Contents	Introduction	FVM	Numerical tests	Conclusion

A smoothness indicator for numerical solutions to the Ripa model

Sudi Mungkasi¹ and Stephen Roberts²

 $^1 {\rm Sanata}$ Dharma University, Yogyakarta, Indonesia $^2 {\rm Australian}$ National University, Canberra, Australia

A Presentation in ICMAME 2015 Sanata Dharma University, 14-15 September 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Contents	Introduction	FVM		Numerical tests	Conclusion
	000		000	000000000	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

- Introduction: governing equations
- Finite Volume Method (FVM)
- Numerical entropy production (NEP)
- Numerical tests
- Conclusions

Contents	Introduction	FVM	Numerical tests	Conclusion
	000			
Shallow water flows				

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Contents	Introduction	FVM	Numerical tests	Conclusion
	000			
Shallow water equat	ions			

The Ripa model

The shallow water wave equations involving the water temperature fluctuations are

$$\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} = 0, \tag{1}$$

$$\frac{\partial(hu)}{\partial t} + \frac{\partial(hu^2 + \frac{1}{2}gh^2\theta)}{\partial x} = -gh\theta \frac{dz}{dx},$$
(2)

$$\frac{\partial(h\theta)}{\partial t} + \frac{\partial(h\theta u)}{\partial x} = 0.$$
(3)

◆□> ◆圖> ◆医> ◆医> 一臣

Contents	Introduction	FVM	Numerical tests	Conclusion
	000			
Ripa model				

A balance law

The Ripa model can be rewritten as a balance law

$$\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial \mathbf{f}(\mathbf{q})}{\partial x} = \mathbf{s}(\mathbf{q}) \frac{dz}{dx}$$
(4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where the vectors of conserved quantities, fluxes, and sources are respectively given by

$$\mathbf{q} = \begin{bmatrix} h\\ hu\\ h\theta \end{bmatrix}, \quad \mathbf{f}(\mathbf{q}) = \begin{bmatrix} hu\\ hu^2 + \frac{1}{2}g\theta h^2\\ h\theta u \end{bmatrix}, \quad \mathbf{s}(\mathbf{q}) = \begin{bmatrix} 0\\ -g\theta h\\ 0 \end{bmatrix}. \quad (5)$$

Contents	Introduction	FVM	Numerical tests	Conclusion
		0		
Illustration				

Illustration for reconstruction

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二副 - のへで

Contents	Introduction	FVM	Numerical tests	Conclusion
		00		
Finite volume scheme	2			

Finite volume scheme

A semi-discrete finite volume scheme for the homogeneous Ripa model is

$$\Delta x_j \frac{d}{dt} \mathbf{Q}_j + \mathcal{F}(\mathbf{Q}_j, \mathbf{Q}_{j+1}) - \mathcal{F}(\mathbf{Q}_{j-1}, \mathbf{Q}_j) = \mathbf{0}$$
(6)

where \mathcal{F} is a numerical flux function consistent with the homogeneous Ripa model. Here Δx_j is the cell-width of the *j*th cell.

We continue discretising the semi-discrete scheme (6) using the first order Euler method for ordinary differential equations. We obtain the fully-discrete scheme

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \lambda_{j}^{n} \left(\mathbf{F}_{j+\frac{1}{2}}^{n} - \mathbf{F}_{j-\frac{1}{2}}^{n} \right) \,. \tag{7}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Contents	Introduction	FVM	NEP	Numerical tests	Conclusion
			000		
Entropy inequality					

Entropy, entropy flux, and entropy inequality

Entropy solutions of the Ripa model must satisfy the entropy inequality

$$\frac{\partial \eta}{\partial t} + \frac{\partial \psi}{\partial x} \le 0 \tag{8}$$

in the weak sense for all entropies. We consider the entropy pair

$$\eta(\mathbf{q}) = h \frac{u^2}{2} + \frac{g}{2} h\theta(h+z), \qquad (9)$$

$$\psi(\mathbf{q}) = hu(\frac{u^2}{2} + g\theta(h+z)) \tag{10}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

as the entropy function and the entropy flux function.

