OPTIMALISASI LABA PERUSAHAAN MELALUI KOMBINASI PRODUKSI YANG OPTIMAL

Studi Kasus Pada Perusahaan Tegel Jaya Surakarta

SKRIPSI

Diajukan Untuk Memenuhi Salah satu Syarat Memperoleh Gelar Sarjana Ekonomi Program Studi Akuntansi

Oleh:

Maria Petronela Mbindi

NIM : 93 2114 102

NIRM: 93 0051121303120100

PROGRAM STUDI AKUNTANSI
JURUSAN AKUNTANSI
FAKULTAS EKONOMI
UNIVERSITAS SANATA DHARMA
YOGYAKARTA
1998

SKRIPSI

OPTIMALISASI LABA PERUSAHAAN MELALUI KOMBINASI PRODUKSI YANG OPTIMAL

Oleh:

Maria Petronela Mbindi

NIM: 93 2114 102

NIRM: 93 0051121303120100

Telah disetujui oleh:

Pembimbing I

Drs. Alex Kahu Lantum, MS

Tanggal: \\9 - \\ - \ 199\eartitle

Pembimbing II

Dra. Fr. Ninik Yudianti, M.Acc.

Tanggal: 20 - 6 - 1998

SKRIPSI

OPTIMALISASI LABA PERUSAHAAN MELALUI KOMBINASI PRODUKSI YANG OPTIMAL

Dipersiapan dan ditulis oleh:

Maria Petronela Mbindi

NIM: 93 2114 102

NIRM: 93 0051121303120100

Telah dipertahankan di depan Panitia Penguji pada tanggal 27 Juni 1998 dan dinyatakan memenuhi syarat

Susunan Panitia Penguji

Nama Lengkap

Ketua Dra. Fr. Ninik Yudianti, M.Acc

Sekretaris Drs. E. Sumardjono, MBA

Anggota Dra. Fr. Ninik Yudianti, M.Acc

Anggota Drs. Alex Kahu Lantum, MS

Anggota Drs. E. Sumardjono, MBA

Yogyakarta, 30 Juni 1998

Tanda tangan

Fakutas Ekonomi

Universitas Sanata Dharma

Dekan

(Drs. T. Gilarso, S.J)

MOTTO DAN PERSEMBAHAN

Berpeganglah pada didikan, janganlah melepaskannya, peliharalah dia, karena dialah hidumu.

(Amsal, 4: 13)

Diberkatilah orang yang mengandalkan Tuhan, yang menaruh harapannya pada Tuhan!

(Yeremia, 17: 7)

Skripsi ini kupersembahkan kehada: kepada:

- * &apa, mama dan segenap keluargaku.

 * Seseorang yang kucintai.
- * Almamaterku Universitas Sanata Dharma

PERNYATAAN KEASLIAN KARYA

Saya menyatakan dengan sesungguhnya bahwa skripsi yang saya tulis ini tidak memuat karya atau bagian karya orang lain, kecuali yang telah disebutkan dalam kutipan dan daftar pustaka, sebagaimana layaknya karya ilmiah.

Yogyakarta, 30 Juni 1998

Penulis

Maria Petronle Mbindi

ABSTRAK

OPTIMALISASI LABA PERUSAHAAN MELALUI KOMBINASI PRODUKSI YANG OPTIMAL

Studi Kasus Pada Perusahaan Tegel Jaya Surakarta

Maria Petronela Mbindi Universitas Sanata Dharma Yogyakarta

Penelitian ini dilaksanakan di Perusahaan Tegel Jaya Surakarta mulai tanggal 15 Pebruari sampai dengan tanggal 25 Maret 1998. Tujuan penelitian ini adalah untuk mengetahui berapa komposisi produk yang harus diproduksi agar diperoleh laba yang optimal.

Teknik pengumpulan data yang digunakan dalam penelitian ini adalah wawancara, observasi dan dokumentasi. Sedangkan teknik analisis data yang digunakan adalah dengan menggunakan analisis Linear Programming dengan metode Simpleks yang dibantu komputer program STORM.

Berdasarkan analisis dan pembahasan diketahui bahwa komposisi produk optimal tahun 1996 untuk tegel abu-abu adalah 5.249 m², tegel berwarna 3.814 m², tegel kembang 2.411 m² dan tegel teraso 4.312 m² dengan laba kontribusi Rp 65.550.200.

Komposisi produk optimal tahun 1997 untuk tegel abu-abu adalah 5.644 m², tegel berwarna 4.078 m², tegel kembang 2.605 m² dan tegel teraso 4.415 m² dengan laba kontribusi Rp 72.183.940.

Kesimpulan yang diperoleh dari pembahasan ini adalah bahwa komposisi produk sesungguhnya yang dilakukan oleh perusahaan telah optimal.

ABSTRACT

OPTIMALIZING PROFIT COMPANY BY OPTIMAL PRODUCE COMPOSITION

A Case Study at Jaya Tile Company in Surakarta

Maria Petronela Mbindi Sanata Dharma University Yogyakarta

This study aims to find out how many tiles to produce in order to attain the optimal profit.

The data were collected by interviews, observation, and documentation. The data analysis technique used linear Programming analysis.

The result show what that optimal product composition were 5.249 m^2 of grey tiles, 3.814 m^2 of colour tiles, 2.411 m^2 flower tiles, and 4.312 m^2 of teraso tiles in 1996.

5.644 m² of grey tiles, 4.078 m² of colour tiles, 2.605 m² flower tiles, and 4.415 m² of teraso tiles in 1997.

The average discrepancy of the real contribution margin and theoretical optimal product composition is not significant.

KATA PENGANTAR

Doa dan puji syukur ke hadirat Tuhan Yang Maha Esa atas segala rahmat dan bimbingan-Nya, sehingga penulis dapat menyelesaikan penyusunan skripsi dengan judul "OPTIMALISASI LABA PERUSAHAAN YANG OPTIMAL MELALUI PRODUKSI YANG OPTIMAL".

Penyusunan skripsi ini digunakan sebagai syarat untuk memperoleh gelar Sarjana Ekonomi Universitas Sanata Dharma Yogyakarta.

