numerical finite difference and Runge–Kutta methods for solving large scale 

systems of second order ordinary differential equations. The finite difference methods include 

the forward and central differences. The Runge–Kutta methods include the Euler and Heun 

methods. Our research results show that the central finite difference and the Heun methods 
produce more accurate solutions than the forward finite difference and the Euler methods do. 

 

1.  Introduction 

Vibration problems have been an interesting research area in physics, engineering, as well as applied 

mathematics. Modelling vibrations on the structural system, such as storey buildings, have the same 

principles as modelling vibrations on the spring-mass system (for more details see [1-6]). This is done 

by assuming that each floor of the building is a mass, and pillars of the building are considered as a 

spring which has a stiffness. Therefore, a vibration in storey buildings can be modelled into a system 

of second order ordinary differential equations. 

Furthermore, if the floor of the building is large, then we can model it to a large scale system of 

second order ordinary differential equations [7-8]. This makes the system of ordinary differential 

equations difficult to solve [9]. In this case, we need some solving methods that produces accurate 

solutions.  

Therefore, in this paper, we compare the performance of numerical finite difference and Runge–

Kutta methods to solve large scale systems of second order ordinary differential equations. From our 

research results, we shall know which numerical method has a higher degree of accuracy, so it 

produces accurate solutions. We note that in engineering applications, vibration studies on the 

structural system complement elasticity studies on the materials of the structures [10-11]. This means 

that our work in this paper shall be useful. 

The remainder of this paper consists of three sections. Section 2 presents mathematical models and 

methods. Section 3 provides numerical results and discussion. We conclude the paper in Section 4. 

http://creativecommons.org/licenses/by/3.0
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2.  Mathematical models and methods 

The vibration of a one-storey building can be modelled like a vibration problem of a spring-mass 

system, that is, to be a second-order ordinary differential equation. In this paper, we assume that 

vibration problems do not involve friction. This can be done for problems with negligible damping. 

The mathematical model for the spring-mass problem without friction is 

 

 𝑚𝑥" + 𝑘𝑥 = 0,    𝑥 ∈ ℝ1, (1) 

 

with the vibration frequency 𝑓 =
1

2𝜋
√

𝑘

𝑚
. Here 𝑚 represents the mass of the object and 𝑘 denotes the 

stiffness of the pillar of the building. Furthermore, 𝑡 is the time variable and 𝑥 is the space variable. If 

the building has 𝑛 levels, then the model is a large scale system of second order ordinary differential 

equations. Afterwards, the large scale system can be written in the form of matrix equations 

 

 𝑀𝑋" + 𝐾𝑋 = 0,   𝑋 ∈ ℝ𝑛, (2) 

 

where 𝑀 is the mass matrix, 𝐾 is the stiffness matrix, and 𝑋 is the vector of space variables. Before 

solving equation (2), we first review that equation (1) can be solved using existing numerical methods. 

The numerical methods that we consider in this paper are the finite difference and the Runge–Kutta 

types. The finite difference methods are the forward and central differences, and the Runge–Kutta 

methods are the Euler and Heun methods. By comparing these methods, we shall know which method 

has better performance than the others. 

2.1.  Case 1: If equation (1) is solved using forward difference method 

Based on forward difference method algorithm, equation (1) can be changed to 

 𝑚
(𝑥′)

𝑡=𝑡𝑛+1−(𝑥′)𝑡=𝑡𝑛

∆𝑡
+ 𝑘𝑥|𝑡=𝑡𝑛 = 0, (3) 

 

 𝑚

𝑥|
𝑡=𝑡𝑛+2 − 𝑥|

𝑡=𝑡𝑛+1

∆𝑡
  −  

𝑥|
𝑡=𝑡𝑛+1 − 𝑥|

𝑡=𝑡𝑛

∆𝑡

∆𝑡
+ 𝑘𝑥|𝑡=𝑡𝑛 = 0, (4) 

 

 𝑚
𝑥𝑛+2−𝑥𝑛+1

∆𝑡
  −  

𝑥𝑛+1−𝑥𝑛

∆𝑡

∆𝑡
+ 𝑘𝑥𝑛 = 0, (5) 

 

 𝑚
𝑥𝑛+2−2𝑥𝑛+1+𝑥𝑛

∆𝑡2 + 𝑘𝑥𝑛 = 0, (6) 

or can be changed to 

 𝑚
𝑥𝑛+1−2𝑥𝑛+𝑥𝑛−1

∆𝑡2 + 𝑘𝑥𝑛−1 = 0, (7) 

so that 

 𝑚(𝑥𝑛+1 − 2𝑥𝑛 + 𝑥𝑛−1) = −𝑘𝑥𝑛−1∆𝑡2, (8) 

 

 𝑥𝑛+1 − 2𝑥𝑛 + 𝑥𝑛−1 =
−𝑘𝑥𝑛−1∆𝑡2

𝑚
, (9) 

 

 𝑥𝑛+1 =
−𝑘𝑥𝑛−1∆𝑡2

𝑚
+ 2𝑥𝑛 − 𝑥𝑛−1. (10) 

