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A White Noise Approach to Subfractional Brownian Motion

Herry Pribawanto Suryawan?
Department of Mathematics, Sanata Dharma University, Yogyvakarta, 55282, Indonesia.
# Corresponding author:herrypribs @usd.ac.id

Abstract. In this paper we study the subfractional Brownian motion by using white noise analysis. First we recall a repre-
sentation of subfractional Brownian motion on the white noise space and prove the exislem of the Donsker delta function of
subfractional Brownian motion. We also solve the Langevin equation and a Wick-type linear stochastic differential equation driven
by subfractional Brownian motion by using the S-transform method.

INTRODUCTION

The fractional Gaussian processes have been intensively studied due to the fact that the theory is interesting in itself
and at the same time it has a broad range of applications. Fractional Brownian motion (fBm) seems to be lhuplesl
fractional Gaussian process. It was introduced by Kolmogorov in [1] with the deﬁlm] as follows. The fBm with
Hurst parameter H € (0,1) is a centered Gaussian process B = (BH (t)) with B”(0) = 0 a.s. and covariance

1=0
function

Cov (BH(t),BH(.s')) = é (IZH +52H - S|2H) . 51 =0

2
The case H = % corresponds to the standard Brownian motion (Blﬂ/landelbrol and Van Ness in [2] further studied
this process and, in parlicular._ained a representation of fBm as a stochastic inml with respect to Bm. It is
well-known that fBm satisfies sc]f—sinﬁ]aritymlgf’shorl-rangc dependence, Hélder continuity of the sample paths,
and stationarity of increments. Furthermore, fBm is the only continuous Gaussian process which is self-similar and
has stationary increments. Due to these properties fBm has been used as an important tool for stochastic modeling
in hydrology, telecommunication, turbulence, image processing and segmentation, medical image analysis, network
traffic analysis, financial mathematics, etc. A comprehensive study of fBm can be foundin [3, 4, 5, 6, 7] and references
therein. a

Another generalization of the Brownian motion is the so-callembfractional Brownian motion (sfBm). It was
introduced by Bojdecki et al in [8] in connection with the study of occupation time ﬂuctuaticm}f branching particle
systems with Poisson initial condition. The sfBm with parameter H € (0,1) is a centered Gaussian process S =
(st (t)) = With S7(0) =0 a.s. and covariance function

Cov (8H(1),8% (s)) = 52+ — é ((s—x)zH +r —.9|2H) . 5,130 0

When H =[5 @ine recovers the standard Bm. One way to establish the existence of sfBm 1s by considering the process
N (4 1~ defined by

H ey o pH i _
gy .= OB sy

vz
where (BH (t)) (e 1s a two-sided fBm. One can easily check that the covariance function of EH coincides with (1).
For details we refer to [6, 8].
) The sfBm is intermediate between Bm and fBm in the sense that it has properties analogous to those of fBm, but
the increments on non-overlapping intervals are more weakly correlated, and their covariance decays polynomially at
a higher rate. In some applications, @ as turbulence phenomena in hydromechanics, fBm is an adequate model for
small increments, but it seems to be inadequate for large increments. For this reason, sfBm may be an alternative to
fBm in someaochaslic models. 7
The sfBm is neither a semimartingale nor a Markov process unless H = +. This implies that the powerful techniques
from classical stochastic calculus are not available when dealing with 7. sfBm shares many properties to those
of fBm such as self-similarity and long-range cgendcncc, On the contrary the increments of sfBm are not stationary.
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It is known that sfBm is a quasi-helix in the sense of Kahane, that is it satisfies the inequalities, for any s,f = 0 with

=5,

((2=22#"1) A1) (2 —s5)?H gE(sH(:)—SH(s))Z <((2-22"Yv1)(e—s)*.

As a consequence, sample paths of sfBm is Hélder continuous of order y for any ¥ < H. As a conclusion sfBm
1s suitable for modeling of random phenomenon which posseses self-similarity, long/short dependence, continuous
sample paths but non-stationary increments. Some works on sfBm, including basic and advanced properties, stochastic
calculus, local times, can be found in [9, 10, 11, 12 14, 15, 16, 17, 18, 19, 20], among others.