Dalam penulisan skripsi ini banyak pihak yang telah membantu baik selama pengadaan penelitian maupun selama penyusunan skripsi.

Oleh karena itu pada kesempatan ini penulis hendak mengucapkan terima kasih yang setulus-tulusnya kepada:

- Rm. Drs. T. Gilarso, S.J, selaku Dekan Fakultas Ekonomi, Universitas Sanata Dharma, Yogyakarta.
- 2. Bapak Drs. Alex Kahu Lantum, MS, selaku Dosen Pembimbing I yang dengan sabar dan teliti telah membimbing penulis dalam menyelesaikan skripsi ini.
- 3. Ibu Dra. Fr. Ninik Yudianti, M.Acc, selaku Dosen Pembimbing II yang telah memberikan bantuan dan koreksi sehingga penulis mampu menyelesaikan skripsi ini.
- 4. Bapak Drs. Joko Siswanto, MM.Ak. dan Bapak Drs. P. Rubiyatno, MM yang selama ini membantu membimbing dan

- memberikan motivasi-motivasi sehingga penulis dapat menyelesaikan skripsi ini.
- 5. Seluruh Dosen Fakultas Ekonomi Jurusan Akuntansi di Universitas Sanata Dharma yang telah memberikan bekal yang cukup selama masa pendidikan di Universitas Sanata Dharma Yogyakarta.
- 6. Bapak Yopie Djarmoro selaku pimpinan perusahaan Tegel Jaya Surakarta yang telah memberikan kesempatan dan melayani dengan sabar kepada penulis untuk mengadakan penelitian di perusahaan Tegel Jaya Surakarta.
- 7. Para petugas perpustakaan Universitas Sanata Dharma yang senantiasa melayani peminjaman buku selama penulisan skripsi ini.
- 8. Bapak dan mama serta segenap keluargaku yang selalu berdoa untuk kesuksesan penulis dalam menyelesaikan studi dan skripsi.
- 9. Kak Steve yang terkasih yang telah membantu dan mendampingi penulis dalam menyelesaikan skripsi ini.
- 10. Teman-teman dekatku Cie Lina, Ina, Ai, Wahyu, Ning, Lusi, Cie Eka, Fr. Joko dan semua teman yang tidak dapat disebutkan satu persatu yang selama ini telah membantu dan mendorong penulis di dalam menyelesaikan skripsi ini.
- 11. Teman-temanku di PMK Melisa Christy, yang telah banyak memberikan dukungan dan doa bagi penulis dalam penyusunan skripsi ini.

Akhir kata penulis menyadari bahwa skripsi ini masih jauh dari sempurna, oleh karena itu penulis akan bersenang hati menerima kritik dan saran.

Semoga skripsi ini bermanfaat bagi kita semua.

Penulis

DAFTAR ISI

		Halaman
HALAMAN JUDUL		. i
LEMBAR PERSETUJUAN PEMBIMBING		. ii
HALAMAN PENGESAHAN		. iii
HALAMAN MOTTO DAN PERSEMBAHAN		. iv
HALAMAN PERNYATAAN KEASLIAN KARYA		. v
ABSTRAK		. vi
ABSTRACT		. vii
KATA PENGANTAR		. viii
DAFTAR ISI		. xi
DAFTAR TABEL		. xiv
DAFTAR GAMBAR		. xvii
BAB I. PENDAHULUAN		. 1
A. Latar Belakang Masalah		. 1
B. Rumusan Masalah		. 3
C. Tujuan Penelitian		. 3
D. Manfaat Penelitian		. 3
E. Sistematika Penulisan		. 4
BAB II. LANDASAN TEORI		. 6
A. Perencanaan Laba Perusahaan		
B. Penentuan Harga Pokok Variabel.		8
C. Analisis Biaya Volume Laba		19
D. Kombinasi Produk		21
E. Kombinasi Produksi dengan Line	ar Pro) -
gramming		21
F Peramalan Penjualan		26

		I	Halaman
BAB	III.	METODE PENELITIAN	29
		A. Jenis Penelitian	29
		B. Lokasi dan Waktu Penelitian	29
		C. Subyek dan Obyek Penelitian	29
		D. Data Yang Dicari	30
		E. Teknik Pengumpulan Data	31
		F. Teknik Analisis Data	32
BAB	IV.	GAMBARAN UMUM PERUSAHAAN	38
		A. Sejarah dan Perkembangan Perusahaan	38
		B. Struktur Organisasi	40
		C. Sumber Daya Manusia	42
		D. Produksi	46
		E. Pemasaran	55
BAB	V.	DESKRIPSI DATA, ANALISA DAN PEMBAHASAN	57
		A. Deskripsi Data	57
		B. Analisis Data dan Pembahasan	63
		1. Klasifikasi Biaya	63
		2. Alokasi Pemisahan Biaya Semivariabel	78
		3. Menentukan Komposisi Produk Optimal	
		Tahun 1996-1997	87
		4. Menghitung Selisih Rupiah Laba Kon-	
		tribusi Sesungguhnya dengan Laba	
		Optimal	94
		5. Optimalisasi Komposisi Produk	95

					Ha	laman
BAB V	I.	KESIMPULAN, K	ETERBATASAN	DAN SARAN	• • • • • • • •	104
		A. Kesimpulan			• • • • • • • • • • • • • • • • • • • •	104
		B. Keterbatas	an		• • • • • • • •	105
		C. Saran				106
DAFTAR	PU	STAKA				107
LAMPIR	AN					
DAFTAR	RI	WAYAT HIDUP				