Equation (10) is the forward difference scheme for equation (1). Without loss of generality, we 

assume that the value of  𝑘 = 1 and 𝑚 = 1, then we obtain 

 

 𝑥𝑛+1 = −𝑥𝑛−1∆𝑡2 + 2𝑥𝑛 − 𝑥𝑛−1. (11) 
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2.2.  Case 2: If equation (1) is solved using central difference method 

Equation (1) can be changed to 

 𝑚
(𝑥′)

𝑡=𝑡𝑛+1−(𝑥′)
𝑡=𝑡𝑛−1

2∆𝑡
+ 𝑘𝑥|𝑡=𝑡𝑛 = 0, (12) 

 

 𝑚

𝑥|
𝑡=𝑡𝑛+2  −  𝑥|

𝑡=𝑡𝑛

2∆𝑡
  −  

𝑥|
𝑡=𝑡𝑛  −  𝑥|

𝑡=𝑡𝑛−2

2∆𝑡

2∆𝑡
+ 𝑘𝑥|𝑡=𝑡𝑛 = 0, (13) 

 

 𝑚
𝑥𝑛+2  −  𝑥𝑛

2∆𝑡
  −  

𝑥𝑛  −  𝑥𝑛−2

2∆𝑡

2∆𝑡
+ 𝑘𝑥𝑛 = 0, (14) 

 

 𝑚
𝑥𝑛+2−2𝑥𝑛+𝑥𝑛−2

4∆𝑡2 + 𝑘𝑥𝑛 = 0, (15) 

 

or can be written as 

 

 𝑚
𝑥𝑛+1−2𝑥𝑛+𝑥𝑛−1

∆𝑡2 + 𝑘𝑥𝑛 = 0, (16) 

 

so we get 

 𝑚(𝑥𝑛+1 − 2𝑥𝑛 + 𝑥𝑛−1) = −𝑘𝑥𝑛∆𝑡2, (17) 

 

 𝑥𝑛+1 − 2𝑥𝑛 + 𝑥𝑛−1 =
−𝑘𝑥𝑛∆𝑡2

𝑚
, (18) 

 

 𝑥𝑛+1 =
−𝑘𝑥𝑛∆𝑡2

𝑚
+ 2𝑥𝑛 − 𝑥𝑛−1. (19) 

Equation (19) is the central difference scheme for equation (1). For  𝑘 = 1 and 𝑚 = 1, we obtain  

 

 𝑥𝑛+1 = −𝑥𝑛∆𝑡2 + 2𝑥𝑛 − 𝑥𝑛−1. (20) 

 

Notice that the central difference scheme (20) is not the same as the forward difference scheme (11). 

2.3.  Case 3: If equation (1) is solved using the first order Runge–Kutta method (Euler method) 

Given equation (1) where the value of 𝑘 = 1 and 𝑚 = 1, we obtain 

 

 𝑥" + 𝑥 = 0. (21) 

 

Furthermore, we derived a system of first order differential equations from equation (21). Let 

𝑥1 = 𝑥 and 𝑥2 = 𝑥′, so the system of equations (21) becomes 

 

 𝑥1
′ = 𝑥′ = 𝑥2, (22) 

 

 𝑥2
′ = 𝑥" = −𝑥 = −𝑥1. (23) 

 

The system of equations (22) and (23) can be solved using the Euler method as follows 

 𝑋𝑛+1 = 𝑋𝑛 + 𝑓(𝑡𝑛, 𝑋𝑛)∆𝑡, (24) 

 

or can be written in a matrix equation 

 𝑋𝑛+1 = 𝑋𝑛 + (
0 1

−1 0
) (

𝑥1
𝑛

𝑥2
𝑛) ∆𝑡. (25) 
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2.4.  Case 4: If equation (1) is solved using a second order Runge–Kutta method (Heun method) 

The Heun method for the system of equations (22) and (23) is 

 

 𝑋𝑛+1 = 𝑋𝑛 +
𝑓(𝑡𝑛,𝑋𝑛)+𝑓(𝑡𝑛+1,𝑋𝑛+1)

2
∆𝑡, (26) 

 

With 𝑓(𝑡𝑛+1, 𝑋𝑛+1) ≈ 𝑓(𝑡𝑛+1, 𝑥𝑛+1̅̅ ̅̅ ̅̅ ), where 𝑥𝑛+1̅̅ ̅̅ ̅̅ = 𝑋𝑛 + 𝑓(𝑡𝑛, 𝑋𝑛)∆𝑡 or in other words 𝑥𝑛+1̅̅ ̅̅ ̅̅ =
𝑋𝑛+1 in the Euler method. Therefore, the algorithm for Heun method becomes 

  

 𝑋𝑛+1 = 𝑋𝑛 +
𝑓(𝑡𝑛, 𝑋𝑛)+𝑓(𝑡𝑛+1, 𝑥𝑛+1̅̅ ̅̅ ̅̅ ̅̅ )

2
∆𝑡, (27) 

 

or it can be written in a matrix equation 

 

 𝑋𝑛+1 = 𝑋𝑛 + [(
0 1

−1 0
) (

𝑥1
𝑛

𝑥2
𝑛) + (

0 1
−1 0

) (
𝑥1

𝑛+1∗

𝑥2
𝑛+1∗)]

∆𝑡

2
 , (28) 

where 𝑥1
𝑛+1∗ and 𝑥2

𝑛+1∗ are obtained from the one-step Euler method. 