In this paper we relhe realization of sfBm on the white noise probability space and prove that the Donsker delta
function of sfBm is a white noise distribution in the Hida sense. We also construct solutions to a subfractional version
of the Ornstein-Uhlenbeck and a linear stochastic differential with Wick-multiplicative subfractional white noise in a
suitable white noise distribution space.

BASICS ON WHITE NOISE ANALYSIS

In this section we give background on the white noise theory used throughout this paper. For a more comprehensive
discussions including various applications of white noise theory we refer to [21, 22, 23] and references therein. We
start with the Gelfand triple

Fy(R) = LI(R) — 7 (R),
a(R) — Ly(R) al ),
where .#,(I2) is the space of R¥-valued Schwartz test function, Z4(R) is the space of [#4-valued tempered distribu-
tions, and Lﬁ(l[ﬁ) is the real Hilbert space of mﬁ"-valued Lebesgue square-integrable functions. Next, we construct
a probability space (.7;(R), €, ) where % is the Borel o-algebra generated by weak topology on .&j(IR) and the
probability measure u is uniquely determined through the Bochner-Minlos theorem by fixing the characteristic func-
tion

L 2o

€)= [, P (10.1)) du(@) =exp (—5|,f|u)

for all f € .#,(IR). Here ||y denotes the usual norm in lh«m(R), and (-,-) denotes the dual pairing between .%;(R)
and .#4(IR). The dual pairing is considered as the bilinear extension of the inner product on Lﬁ(l[ﬁ)._ Le.

(&.7)= ?_ij &/ dx,

forall @ = (gy,....84) € Lﬁ(l[ﬁ) and f: (f1,....f1) € #4(R). This probability space is known as the R“-valued
white noise space since it contains the sample paths of the d-dimensional Gaussiz hite noise. In this setting a d-
dimensional Brownian motion can be represented by a continuous modification of € stochastic process B = (B; J,-

with
B(t) = ((-Aps) - (-~ 104))

such that Qndcpcndcnt d-tuples of Gaussian white noise @ = (@ ,...,0y) € ., (RR)
B(t,8) = ((@1, 1104 ), (@, Ljog)) s

where 1, denotes the indicator function of a set A C [B.
In the sequel we will use the Gel'fand triple

(F) = LX) =L* (F}(R), €, p) = (&)

where (.#') is the ae of white noise test functions obtained by taking the intersection of a f}my of Hilbert sub-

spaces of L?(u). The space of white noise distributions (.%)* is defined as the topological dual space of (7).
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Elements of () and (.%)* are known as Hida test functions and Hida distributions, respectivi§lj An important
tool in white noise analysis is the S-transform which can be considered as the Laplace transform with respect to the

Gaussian measure. The S-transform of @ € (.%')" is defined as

(5)(7):= ((@,:exp (7)) 1)), Fesul®),
rexp (7)) s=c(Prexe (7)),

is the so-called Wick exponential and ((-,-)) denotes the dual pairing between (.%)" and (.%). We define this dual
pairing as the bilinear extension of the sesquilinear inner product on L?(u). The S-transform provides a convenient
way to identify a Hida distribution @ € (.%')*, in particular, when it is hard to find the explicit form for the Wiener-1td
chaos decomposition of @. We now state some properties of the S-transform.

Theorem 1 [22

1. The S-transform is injective, i.e. if S®(@) = SP(@) for all ¢ € .7\ (R), then & ="P.

where

2. Let a stochastic distribution process X : I — (%) is differentiable. Then, S%X tie)= %SX (t){@) for all
¢ < A(R).

In white noise analysis ll@is a way to define multiplication of two distributions using the S-transform. Let W £
(.#)". The Wick product of @ and W is defined as

Do =S (SD.SP).
We will need also the Wick exponential function exp® which is defined for @ € (.%)* by
Sexp’ (@) (@) =exp® (SP(@)). @7 (R)

See [24] felails on Wick product and calculus based on it.
Finally in this section we state a sufficient condition on the Bochner integrability of a family of Hida distributions
which depend on an additional parameter.

Theorem 2 [25] Let (Q, &/, v) be a measure space and A — ®; be a mapping from Q to (.7)*. If
(1) the mapping A — S(D; )(f) is measurable for all fE Sa(R), and

(2) there exist C\(A) €L' (Q,a, V), C2(A) € L* (Q, o/, v) and a continuous seminorm ||-|| on .#4(R) such that for
allzeC, fe 7(R)

IS(@1)(zf)| < C1(A)exp (C:(M:F if)) _.

then @, is Bochner integrable with respect to some Hilbertian norm which topologizing (.%')". Hence fﬂ @, dv(A) e
(.#)*, and furthermore

S (ILCD;_dv(l)) :ILS(CD;_)dv(l).