DAFTAR TABEL

		Ha	laman
Tabel	2.1.	Perbandingan Susunan Laporan Rugi Laba	
		Variable Costing dan Full Costing	16
Tabel	3.1	Contribution Margin Tiap Jenis Produk	
		Yang Dihasilkan	33
Tabel	5.1.	Harga Bahan Baku	57
Tabel	5.2.	Biaya Tenaga Kerja Langsung	58
Tabel	5.3.	Komposisi Pemakaian Bahan Tiap Jenis	
		Tegel per m²	58
Tabel	5.4a.	Biaya Semivariabel Tahun 1996	59
Tabel	5.4b.	Biaya Semivariabel Tahun 1997	59
Tabel	5.5a.	Produksi Tegel Tahun 1996	60
Tabel	5.5b.	Produksi Tegel Tahun 1997	60
Tabel	5.6a.	Volume Penjualan Tahun 1994	61
Tabel	5.6b.	Volume Penjualan Tahun 1995	61
Tabel	5.6c.	Volume Penjualan Tahun 1996	62
Tabel	5.6d.	Volume Penjualan Tahun 1997	62
Tabel	5.7.	Harga Jual Tiap Jenis Tegel Per m²	62
Tabel	5.8a.	Klasifikasi BOP Perusahaan Tegel Jaya	
		Tahun 1997	66
Tabel	5.8b.	Biaya Pemasaran Tahun 1997	68
Tabel	5.8c.	Biaya Administrasi dan Umum Tahun 1997.	70
Tabel	5.8d.	Klasifikasi Biaya Tetap, Biaya Variabel	
		dan Biaya Semiyariahel Tahun 1997	71

Tabel	5.9a.	BOP Tetap dan BOP Variabel Tahun 1997	82
Tabel	5.9b.	Biaya Pemasaran Tetap dan Variabel	
		Tahun 1997	83
Tabel	5.9c.	Biaya Administrasi dan Umum Tetap dan	
		Variabel Tahun 1997	84
Tabel	5.10a.	Biaya Bahan Baku dan Penolong	84
Tabel	5.10b.	Biaya Bahan Baku dan Penolong Total	85
Tabel	5.10c.	Biaya Tenaga Kerja Langsung Total	85
Tabel	5.10d.	Biaya Variabel Lainnya per m²	85
Tabel	5.10e.	Biaya Variabel Total	86
Tabel	5.11a.	Laba Kontribusi Per m² Tahun 1996	86
Tabel	5.11b.	Laba Kontribusi Per m² Tahun 1997	86
Tabel	5.13.	Permintaan Pasar Per m²	92
Tabel	5.14a.	Perhitungan Laba Kontribusi Sesungguh	
		nya Tahun 1996	93
Tabel	5.14b.	Perhitungan Laba Kontribusi Sesungguh	
		nya Tahun 1997	94
Tabel	5.14c.	Komposisi Produk Optimal Per m²	94
Tabel	5.14d.	Perbedaan Laba Kontribusi	95
Tabel	5.15a.	Penentuan Produk Optimal Produksi Se-	
		sungguhnya Tahun 1996	100
Tabel	5.15b.	Penentuan Produk Optimal Produksi Se-	
		sungguhnya Tahun 1997	100

DAFTAR GAMBAR

					Hala	man
Gambar	4.1.	Struktur	Organisasi	• • • • • • • • • • • • • • • • • • • •	• • • • • •	40
Gambar	4.2.	Rangkaian	Proses Prod	uksi	• • • • • •	52
Gambar	4.3.	Saluran	Distribusi	Perusahaan	Tegel	
		Jaya				56

BAB I

PENDAHULUAN

A. Latar Belakang Masalah

Perusahaan yang menghasilkan barang produksi pada umumnya akan menghadapi persoalan dalam mengalokasikan sumber-sumber yang dimiliki secara tepat agar dapat memaksimalkan laba. Laba merupakan selisih pendapatan setelah dipertemukan dengan biaya dalam periode akuntansi yang sama.

bekerja Perusahaan dapat secara efektif dan efisien apabila perusahaan mampu mengalokasikan sumbersumber ekonomi yang dimiliki perusahaan secara optimal. Caranya meminimumkan biaya pada tingkat pendapatan tingkat biaya tertentu tertentu atau pada dapat memperoleh pendapatan yang maksimum.

Untuk membantu manajemen mengambil keputusan dalam perencanaan laba dapat digunakan analisis biaya, volume dan laba. Konsep ini menitikberatkan pada seberapa jauh volume dan harga jual berpengaruh terhadap laba perusahaan.

Perusahaan yang memproduksi lebih dari satu macam produk mempunyai kesempatan untuk menaikkan laba dengan cara memperbaiki kombinasi margin tertinggi, salah satu cara untuk mengetahui besarnya contribution margin dari masing-masing produk adalah dengan menghitung rugi laba menggunakan metode variable costing.

Bagi manajemen, pemisahan biaya ke dalam biaya variabel dan biaya tetap, sangat penting artinya, karena dengan mengetahui biaya variabel dan tetap, akan diperoleh informasi yang besar manfaatnya dalam menjalankan fungsinya, terutama dalam pengambilan keputusan untuk perencanaan laba dalam jangka pendek dengan kapasitas produksi tertentu. Untuk perencanaan panjang semua dapat berubah laba jangka menjadi biaya variabel. Pemisahan biaya ke dalam dua jenis biaya ini dapat digunakan untuk menentukan besarnya harga pokok produksi.

Pengurangan penghasilan atas harga pokok variabel merupakan contribution margin, di mana contribution margin dapat dicari untuk setiap jenis barang yang diproduksi oleh perusahaan yang merupakan sumbangan dari produk tersebut untuk menutup biaya tetap perusahaan. Dengan mengetahui besarnya contribution margin dari masing-masing produk, akan memberikan informasi tentang kemampuan dari produk tersebut untuk menutup biaya tetap perusahaan. Dengan demikian semakin besar contribution margin akan semakin besar pula sumbangan untuk biaya tetap perusahaan untuk menghasilkan laba.

Melihat betapa pentingnya analisis contribution margin ini, terutama dalam kaitannya dengan perencanaan laba perusahaan agar di masa datang laba dapat ditingkatkan, maka dalam penelitian ini dipilih judul: Optimalisasi Laba Perusahaan Melalui Kombinasi Produksi yang Optimal.

B. Rumusan Masalah

Berapakah jumlah tegel dari masing-masing jenis yang seharusnya diproduksi oleh perusahaan Tegel Jaya agar dapat memperoleh laba yang optimal?