Contents	Introduction	FVM	NEP	Numerical tests	Conclusion
			000		
Numerical scheme	for entropy				

Semi discrete scheme for entropy

We take a semi discrete scheme

$$\Delta x_{i} \frac{d}{dt} \Theta_{i} + \Psi^{r}(\mathbf{Q}_{i}, \mathbf{Q}_{i+1}, z_{i,r}, z_{i+1,l}) - \Psi^{l}(\mathbf{Q}_{i-1}, \mathbf{Q}_{i}, z_{i-1,r}, z_{i,l}) = 0$$
(11)

to get the value of Θ_i^n , where

$$\Psi^{r}(\mathbf{Q}_{i},\mathbf{Q}_{i+1},z_{i,r},z_{i+1,l}) := \Psi(\mathbf{Q}_{i,r}^{*},\mathbf{Q}_{i+1,l}^{*},z_{i+1/2}^{*})$$
(12)

and

$$\Psi'(\mathbf{Q}_{i-1},\mathbf{Q}_{i},z_{i-1,l},z_{i,r}) := \Psi(\mathbf{Q}_{i-1,r}^*,\mathbf{Q}_{i,l}^*,z_{i-1/2}^*)$$
(13)

are the right and left numerical entropy fluxes of the *i*th cell calculated at $x_{i+1/2}$ and $x_{i-1/2}$ respectively.

Contents	Introduction	FVM	NEP	Numerical tests	Conclusion
			000		
Definition of the nu	merical entropy production				

Definition

The numerical entropy production is

$$E_i^n = \frac{1}{\Delta t} \left(\eta \left(\mathbf{Q}_i^n \right) - \Theta_i^n \right) \,, \tag{14}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

which is the local truncation error of the entropy.

Contents	Introduction 000	FVM oo	NEP 000	Numerical tests	Conclusion
Some indicators to	compare				

We compare the results of NEP (Numerical Entropy Production) to

Karni, Kurganov, and Petrova's (KKP) local truncation error [2] The KKP indicator is defined at $x = x_i$, $t = t^n$:

$$E_{i}^{n} = \frac{1}{12} \left\{ \Delta x \left[h_{i+1}^{n+1} - h_{i+1}^{n-1} + 4 \left(h_{i}^{n+1} - h_{i}^{n-1} \right) + h_{i-1}^{n+1} - h_{i-1}^{n-1} \right] \right. \\ \left. + \Delta t \left[h_{i+1}^{n+1} u_{i+1}^{n+1} - h_{i-1}^{n+1} u_{i-1}^{n+1} + 4 \left(h_{i+1}^{n} u_{i+1}^{n} - h_{i-1}^{n} u_{i-1}^{n} \right) \right. \\ \left. + h_{i+1}^{n-1} u_{i+1}^{n-1} - h_{i-1}^{n-1} u_{i-1}^{n-1} \right] \right\} .$$

Constantin and Kurganov's (CK) local truncation error [1]

The CK indicator is defined at $x = x_{i+1/2}$, $t = t^{n-1/2}$:

$$E_{i+1/2}^{n-1/2} = \frac{1}{2} \left\{ \Delta x \left[h_i^n - h_i^{n-1} + h_{i+1}^n - h_{i+1}^{n-1} \right] + \Delta t \left[h_{i+1}^{n-1} u_{i+1}^{n-1} - h_i^{n-1} u_i^{n-1} + h_{i+1}^n u_{i+1}^n - h_i^n u_i^n \right] \right\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Contents	Introduction	FVM	NEP	Numerical tests	Conclusion
				00000000	
Test 1					

Moving shock in a dam break problem

We consider a reservoir with horizontal topography

$$z(x) = 0, \quad 0 < x < 2000,$$
 (15)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

and an initial condition

$$u(x,0) = 0, \quad w(x,0) = \begin{cases} 0 & \text{if } 0 < x < 500, \\ 10 & \text{if } 500 < x < 1500, \\ 5 & \text{if } 1500 < x < 2000. \end{cases}$$
(16)