WHITE NOISE ANALYSIS OF SFBM

In this section we recall a representation of sfBm on the white noise space and show the existence of the Donsker
delta function of sfBm. In order to represent sub-fBm on the white noise space, we use the following operator

o _ 1
cup” ) p ifo<cnH < 1
MU= ifH=1
_1
cul” 7 f ifl<H<1,
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where Cy = +/2H sin(mH ) I'(2H ) dan I denotes the gamma function. Here IEf._ 0 < p < 1,1s the Weyl type fractional
integral operator defined by

() (0= ﬁfﬂr) (t—x)P " dr

if the integrals exist for almost all x € |} and D’Ef._ 0 < B < 1is the Marchaud type fractional derivative operator
defined by .
17

L B = flx) = flx+1)
(Dﬁf) (x) := ﬁl—lrl(l]L C(1—-B)Jn 4P di

if the limit exists in L (I2) for some p > 1. For any Borel function f on [O,W) we define its odd extension f° by

) f(x) ifx>0
rE= {—f(—x) if x < 0.

Note that sfBm S% can be written as a Volterra process with the following moving average representation (see e.g.
[81):

0 :KH/ ((t—s)f_{f—(t—s)_ 5—2(—.;)’:‘%) dB(s), @)

I:4

where

]

4=
|
-
A=
—
o
-
f

2 1 )“-’3_ H sin (THEER2H)

- o

X+ = max {x,ﬁ}. P— max{—x,ﬁ}. and (B(f)),.p 1s a two-sided Brownian motion. For more information on a
white noise approach to Volterra process see [26]. Based on the moving average representation (2) one can show the
following.

Proposition 1 [17] It holds that MY 15, € L*(R) and

1 o 1 o
s (1) = A /u:r (Mi"lw_,l) (s)dB, = < ﬁMfl[m]> , ®

where B = (B(t));er is a one-dimensional Brownian motion on the real line and 13 denotes the odd extension of the
indicator function of a set A C ..

The generalized stochastic process WH = (W(t)”)rm defined by
)

H _GH
WH(r) .= ; (8(r)) = lim M,

h—0 h
N

where the convergence takes place in the Hida distribution space (.%)", is called the one-dimensional subfractional
white Ee, Note that for any r = 0 SH(r) e Lz(.u) and WH(I) £ (.#")*. The d-dimensional sfBm can be represented
on the white noise space by a continuous modification of the stochastic process §7 = (SH(I))HU with

1 o 1 o
L () )
15

such that for independent d-tuples of Gaussian white noise @ = (@, ,..., @) € ,"/i’}(l[ﬁ)

1 1
SH(Ir(_‘j) = (<(O] s EMﬁlﬁul > peeey <(O‘;_. \TEM§1E]J|>) .
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Apart from the operator MY above we will need the following operator:

(-4

CuD. 1)f if0<H<1
Mif=qf ifH =1
1
cul 7 f ifl<H<1,

where, for0 < f§ < 1, IEf 1s the Weyl fractional integral operator defined by

(75) )= ﬁ/_’;,fu) (x—1)B " ar

if the integrals exist for almost all x € It and D_‘if 1s the Marchaud fractional derivative operator defined by

o B = fx) = flx—1)
(l)ﬁ ) ‘_kl—l}l}]]‘* (1 —,8) Jn 1P &,

if the limit exists in LP (%) for some p > 1. One can show that M and Mf are dual operators in the sense that

(r.Mlg), = (Mf.g),

for any function f and g satisfying some regularity condition, for example indicator function or Schwartz test function.
For details we reﬁlo [27]. The following result shows that the operator M¥ interchanges with the S-transform.

Lemma 1 [28] Let (Q,.7,IP) be a probability space. If M X exist for some X 46 md L2 (Q,.7,P), then
E((MIX),®) =M (E(XP))

forall® e r? (Q,.#.P). ForH < % the convergence of the fractional derivative on the right-hand side is in the L7 (%)

(n-4)

sense, if M; X € LP (R Q, .7 P). In particular, the operator Mf interchange with the S-transform.

