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Shallow water flows
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Shallow water equations

The Ripa model

The shallow water wave equations involving the water temperature
fluctuations are oh  o(hu)
u
— =0 1
ot + Ox ’ (1)
d(hu)  O(hu® + 3gh?0) dz
= —ghf— 2
ot ox gt g )
d(h0)  O(hbu)
=0.
ot + Ox (3)
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Ripa model

A balance law
The Ripa model can be rewritten as a balance law
9q  0f(q)

54‘7—()* (4)

where the vectors of conserved quantities, fluxes, and sources are
respectively given by

h hu 0
q= |hu|, f(a)= |hu®+3g0h|, s(q)= |—gbh|. (5)
ho hOu 0
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Illustration for reconstruction
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Finite volume scheme

Finite volume scheme
A semi-discrete finite volume scheme for the homogeneous Ripa
model is

d
Ax;— Qi+ F(Q), Qi) = F(Qj-1,Q;) = 0 (6)

where F is a numerical flux function consistent with the
homogeneous Ripa model. Here Ax; is the cell-width of the jth
cell.

We continue discretising the semi-discrete scheme (6) using the
first order Euler method for ordinary differential equations. We
obtain the fully-discrete scheme

n+1 _
Qi =Qr -\ (FJ’.’+% _F ) . (7)
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Entropy inequality

Entropy, entropy flux, and entropy inequality

Entropy solutions of the Ripa model must satisfy the entropy

inequality
on oY
— +—<0 8
ot " ox = (8)
in the weak sense for all entropies. We consider the entropy pair
v g
n(a) = h? + Eh@(h +2), (9)
02
¥(a) = hu(=- +gb(h + 2)) (10)

as the entropy function and the entropy flux function.
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Numerical scheme for entropy

Semi discrete scheme for entropy

We take a semi discrete scheme

d
Axiaei + V' (Qi, Qit1, Zirs zig1s) — V(Qi-1, Q) zim1,,214) = 0
(11)

n

!, where

to get the value of ©
V(Qi, Qit1, Zirs zivr) = V(QG -, Qiyr s 21 0) - (12)

and
V(Qii1,Qizim1, zi ) = V(Qi_1,, Qi 21 )0) (13)

are the right and left numerical entropy fluxes of the ith cell
calculated at x;1 1/ and x;_y /> respectively.
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Definition of the numerical entropy production

Definition

The numerical entropy production is

EP = = (n(QD) -9 , (14

which is the local truncation error of the entropy.
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Some indicators to compare

We compare the results of NEP (Numerical Entropy Production) to

Karni, Kurganov, and Petrova's (KKP) local truncation error [2]
The KKP indicator is defined at x = x;, t = t":

1
_ +1 1 +1 1 +1 1
£ = 1 {Ax [ = g + 4 (W = W70 + b — ]
1 ntl 1 nt+l
+At (A Ul — b 4 (gl — W)
1 p-1 1 n-1
+ Wl = )

Constantin and Kurganov's (CK) local truncation error [1]

The CK indicator is defined at x = xj 15, t = tn=1/2.

n— 1 I - 7 "
Ei+11//22 - 2 {Ax [h? = b~ 4+ by — W7

n—1 n—1 n—1 n—1 n n n.n
+AL [l — T+ bl — P}
o
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Test 1

Moving shock in a dam break problem

We consider a reservoir with horizontal topography

z(x) =0, 0<x <2000, (15)
and an initial condition

0 if 0<x <500,
u(x,0) =0, w(x,0)=4¢ 10 if 500 < x < 1500, (16)
5 if 1500 < x < 2000.
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Moving shock in a dam break problem, 20 s:
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Test 2

Stationary shock on a parabolic obstruction

We consider a channel of length 25 with topography
2 .
2(x) = { 8.2 —0.05(x — 10) Icfthfrvﬁsz.g 12, (17)
The initial condition
u(x,0) =0, w(x,0)=0.33 (18)
together with the Dirichlet boundary conditions
[w,m, z, h,u] = [0.42,0.18, 0.0,0.42, 8}2} at x=0", (19)
[w,m, z, h,u] = [0.33,0.18,0.0,0.33, 8;2} at x=25". (20)
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Test 2

Stationary shock on a parabolic obstruction, 50 s:
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Test 3

Shock-like detection

We consider the initial condition
u(x,0)=0, w(x,0)=0.33 (21)
together with the Dirichlet boundary conditions

1
[w, m,z, h,u] = {0.42,0.18,0.0,0.42,83] at x=0", (22)

1
[w,m,z, h, u] = [0.1,0.18,0.0,0.1,%18] at x=25". (23)

-
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Test 3

Shock-like detection, 100 s:
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Test 4

The Ripa problem

We consider the initial condition

(5,0,15)t if x <0,

(1,0,5)f if x>0.
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Test 4

The Ripa problem at time t = 0.2s:
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Test 4

The Ripa problem at time t = 0.2s:
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Conclusion

Conclusion and future direction

@ The numerical entropy production detects the location of a
shock nicely.

@ Future research will implement the numerical entropy
production as a smoothness indicator for an adaptive FVM.
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