Contents	Introduction 000	FVM oo	NEP 000	Numerical tests	Conclusion
Test 1					
Moving	shock in a	dam brea	ak proble	em, 20 s:	

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Contents	Introduction	FVM	Numerical tests	Conclusion
			000000000	
Test 2				

Stationary shock on a parabolic obstruction

We consider a channel of length 25 with topography

$$z(x) = \begin{cases} 0.2 - 0.05 (x - 10)^2 & \text{if } 8 \le x \le 12, \\ 0 & \text{otherwise.} \end{cases}$$
(17)

The initial condition

$$u(x,0) = 0, \quad w(x,0) = 0.33$$
 (18)

together with the Dirichlet boundary conditions

$$[w, m, z, h, u] = \left[0.42, 0.18, 0.0, 0.42, \frac{0.18}{0.42}\right] \text{ at } x = 0^{-}, (19)$$
$$[w, m, z, h, u] = \left[0.33, 0.18, 0.0, 0.33, \frac{0.18}{0.33}\right] \text{ at } x = 25^{+}. (20)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Contents	Introduction	FVM	Numerical tests	Conclusion
			00000000	
Test 2				

Stationary shock on a parabolic obstruction, 50 s:

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Contents	Introduction	FVM	NEP	Numerical tests	Conclusion
				000000000	
Test 3					

Shock-like detection

We consider the initial condition

$$u(x,0) = 0, \quad w(x,0) = 0.33$$
 (21)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

together with the Dirichlet boundary conditions

$$[w, m, z, h, u] = \left[0.42, 0.18, 0.0, 0.42, \frac{0.18}{0.42}\right] \quad \text{at} \quad x = 0^{-}, \quad (22)$$
$$[w, m, z, h, u] = \left[0.1, 0.18, 0.0, 0.1, \frac{0.18}{0.1}\right] \quad \text{at} \quad x = 25^{+}. \quad (23)$$

Contents	Introduction 000	FVM oo	NEP 000	Numerical tests	Conclusion
Test 3					
Shock-I	ike detection	n, 100 s:			

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Contents	Introduction	FVM	Numerical tests	Conclusion
			0000000000	
Test 4				

The Ripa problem

We consider the initial condition

$$\mathbf{q}(x,t=0) = \begin{cases} (5,0,15)^t & \text{if } x < 0, \\ \\ (1,0,5)^t & \text{if } x > 0. \end{cases}$$
(24)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Contents	Introduction 000	FVM oo	NEP 000	Numerical tests ○○○○○○○●○	Conclusion
Test 4					
The Rip	oa problem a	at time <i>t</i>	= 0.2s:		

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Contents	Introduction 000	FVM oo	NEP 000	Numerical tests ○○○○○○○○○	Conclusion
Test 4					
The Rip	oa problem a	at time <i>t</i>	= 0.2s:		

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Contents	Introduction	FVM	Numerical tests	Conclusion

Conclusion and future direction

- The numerical entropy production detects the location of a shock nicely.
- Future research will implement the numerical entropy production as a smoothness indicator for an adaptive FVM.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Contents	Introduction 000	FVM oo	NEP 000	Numerical tests 0000000000	Conclusion

References

- Constantin L A and Kurganov A 2006 Hyperbolic problems: Theory, numerics, and applications, **1** 95
- Karni S, Kurganov A and Petrova G 2002 Journal of Computational Physics, 178 323
- Puppo G and Semplice M 2011 Communications in Computational Physics 10 1132
- Ripa P 1993 Geophysical & Astrophysical Fluid Dynamics 70
 85
- Ripa P 1995 Journal of Fluid Mechanics 303 169
- Sánchez-Linares C, Morales de Luna T and Castro Díaz M J 2015 Applied Mathematics and Computation http://dx.doi.org/10.1016/j.amc.2015.05.137

Contents	Introduction	FVM		Numerical tests	Conclusion
	000		000	000000000	

Thank you.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