C. Tujuan Penelitian

Untuk mengetahui jumlah masing-masing jenis tegel yang seharusnya dihasilkan oleh perusahaan Tegel Jaya Surakarta agar dapat memperoleh laba yang optimal.

D. Manfaat Penelitian

1. Bagi Perusahaan

Hasil penelitian ini dapat dijadikan masukan untuk dipertimbangkan lebih lanjut oleh manajemen dalam menghadapi masalah produksi sehingga perusahaan dapat memproduksi secara optimal dan menghasilkan laba yang optimal pula.

2. Bagi Universitas Sanata Dharma

Hasil penelitian ini diharapkan dapat memberikan tambahan bacaan ilmiah bagi mahasiswa Universitas Sanata Dharma khususnya bagi mahasiswa program Studi Akuntansi dan pihak yang membutuhkan.

3. Bagi Penulis

Menambah pengetahuan dan wawasan tentang bagaimana suatu perusahaan melaksanakan aktivitasnya dan bagaimana penerapan teori-teori yang dipelajari di bangku kuliah.

E. Sistematika Penulisan

Bab I. Pendahuluan

Dalam bab ini akan diuraikan tentang latar belakang masalah, perumusan masalah, tujuan penelitian dan sistematika penulisan.

Bab II. Landasan Teori

Bab ini berisi teori-teori yang menjadi acuan dalam penulisan ini yang relevan dengan hasil penelitian.

Bab III. Metode Penelitian

Dalam bab ini akan diuraikan jenis subyek, obyek dan lokasi penelitian, juga diuraikan tentang data-data yang ingin dikumpulkan dalam teknik pengumpulan data serta teknik analisis data yang akan digunakan.

Bab IV. Gambaran Umum Perusahaan

Bab ini berisi uraian tentang sejarah perusahaan, lokasi perusahaan, struktur organisasi, personalia, proses produksi dan hal-hal lain yang berkaitan dengan perusahaan yang bersangkutan.

Bab V. Deskripsi Data, Analisa dan Pembahasan

Pada bab ini akan dilakukan analisis terhadap
data-data yang diperoleh selama penelitian
atas dasar teknik analisis yang telah
ditentukan sebelumnya.

Bab VI. Kesimpulan, Keterbatasan dan Saran

Hasil dari analisis data akan disimpulkan dan

di samping itu disajikan saran-saran yang

dianggap perlu dan berguna bagi perusahaan.

BAB II

LANDASAN TEORI

A. Perencanaan Laba Perusahaan

1. Pengertian Perencanaan Laba

Perencanaan dan pengendalian operasi yang efektif akan tergantung pada akuntansi biaya yang menyajikan kepada manajemen laporan terinci mengenai biaya bahan baku, biaya tenaga kerja langsung, biaya overhead pabrik, biaya pemasaran dan biaya administrasi. Analisis dan perbandingan antara biaya aktual ini estimasi dan standar yang telah dengan ditetapkan sebelumnya melangsungkan produksi akan memungkinkan manajemen untuk dapat mengidentifikasi sebab-sebab timbulnya perbedaan.

Yang dimaksud dengan perencanaan laba perusahaan adalah merupakan rencana kerja yang telah diperhitungkan dengan cermat di mana implikasi keuangannya dinyatakan dalam bentuk proyeksi perhitungan rugi laba, neraca, kas dan modal kerja untuk jangka panjang dan jangka pendek.

Sedangkan yang dimaksud dengan perencanaan laba jangka panjang adalah proses yang berkesinambungan untuk mengambil keputusan saat ini secara sistematik disertai perkiraan terbaik mengenai keadaan di masa mendatang, mengkoordinasi kegiatan yang diperlukan secara sistematik guna melaksanakan keputusan ini dan menilai serta membandingkan hasil keputusan

tersebut terhadap hasil yang diharapkan melalui umpan balik yang terorganisasi dan sistematik (Adolf Matz dan Amilton F. Usry, 1990:4).

2. Manfaat Perencanaan Laba

Beberapa manfaat perencanaan laba adalah sebagai berikut: (Adolf Matz dan Amilton F. Usry, 1990:4)

- a. Memberikan pendekatan yang terarah dalam pemecahan permasalahan.
- b. Memaksa pihak manajemen mengadakan penelaahan terhadap masalah yang dihadapi dan menanamkan kebiasaan pada orang untuk mengadakan telaah dengan seksama.
- c. Menciptakan suasana organisasi yang terarah pada pencapaian laba dan mendorong timbulnya perilaku yang sadar akan menghemat biaya dan pemanfaatan sumber daya yang maksimal.
- d. Merangsang peran serta dan mengkoordinasi rencana berbagai segmen dari keseluruhan organsasi manajemen sehingga keputusan akhir dan rencana yang saling terkait dapat menggambarkan keseluruhan organisasi dalam bentuk rencana yang terpadu.
- e. Menawarkan kesempatan untuk menilai secara sistematik dari setiap segmen atau aspek organisasi.
- f. Mengkoordinasi serta mempertemukan sewa upaya perusahaan ke dalam prosedur perencanaan anggaran yang terarah.

- g. Mengarahkan penggunaan modal dan daya upaya pada kegiatan yang paling menguntungkan.
- h. Mendorong standar prestasi yang tinggi.
- i. Sebagai tolok ukur hasil kegiatan dan menilai kebijakan manajemen.

3. Keterbatasan Perencanaan Laba

- a. Peramalan atau perkiraan bukanlah ilmu pasti, jadi perlu pertimbangan tertentu dan perlu perbaikan.
- b. Anggaran dapat mengikat perhatian manajer pada sasaran tertentu, jadi diperlukan kecermatan untuk mengeluarkan upaya manajer setepat mungkin.
- c. Perencanaan laba memerlukan kerjasama dan peranserta dari seluruh anggota manajemen.
- d. Perencanaan laba tidaklah menghapus maupun mengambil-alih peranan bagian administrasi tetapi bertujuan untuk mencapai sasaran organisasi.
- e. Pelaksana rencana memerlukan waktu.

 (Adolf Matz and Amilton F. Usry, 1990:7).