The S-transform of sfBm and subfractional white noise can be computed explicitely, see [17, 28] for proofs and

details.

Lemma 2 Let (59 (t))i=0 dan (WH (t))i=0 be one-dimensional sfBm and subfractional white noise, respectively. Then,
forany @ € (&) it holds

1.

1 1 1 0
SSH (1) (@) = <¢,3Mf1ﬁ“|> = 7 (L Mf(p(s)ds—l 3 Mf(p(s)ds) .

1
SWH(1) () = 7 (M o) (1) — (M @) (—1)).

Now we show that the Donsker delta function of a sfBm is a well-defined element in the space of Hida distributions.

Theorem 3 Let §7 = (9‘? . _.Sf } be a d-dimensional sfBm and X R4, The Bochner integral

5 (SH(r)— %) := L / exp (f(i,sb‘(:) —_?}) di
154

(z}r)d e

is a Hida distribution with the S-transform given by

1 d 1 Hao 2
exXp (—_2(2 —22H-T)2H Z] (-‘ff - <‘P1-'\/;M—1IUJ|>) ) d
i- 2

[

o 1
S8 (SH(r)—%) (@) = (m)

forany ¢ € .74 (R).
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Proof. For any ¢ € .#; (&) we have

Sexp (i(&,5"(1) =) () = ((exp (i(h,5" (1)~ 1)) , €@ exp (-,

a measurable function of 4. Moreover, for ¢ € .#4 (%) and 7 € C we obtain
- 1 |
|Sexp (5(1,.91"(:) —f)) | < nexp (——1 Var (8% (1 )})exp (| 1[4 <<pj ﬁMf1EJJ|>:)

1.5 ) )
< nexp (——l Var ( st )})exp (le‘Var(SH(r)})exp(|z|‘|(pj|‘}
22

_exp( “4 r-H (4] )exp(|:|2|€:|ﬁ}.

Note that the first factor is an integrable function of A and the second factor is independent of A. Thus, Theorem 2

implies that & (SH(I) — x} € (.7)". Finally, by calculating the Gaussian integral we get

S«S(SH(I)—_? = on d/ Sexp &S‘H —r) di

A 1 1 1 b :
N e (_2(2—22*’-1):” (‘“ _<‘P”EM‘1‘“—">) )

d 2
1 T 1 d ( < M >)
As _~a-12m | SXP\ T 55 - oH Xj— —=MZ1 :
(2x(2—2—” J)rﬂ) ( 2(2-224 J):—H?_:J / 2 o]

Corollary 1 The transition probability function of a particle in a anem described by a d-dimensional sfBm SH —
(9H (t))i=0 to move from xo € R4 1o an endpoint Xt R4 ara later time t =T is given by

s,

. 1 1 L L
p(x0,0:x7.T) = (m) exp (_m o —-‘f7|;;};) :

Proof. The generalized expectation of the Donsker delta function can be obtained from Theorem 3 by evaluating the
value of the S-transform at ¢ = 0:

) 1 £
Ey (8(8% (1)~ ) = S8(5" (1) —&)(0) = (m) exp( m ): (r{]_{J) )

The transition probability function p (xo,0:x7,T) follows immediately from the last expression by fixing the endtime
t = T with endpoint ¢ = x7.

For a discussion on the Donsker delta function of general class of stochastic processes with memory see [29].
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WICK-TYPE LINEAR SDES DRIVEN BY SFBM
In this section we will solve the Langevin equation driven by sfBm and a linear stochastic differential equation (SDE)
of Wick-type driven by sfBm by using the S-transform method. First, let us consider the Langevin equation driven by

sfBm

dX" (1) = —AX" (1) dt +xdS" (1), X" (0) = x, (3)

where k € 2 dan A > 0. The solution X (¢) of equation (3) represents the velocity at time 7 of a free particle which
performs a subfractional Brownian-type motion but different from $¥(r). The SDE (3) is interpreted in the integral

form by

T
XH () =xg— 4 / X% (s)ds+ kS (1).
Jo
Applying the S-transform to X (1) we obtain
t 1 .
SX?(1)(9) =x0— A [O SX" (5)(p)ds+ Kk <<p.. ﬁMﬁlme : @)

forall ¢ €. (IR). Let us denote z(t) := SX¥ (t) (@), then the equation (4) is equivalent to

d 1
()= —Aa0) +ro <¢,EM£"1FU_,| > : 5)

The solution of ODE (5) is given by

2(t) = xpexp (= A1) —% (<¢,M§1ﬁ“|> —AL exp(A(s—1)) <(p,Mf1rﬂ“,|> ds) .