3.  Results of finite difference methods and Runge–Kutta methods 

This section compares results of forward and central difference methods, as well as those of the Euler 

and Heun methods in solving equation (1). Simulations of the four methods are done using MATLAB, 

with values 0 ≤ 𝑡 ≤ 10 and ∆𝑡 = 0.5; 0.25; 0.125; 0.0625. Based on the algorithm that is made in 

MATLAB, we present a graphic image showing the comparison results of the four methods together 

with analytical results. 

 

 
Figure 1. Analytical and numerical solutions using time step ∆𝑡 = 0.5. 

 

 

Representatives of our numerical results are shown in Figures 1-4. Respectively these figures show 

analytical solution together with numerical solutions using time steps ∆𝑡 = 0.5; 0.25; 0.125; 0.0625. 

We observe that the central difference method and the Heun method approximate the analytical 

solution better than the forward difference method and the Euler method do.  
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Figure 2. Analytical and numerical solutions using time step ∆𝑡 = 0.25 

 

 

 

 

 

 
Figure 3. Analytical and numerical solutions using time step ∆𝑡 = 0.125 
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Figure 4. Analytical and numerical solutions using time step ∆𝑡 = 0.0625 

 

 

Table 1. Error comparison of the forward difference, central difference, Euler, and Heun methods. 

∆𝑡 
 Error 

Forward difference Central difference Euler method Heun method 

0.5 1.9924 0.0291 1.8732 0.1284 

0.25 0.6659 0.0074 0.6510 0.0313 

0.125 0.2671 0.0019 0.2611 0.0078 

0.0625 0.1199 0.0005 0.1169 0.0019 

 

 

Furthermore, error comparison with varying time step is summarised in Table 1. We obtain that for 

central difference and the Heun methods, as the time step is halved, the error gets quartered. For 

forward difference and Euler methods, as the time step is halved, the error gets halved too. These 

mean that central difference and the Heun methods have the second order of accuracy. Forward 

difference and Euler methods have the first order of accuracy. 

4.  Conclusion 

We have compared the performance of the forward finite difference, central finite difference, Euler, 

and Heun methods for solving vibration problems. We obtain that the central finite difference and the 

Heun methods have the second order of accuracy to solve vibration problems modelled in ordinary 

differential equations. These two methods produce more accurate solutions than the forward finite 

difference and the Euler methods having only the first order of accuracy. 

Acknowledgment 

This research was supported financially by Sanata Dharma University. Both authors are very thankful 

to Sanata Dharma University for the financial support. 

 



7

1234567890

International Conference on Science and Applied Science 2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 909 (2017) 012044  doi :10.1088/1742-6596/909/1/012044

 

 

 

 

 

 

References 

[1] Sakr T A 2015 Vibration control of buildings by using partial floor loads as multiple tuned mass 

dampers HBRC Journal (in press) DOI: 10.1016/j.hbrcj.2015.04.004 

[2] Connolly D P, Marecki G P, Kouroussis G, Thalassinakis I and Woodward P K 2016 The 

growth of railway ground vibration problems – A review Science of The Total Environment 

586 1276 

[3] Floden O, Persson K and Sandberg G 2016 Numerical methods for predicting vibrations in 

multi-storey buildings World Conference on Timber Engineering WCTE 2016 124667 

[4] Shimoda M and Liu Y 2016 Node-base free-form optimization method for vibration problems 

of shell structures Computers & Structures 177 91 

[5] Shirokov V S, Kholopov I S and Solovejv 2016 Determination of the frequency of natural 

vibration of a modular building Procedia Engineering 153 655 

[6] López-Mendoza D, Romero A, Connolly D P and Galvin P 2017 Scoping assessment of 

building vibration induced by railway traffic Soil Dynamics and Earthquake Engineering 93 

147 

[7] Kalaycioglu T and Ozguven H N 2014 Nonlinear structural modification and nonlinear coupling 

Mechanical Systems and Signal Processing 46 289 

[8] Supriyadi B and Mungkasi S 2016 Structural dynamic modification using matrix perturbation 

for vibrations without friction Journal Physics: Conference Series 776 012078 

[9] Xie W C 2010 Differential Equations for Engineers (Cambridge: Cambridge University Press) 

[10] LeVeque R J 2002 Finite-volume methods for non-linear elasticity in heterogeneous media 

International Journal for Numerical Methods in Fluids 40 93 

[11] Supriyadi B and Mungkasi S 2016 Finite volume numerical solvers for non-linear elasticity in 

heterogeneous media International Journal for Multiscale Computational Engineering 14 

479 