B. Penentuan Harga Pokok Variabel

Pengertian Penentuan Harga Pokok Variabel

Di dalam penentuan harga pokok produk dapat digunakan salah satu dari dua metode penentuan harga pokok yaitu penentuan harga pokok penuh dan penentuan harga pokok variabel. Harga pokok penuh membebankan semua elemen biaya produksi baik biaya

produksi tetap maupun variabel ke dalam harga pokok produk.

Dalam jangka pendek, pengendalian manajemen banyak berhubungan dengan analisis hubungan biaya volume dan laba dalam batas kapasitas normal yang dimiliki perusahaan. Hubungan biaya, volume dan laba lebih memusatkan perhatian pada contribution margin yaitu selisih pendapatan dan biaya variabel yang berubah secara proporsional dengan perubahan volume kegiatan atau aktivitas jangka pendek. Untuk tujuan pengendalian manajemen dalam jangka pendek digunakan metode penentuan harga pokok yang lebih cocok untuk tujuan tersebut yaitu metode penentuan harga pokok variabel.

Menurut Drs. Supriyono, pengertian penentuan harga pokok variabel adalah:

Suatu konsep penentuan harga pokok yang hanya memasukkan biaya produksi variabel sebagai elemen harga pokok produk, biaya produks tetap dianggap sebagai biaya periode atau biaya waktu yang langsung dibebankan pada rugi laba periode terjadinya dan tidak dipelakukan sebagai biaya produksi. (Supriyono, 1987: 259)

2. Pemisahan Biaya Semi Variabel

Untuk memasukkan biaya semi variabel ke dalam biaya tetap dan biaya variabel dapat digunakan tiga pendekatan pemisahan yaitu pendekatan intuisi, pendekatan enginering dan pendekatan perilaku biaya sesungguhnya masa lalu.

Untuk lebih jelasnya akan dijabarkan di bawah ini ketiga pendekatan tersebut di atas yaitu: (Mulyadi, 1992: 507-513)

a. Pendekatan Intuisi

Pendekatan intuisi menggolongkan biaya ke dalam biaya tetap dan biaya variabel dengan meneliti kegiatan, adanya surat-surat keputusan manajemen dan kontrak perjanjian dengan pihak lain.

b. Pendekatan Enginering

Pendekatan enginering adalah metode estimasi biaya dengan cara mengidentifikasikan hubungan phisik antara kegiatan dan biaya. Pendekatan ini digunakan untuk menaksir dan menentukan variabilitas biaya tenaga kerja.

c. Pendekatan Perilaku Biaya Sesungguhnya Masa Lalu Anggapan dasar dari pendekatan ini adalah bahwa biaya masa datang akan mempunyai perilaku yang sama dengan biaya masa lalu, jika ada perubahan yang cukup besar terhadap mesin, metode produksi, produk diolah masa lalu yang dicatat oleh akuntansi tidak mencukupi untuk menaksir biaya masa datang.

3. Teknik Pemisahan Biaya Semivariabel

Pemisahan biaya semivariabel menjadi biaya tetap dan biaya variabel bertujuan untuk mengetahui besarnya biaya variabel. Ada tiga metode dalam pemisahan biaya semivariabel, metode-metode tersebut adalah sebagai berikut: (Mulyadi, 1992: 514)

a. Metode Titik Tertinggi dan Terendah

Metode ini memisahkan biaya semivariabel agar menjadi biaya variabel dan biaya tetap dalam periode tertentu dengan berdasakan pada kapasitas dan biaya tertinggi dengan kapasitas dan biaya terendah. Estimasi biaya ditentukan dengan cara mengadakan perbandingan suatu biaya pada tingkat tertinggi dengan tingkat terendah. Selisihnya merupakan biaya variabel. Metode ini terlalu ekstrim, karena hanya berdasarkan dua titik yaitu titik tertinggi dan terendah. Sedangkan faktor yang lain diabaikan sehingga kurang obyektif.

b. Metode Biaya Terjaga

Metode ini digunakan untuk memisahkan biaya semivariabel dengan cara menghitung besarnya biaya pada keadaan perusahaan tidak melakukan produksi untuk sementara waktu dalam keadaan siap produksi. Besarnya biaya pada saat tidak melakukan produksi dianggap sebagai biaya tetap. Biaya variabel dihitung dengan cara mengkurangkan antara biaya dalam keadaan produksi dengan biaya yang dikeluarkan oleh perusahaan dalam keadaan tidak melakukan produksi.

c. Metode Kuadrat Terkecil (Least Square Method)

Metode ini menganggap bahwa hubungan antara

biaya dengan volume kegiatan merupakan hubungan linear dengan persamaan garis regresi Y = a + bX. Y merupakan variabel tak bebas (dependent variable), dan X merupakan variabel bebas (independent variable).

Variabel tak bebas adalah variabel yang sesungguhnya perubahannya dipengaruhi oleh variabel lain yaitu variabel bebas.

Variabel Y menunjukkan biaya sedangkan variabel X menunjukkan volume kegiatan, a menunjukkan unsur biaya tetap dan b menunjukkan unsur biaya variabel.

Cara menentukan nilai a dan b adalah sebagai berikut: (Mulyadi, 1992:517)

$$b = \frac{n \sum XY - \sum X \sum Y}{n \sum X^2 - (\sum X)^2}$$

$$a = \frac{\sum Y - b \sum X}{\sum X}$$

4. Perbedaan Penentuan Harga Pokok Penuh dan Harga Pokok Variabel

Perbedaan kedua metode ini dapat dikelompokkan dari sudut pandangan sebagai berikut:

a. Definisi

Harga pokok penuh adalah konsep penentuan harga pokok produk yang memasukkan semua elemen biaya produksi baik variabel maupun tetap dalam harga pokok produksi, sedangkan metode harga pokok yang

hanya memasukkan elemen biaya produksi variabel ke dalam harga pokok produk.

