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Abstract. We consider the advection-diffusion equation in one dimension. The equation is 

solved using an explicit finite difference method. As the method is explicit, it is simple to 

implement. We investigate the performance of the method. We obtain that the method is 

indeed accurate. 

1. Introduction 
The advection-diffusion equation is a model that can be used for simulation of the spreading of 

pollutant. It governs the process of advection and diffusion concurrently. A large number of authors 

(to mention some of them, see [1-15]) have attempted to solve and use this equation in their 

simulations. 

In this paper, we investigate the performance of a finite difference method due to Karahan [4] for 

solving the advection-diffusion equation of pollutant transports. The finite difference approach is 

appropriate because the equation is a partial differential equation having the parabolic type. We use 

the MATLAB software in the implementation of the finite difference method. The iterations are 

started from a given initial condition using an arbitrary space width and time step.  

This paper is organised simply as follows. Sections 2-5 contains the mathematical model, 

numerical method, numerical results, and conclusion, respectively. 

2. Advection-diffusion equation 
The mathematical model describing the pollutant transport is the one-dimensional advection-diffusion 

equation [4] 
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in a finite space domain of x  and a finite time domain of t . The variable ),( txcc =  denotes the 

concentration of a pollutant. In addition, gf ,
 
and h  are known functions; Dxu ,,

 
respectively 

represent the velocity, the direction, and the dispersion coefficient. Here u  and D  are assumed to be 

positive constants. As advection-diffusion equation contains advection and diffusion phenomena, the 

solution should reveal those two phenomena. 

 

3. Finite difference method 

We use the finite difference method due to Karahan [4] to solve the problem. Note that the equation is 

a partial differential equation of the parabolic type, so finite difference methods should be able to 

solve the problem. This is because finite difference methods are based on the direct-discretisation of 

differential equations. Solutions of parabolic partial differential equations are always continuous even 

when the initial condition is discontinuous.  

We discretise the problem by choosing a stepsize x∆  as the spatial step in x  and stepsize t∆  as the 

temporal step in t . We also approximate the concentration c  on a grid of point in the xt -plane. 

Moreover,  

M
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Furthermore, we take the following discretisations 
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where θ  is the weighting factor. Here the time integration (7) is forward difference, so it has the first 

order of accuracy. 

Substituting the equations above into equation (1), we have 
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for Mi ≤≤1  and Nn ≤≤1 . Equation (10) is equivalent to 

( ) ( ) ( )1 , 1 1, 1 1,
2 2
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c i n c i n c i n

Pe Pe Pe Pe
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(11)
 

where the Courant number xtuCr ∆∆= / , and the Peclet number /Pe u x D= ∆ . The boundary 

condition, equation (3), makes the equation is explicit, so we obtain 

 

 

 



3

1234567890

International Conference on Science and Applied Science 2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 909 (2017) 012038  doi :10.1088/1742-6596/909/1/012038

 

 

 

 

 

 

( ) ( ) ( ), 1 1, 1 2 ,
2 2

Cr Cr Cr Cr Cr Cr Cr
c i n c i n c i n

Pe Pe Pe Pe Pe
θ θ

                   
+ = − − + + − + + −                   

                  

( ) ( )
1

1, 1, 1 1
2 2

Cr Cr Cr Cr
c i n c i n

Pe Pe
θ θ

−
      

+ + + − + + +      
      

 

(12)
 

Equation (12) is the explicit finite difference method due to Karahan [4] for solving the advection-

diffusion equation (1). 

 

 

4. Results and discussion 
In this section, we present our numerical results and discuss them. We assume that all quantities are in 

SI units with the MKS system. 

As the numerical test, we consider the following settings. The initial condition is 

.
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This initial condition is illustrated in Figure 1. Parameters being used are 005.0=D  and 8.0=u . The 

spatial step is 025.0=∆x , and the temporal step is 0125.0=∆t . We consider the spatial domain 

90 ≤≤ x . We seek the solution at time 5.2=t  and .5=t  

 

 

Figure 1. Initial condition ( 0=t ) of an advection-diffusion problem. 

 
The analytical solution for this problem is [4] 
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Note that this problem is chosen, because the analytical solution has been found (see 

Sankaranarayanan  et al. [11]). In general, the analytical solution to the advection-diffusion equation is 

not available. Therefore, we do need numerical methods to solve the advection-diffusion equation.  

Numerical results show that the method is simple to implement, yet gives accurate solutions. This 

is shown in Figure 2 as representatives of our numerical results. This figure shows the solution at time 

5.2=t  and ,5=t  respectively. Notice that our solutions reveal advection and diffusion phenomena at 

the same time. That is, as time evolves the solution translates to the right (advection phenomenon) and 

it diffuses from the centre of the concentration position (diffusion phenomenon).  
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Figure 2. Numerical and analytical solutions using 025.0=∆x  and 0125.0=∆t  at time 5.2=t  (left 

figure) and 0.5=t  (right figure) respectively. We observe that the numerical solution is very accurate, 

as the error is quite small with respect to the analytical solution. 

 

 

   

Figure 3. Numerical and analytical solutions using 05.0=∆x  and 0125.0=∆t  at time 5.2=t  (left 

figure) and 0.5=t  (right figure) respectively. We observe that artificial oscillations occur if the 

spatial step is taken too large. 

 

 

We should not take the spatial step x∆  too large, as it may not be able to cover the accuracy of our 

numerical discretisation. Taking the spatial step x∆  too large may lead to unphysical solutions. That 

is, artificial oscillations may occur in the numerical solutions if the spatial step x∆  is too large. This is 

shown in Figure 3. This figure shows the solution at time 5.2=t  and ,5=t  respectively using the 

same numerical settings as before, except the spatial step here is 05.0=∆x . 

 

5. Conclusion 

We have investigated the performance of an explicit finite difference method for solving the 

advection-diffusion equation. As we use the forward difference for the time derivative, numerical 

solutions should have the first order of accuracy at best. The general analytical solution to the 

advection-diffusion equation is not available, so we need the numerical method to solve the advection-

diffusion equation for the general case. The proposed method can be extended for solving the 

advection-diffusion equation with a source term. 
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