Hence, we have

K 1
SXH (1) (@) = xpexp (—At) + \TE <(p,Mf1rﬂ_r| —A A exp(A(s— I))Mflrﬂ__‘,l ds> .
Denoting
1 o 1 o
fal):= == (Mi" Tog—4 A exp(Als— ”JMflm.xJ

the S-transform OfXH(r) can be rewritten as
SXH(1)(@) = xoexp (=At) + k(9. ful(1)).
Taking the inverse of the S-transform yields
XH(1) = xoexp (=A1) +x (-, fu(t)). (©)

Definition 1 The solution X" (1), t > 0, given by equation (6) of the Langevin equation (3) is called a subfractional
Ornstein-Uhlenbeck process. Its expectation and characteristic function are given by

E (X" (1)) = xpexp(—A4t),
- . . 1
E (exp (kaH(r)}} =exp (ka(]exp(—lr) — ;kz |fH(r)|;‘;) .
Next, we will consider linear SDEs of Wick-type of the form

dYP ()= —AYH (0 dr =Y (1) odS" (1), YH(0) =Dy e (). (7

020003-7




In white noise analysis the connection between Wick product and Skorokhod integration can be expressed as

/ Y(t)8B(r) = / Y(r) oW (1) dr,
R 4
where the left-hand side denotes the Skorokhod integral the stochastic process (¥ (¢)),-, while the right-hand side

corresponds to a (.%)*-valued Pettis integral. Here, (B(t)),- is a standard Brownian motion and (W(t)),-, is the
corresponding white noise.

n order to give sense and solve equation (7) we recall the notion of integration of a stochastic distribution process
in terms of the S-transform.

Theorem 4 [30] Let (T,.7 ,m) be a measure space and ®©(t) € (&) forallt € T. If
1. S®(-)(@) is measurable for any ¢ €.7 (),
2. S®(-)() € LY(T) for all ¢ € .7 (),
3. for any measurable set C C T the function fc S®(u)(-)dmlu) is the S-transform of some distribution in (%),

then there exists a unigue distribution ¥ € (.%')" such that

S¥(e) = /TSCD(H)((P)dm(H), ¢ € #(R).

The distribution ¥ is denoted by [ ®(t)dm(t) and it is called the Pettis integral of ®.

Now, equation (7) is interpreted in the integral form by
T T
YR (1) :CDU—.R./ YH(s)ds—/ YH(s)oWH (1) dr, (8)
Jo Jo

where the integrals are to be understood in the Pettis sense as in Theorem 4. Next, we apply the S-transform to
equation (8) and use Lemma 2 to obtain

T 1 T
SYH(I)((p):SCDU((P)—lASYH[S][(p]ds—FA SYH(s) (M7 @) (5)— (MY @) (—s)) ds.
Denote y(1) := SY (1) (@), then

, 1
YO = -2yt +753(0) (Mo) (1) — (M o) (—1))

and the solution of this ODE is given by

B-) = y(0)exp(—Ar)exp (% (M) (1)— (M) (—r))) :

Rewriting the last expression using S-transform we get
SYH(1)(@) = exp(—A1) Sy (@) exp (SWH (1) () -
Finally, inverting the S-transform gives
YH (1) = exp (—Ar)@goexp® (WH(r)), t>0. (9)
From the previous considerations we obtain the following theorem.

Theorem 5 The solution YH (t), t > 0, given by equation (9) of the linear SDE with Wick-multiplicative subfractional
white noise is an element of (.#')". Its generalized expectation is given by

E, (Y¥(t)) = E, (Do) exp (—At).

020003-8




CONCLUSION

We have discussed sfBm in the framework of white noise theory. The sfBm can be represented as functional of white
noise by using some fractional integral/differential opmor, We proved that Donsker’s delta function of sfBm is
a Hida distribution. We constructed the subfractional Ornstein-Uhlenbeck process as the solution of the Langevin
equation. Finally, by using S-transform method, we also solved a linear SDE with Wick-multiplicative subfractional
white noise.
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