Dari definisi di atas terdapat perbedaan yang sangat jelas di dalam perlakuan biaya tetap dan biaya variabel.

b. Penentuan Laba

Di dalam mempertemukan pendapatan dan biaya untuk menentukan besarnya laba, metode harga pokok penuh menggunakan pendekatan fungsional. Pada pendekatan ini biaya digolongkan ke dalam biaya produksi yaitu biaya bahan baku, biaya tenaga kerja langsung, biaya overhead pabrik dan biaya non produksi yaitu biaya pemasaran, biaya administrasi dan umum dan biaya keuangan.

Penentuan laba dalam metode ini adalah:

- 1) Penjualan dikurangi harga pokok penjualan selisihnya adalah laba kotor.
- 2) Laba kotor dikurangi biaya komersial hasilnya laba bersih usaha.
- 3) Laba bersih operasional dikurangi biaya keuangan hasilnya laba bersih.

Sedangkan di dalam metode kerja pokok variabel biaya dikelompokkan ke dalam:

1) Biaya variabel

Biaya ini meliputi biaya yang jumlah totalnya berubah secara proporsional dengan perubahan volume produks atau penjualan. Biaya ini digolongkan ke dalam:

- Biaya produksi variabel yang jumlah totalnya berubah secara proporsional dengan volume produksi.
- Biaya non produksi variabel yang jumlah totalnya dianggap berubah secara proporsional dengan volume penjualan.

2) Biaya tetap

Biaya ini meliputi semua biaya yang jumlah totalnya tetap konstan, tidak terpengaruh oleh perubahan volume produksi maupun penjualan.

Biaya ini dikelompokkan dalam:

- Biaya produksi tetap yaitu BOP tetap.
- Biaya non produksi tetap meliputi biaya pemasaran tetap, biaya administrasi dan umum tetap dan biaya finansial tetap.

Setelah biaya dikelompokkan maka selanjutnya dapat dipertemukan pendapatan dan biaya dengan cara:

- Pendapatan penjualan dipertemukan dengan harga pokok penjualan, selisihnya adalah batas kontribusi kotor.
- 2) Batas kontribusi kotor dipertemukan dengan biaya non produksi variabel selisihnya adalah batas kontribusi bersih.

3) Batas kontribusi dipertemukan dengan biaya tetap selisihnya adalah laba bersih.

5. Penyajian Laporan Rugi Laba

Penyajian rugi laba menurut variable costing menggunakan format contribution margin yaitu menyajikan informasi dengan mengurangkan lebih dahulu seluruh biaya variabel dari penjualan, kemudian mengurangkannya dengan seluruh biaya tetap. Laporan dengan format ini hanya digunakan untuk laporan intern dan tidak digunakan untuk laporan ekstern.

Penyajian laporan rugi laba menurut full costing menggunakan pendekatan fungsional yakni mengurangkan seluruh biaya produksi (tetap dan variabel) dari penjualan dan kemudian mengurangkannya dengan biaya-biaya operasi yang diklasifikasi menurut fungsi-fungsi pokok perusahaan. Laporan dengan format ini yang diperbolehkan untuk pihak ekstern. (Slamet Sugiri, 1994:82-83)

Tabel 2.1
Perbandingan Susunan Laporan Rugi Laba
Variable Costing dan Full Costing.

Full Costing		Variable Costing		
Penjualan	ХХ	Penjualan		ХХ
HPP	XX	HPP-variabel		XX
Laba Kotor atas Penjualan Biaya Komersial: - Biaya pemasaran xx - Biaya adm. dan Umum xx	XX	Batas Kontribusi Kotor Biaya Komersial Variabel: - Biaya pemasaran var. xx - Biaya adm. dan Umum var. xx	_	XX
	(+	_	(+	
	XX			XX
Laba bersih usaha Biaya keuangan:	XX	Batas Konstribusi Bersih Biaya Tetap:	_	хх
- Biaya bunga	XX	- BOP Tetap xx		
		- Pemasaran Tetap xx		
- Laba bersih	XX	- Adm. & Umum Tetap xx		
		- Biaya bunga tetap xx	(+	
				XX
		Laba Bersih		ХХ

6. Manfaat Penentuan Harga Pokok Variabel

Adapun manfaat dari penentuan harga pokok variabel adalah sebagai berikut:

- a. Penentuan harga pokok variabel memaksa manajemen untuk mengevaluasi pola perilaku biaya untuk masing-masing jenis biaya. Dengan demikian maka manajemen sadar mengenai sensivitas biaya terhadap perubahan dalam tingkat aktivitas.
- b. Laporan rugi laba dengan format contribution margin hampir mengikuti pemikiran manajemen tentang prestasi laba karena laba bersih adalah mengikuti pemikiran manajemen tentang prestasi

laba karena laba bersih adalah fungsi penjualan bukan kombinasi tertentu dari produksi dan penjualan.

- c. Informasi yang diperlukan untuk analisis biaya volume laba dapat diperoleh secara langsung dari laporan rugi laba tanpa harus melakukan analisis khusus yang terpisah dari laporan rugi laba.
- d. Pengaruh atau dampak biaya tetap terhadap laba mendapat perhatian lebih karena biaya tetap seluruhnya diperlakukan sebagai biaya periode dan dilaporkan pada satu tempat tertentu di laporan rugi laba.
- e. Penentuan harga pokok variabel menyajikan dasar untuk menyiapkan anggaran fleksibel yang memi-sahkan biaya variabel dan biaya tetap.
- f. Dengan dipisahkannya biaya-biaya variabel dan tetap maka penentuan harga pokok variabel membantu manajemen dalam pengambilan keputusan.

(Slamet Sugiri, 1994:92)

7. Keunggulan dan Kelemahan Harga Pokok Variabel

Keunggulan metode harga pokok variabel adalah sebagai berikut:

a. Lebih bermanfaat untuk perencanaan laba jangka pendek.

Informasi hubungan biaya volume laba diinginkan oleh manajemen untuk perencanaan laba khususnya perencanaan laba jangka pendek. Dengan mengguna-

kan etknik penyesuaian rugi laba atas dasar harga pokok variabel ke dalam harga pokok penuh dapat diperoleh informasi dari laporan akuntansi.

- b. Lebih bermanfaat untuk pembuatan keputusan. Pada penentuan harga pokok variabel semua biaya digolongkan sesuai variabilitasnya, yaitu biaya tetap dan variabel yang dapat digunakan untuk pembuatan keputusan oleh manajemen.
- c. Laba bergerak dalam arah yang sama dengan penjualan.
 - Jika digunakan harga pokok variabel, laba bersih bergerak dalam arah yang sama dengan penjualan.
- d. Dapat lebih mudah dimengerti dan digunakan oleh manajemen.
- e. Dapat secara langsung mengetahui pengaruh biaya tetap terhadap laba.
- f. Dapat meningkatkan kemampuan laba setiap segmen.

 Laba marginal lebih menggambarkan kemungkinan relatif untuk meningkatkan produk daerah pemasaran, golongan langganan dan segmen bisnis lainnya tanpa harus dikaburkan oleh alokasi biaya tetap bersama.
- g. Dapat diterapkan pada biaya standar dan anggaran fleksibel.
- h. Dapat menghubungkan biaya kas dengan kegiatan.

 Harga pokok variabel merupakan konsep harga pokok
 yang menghubungkan biaya keluar dari kas yang

diperlukan untuk melaksanakan kegiatan khususnya kegiatan mengolah produk, karena umumnya biaya variabel mengolah produk, karena umumnya biaya variabel merupakan biaya kas. (Supriyono, 1987: 259)

Kelemahan metode harga pokok variabel adalah sebagai berikut:

- a. Kesulitan dalam menggolongkan biaya ke dalam biaya variabel dan biaya tetap secara tetap.
- b. Pada penentuan harga pokok variabel hanya memasukkan elemen biaya produksi variabel ke dalam harga pokok produk.
- c. Penentuan harga pokok variabel terutama ditujukan untuk kepentingan internal manajemen dalam jangka pendek.

C. Analisis Biaya Volume Laba

Analisis biaya volume laba adalah teknik atau alat yang digunakan untuk mempelajari hubungan antara volume, biaya total, pendapatan total dan laba. Hubungan antara biaya, volume dan laba dipengaruhi oleh lima faktor komposisi produk, biaya variabel per satuan dan total biaya tetap.

Agar perencanaan laba dapat efektif, manajemen harus dapat memperkirakan dampak perubahan masing-masing faktor tersebut terhadap laba bersih perusahaan.

Dalam perusahaan yang memproduksi dan menjual lebih dari satu macam produk, manajemen memerlukan informasi contribution margin dari masing-masing produk untuk menentukan komposisi produk yang paling menguntungkan. Untuk mencari contribution margin digunakan variable costing dalam perhitungan rugi laba. Analisis ini sangat berguna terutama untuk perencanaan laba dalam tahun anggaran tertentu. (Slamet Sugiri, 1994: 107-127)

1. Contribution Margin

Contribution margin adalah selisih antara hasil penjualan dan seluruh komponen biaya variabel. Contribution margin positif menunjukkan bahwa hasil penjualan dapat digunakan untuk menutup biaya variabel dan seluruh atau sebagian biaya tetap. Jadi maksudnya adalah contribution margin dalam satuan rupiah.

2. Struktur Biaya

Ada beberapa perusahaan yang memiliki struktur biaya dengan biaya tetap tinggi tetapi biaya variabel rendah, dan struktur biaya dengan biaya tetap rendah tetapi biaya variabel tinggi.

Struktur biaya yang terbaik tergantung pada banyak faktor, antara lain trend jangka panjang dalam penjualan dan fluktuasi tahunan dalam tingkat penjualan.

D. Kombinasi Produk

Yang dimaksud dengan kombinasi produksi adalah proporsi relatif dari masing-masing produk perusahaan terhadap produk keseluruhan dan apabila perusahaan memproduksi lebih dari satu produk maka perusahaan harus dapat menentukan berapa besarnya produksi masingmasing. (Agus Ahyari, 1990:45)

Apabila dari hasil seleksi produk terdapat lebih dari satu jenis produk yang akan diproduksi persyaratan teknis juga memungkinkan, maka kombinasi produksi dapat dilaksanakan. Apabila perusahaan akan memproduksi lebih dari satu macam produk maka perlu ditentukan berapa perbandingan jumlah antara produk yang satu dengan produk yang lain agar tercapainya keuntungan yang maksimum. Dari dua metode untuk tersebut, menentukan kombinasi yang optimal yaitu Integer Programming dan Linear Programming. Dari kedua metode tersebut yang dipergunakan dalam penelitian ini adalah metode Linear Programming karena bilangan atau angka-angka yang ada positif bukan desimal.

E. Kombinasi Produksi dengan Linear Programming

1. Pengertian Linear Programming

Linear Programming merupakan salah satu metode matematik yang digunakan untuk memecahkan suatu masalah sehingga keputusan yang diambil efektif dan efisien. Menurut Siswanto pengertian Linear Pro-

gramming adalah sebagai berikut: Linear Programming (LP) adalah suatu metode untuk menentukan suatu putusan optimal yaitu suatu putusan yang memiliki nilai paling menguntungkan untuk fungsi tujuan diantara kemungkinan-kemungkinan, keputusan yang memenuhi kendala.

Istilah "linear" menunjukkan bahwa perubahan nilai fungsi tujuan (Z) dan penggunaan sumber daya sebanding dengan perubahan kegiatan. Pemograman pada hakekatnya sinonim dengan perencanaan. Dengan demikian Linear Programming adalah suatu perencanaan kegiatan untuk memperoleh hasil yang optimal yaitu hasil yang memberikan nilai tujuan terbaik.

Ada tiga unsur dasar yang dimiliki oleh Linear Programming yaitu: variabel putusan, fungsi tujuan dan fungsi kendalan (Yulian Yamit, 1993:19). Suatu masalah dapat diselesaikan dengan cara linear. Adapun beberapa syarat yang harus dipenuhi, syarat-syarat tersebut adalah sebagai berikut: (Adler Haymans Manurung, 1991:2)

- 1. Ada bagian yang ingin dicapai.
- 2. Tersedianya beberapa alternatif tindakan.
- Sumber daya yang dimiliki hanya tersedia dalam jumlah terbatas.
- 4. Hubungan antara perubahan-perubahan yang dipertimbangkan harus dapat dinyatakan dalam bentuk persamaan matematik atas pertidaksamaan yang hubungannya

2. Optimalisasi Produk dengan Linear Programming

Optimalisasi produk dengan Linear Programming dapat dilakukan dengan dua metode yaitu metode grafik dan metode simpleks. Untuk menganalisis data digunakan metode simpleks dengan bantuan komputer program Storm.

a. Metode Grafik

Metode grafik merupakan salah satu metode pemecahan masalah dalam Linear Programming yang dapat digunakan untuk menyelesaikan masalah optimalisasi produk dengan syarat variabelnya tidak lebih dari dua. Tahap-tahap penyelesaian Linear Programming dengan metode grafik adalah sebagai berikut: (Yulian Yamit, 1993:22)

- Langkah 1 : Menentukan fungsi tujuan dan fungsi kendala (batasan).
- Langkah 2: Menggambar masing-masing batasan ke dalam grafik.
- Langkah 3: Mencari koordinat titik potong kedua fungsi batasan.
- Langkah 4: Mencari titik yang paling menguntungkan dengan cara mensubstitusikan
 nilai tiap titik Du fungsi tujuan.
 Titik yang menghasilkan hasil
 subsitusi terbesar adalah titik yang
 paling menguntungkan.

b. Metode Simpleks

Metode simpleks merupakan metode pemecahan dalam Linear Programming yang mempunyai variabel lebih dari dua. Dalam simpleks digunakan iterasi. proses pengulangan, adalah apabila solusi belum optimal maka akan memulai melakukan perhitungan dari awal seperti dilakukan semula. Setiap iterasi telah menghasilkan nilai fungsi tujuan yang lebih besar dari iterasi sebelumnya. Iterasi selesai apabila nilai fungsi tujuan telah optimal.

Langkah-langkah yang harus dilakukan untuk mencapai nilai optimal dalam metode simpleks adalah sebagai berikut: (Yulian Yamit, 1993:90)

- 1) Mengubah masalah Linear Programming dalam bentuk standar.
- 2) Memeriksa apakah setiap kendala memiliki variabel basis, jika tidak ditambahkan satu variabel semu (buatan) sebagai variabel basisnya, misalnya diberi nama Q_1 dan Q_2 , sedangkan jumlahnya sesuai dengan kebutuhan. Variabel basis adalah variabel yang memiliki koefisien satu, sedangkan pada kendala lain nilainya nol.
- 3) Memasukkan semua nilai fungsi ke dalam tabel simpleks.
- 4) Memasukkan nilai koefisien nilai fungsi tujuan pada basis $Z_{i}-C_{j}$.

- Menentukan kolom kunci, yaitu kolom yang memiliki nilai negatif terbesar pada basis Z_j
 C_j, jika terdapat nilai terbesar semua dapat dipilih salah satu.
- 6) Menentukan angka indeks yaitu dengan cara membagi batas kanan dari pembatas dengan nilai yang terdapat dalam kolom kunci.
- 7) Menentukan baris kunci yaitu nilai baris yang memiliki indeks terkecil dan bukan negatif dengan menggunakan:

$$\min = \frac{\text{Nilai pada Kolom b}_{i}}{\text{Nilai pada Kolom Kunci}}$$

atau,

$$Min = \frac{Xb_1}{Y_1} Y_1 k > 0$$

- 8) Cari angka baru yang terdapat pada baris kunci dengan cara membagi semua angka yang terdapat pada baris kunci dengan yang terdapat pada persilangan baris kunci dengan kolom kunci.
- 9) Mencari angka baru pada baris yang lain, dengan rumus:

Angka baru = nilai baris lama - (koefisien pada kolom kunci kali angka baru pada baris kunci).

10) Apabila solusi belum otimal kembali ke langkah5 di atas sehingga solusi optimal.

Solusi optimal bila
$$Z_j - C_j >= 0$$

F. Peramalan Penjualan

Untuk meramalkan besarnya permintaan produk, diperlukan peramalan yaitu peramalan penjualan (sales forecasting). Peramalan ini menentukan berapa banyak masing-masing jenis produk yang dapat dijual pada periode tertentu.

1. Pengertian Peramalan

Peramalan adalah perkiraan mengenai sesuatu vang belum terjadi. Peramalan bertujuan mengurangi atau meminimumkan ketidakpastian terhadap perusahaan. Peramalan penjualan berguna mengetahui besarnya penjualan yang kemungkinan akan terjadi pada periode yang diramalkan. Jadi yang dimaksudkan dengan peramalan penjualan adalah suatu metode atau cara yang dipergunakan oleh perusahaan untuk menentukan besarnya penjualan pada periode tertentu. (Pangestu Hadi, 1984:31-32).

2. STORM

STORM merupakan salah satu bentuk software atau perangkat lunak dari komputer yang dirancang secara khusus sebagai salah satu program untuk mengolah data yang bersifat kuantitatif. Salah satu manfaat yang diperoleh dengan STORM adalah untuk membantu dalam menemukan komposisi produk optimal yang dihitung secara Linear Programming dan laba kontribusi komposisi produk optimal yang dihitung dengan Linear Programming. STORM juga digunakan untuk meramal penjualan (sales forecasting).

STORM digunakan setelah melalui langkah-langkah sebagai berikut:

- a) Mengidentifikasikan informasi dalam dua kelompok yaitu kelompok tujuan dan kelompok kendala. Yang berupa tujuan ialah contribution margin dari masing-masing produk yang dihasilkan. Yang berupa kendala adalah jumlah bahan baku yang tersedia, kemampuan tenaga kerja, kapasitas mesin, dan permintaan pasar.
- b) Tujuan dan kendala disusun dalam bangun matematik: (Yulian Yamit, 1993:93)

Tujuan Z-mak : $C_1X_1 + C_2X_2 + \dots + C_nX_n$

Kendala: 1) $a_{11}X_1 + a_{12}X_2 + ... + a_{1n}X_n < b_1$

2)
$$a_{21}X_1 + a_{22}X_2 + ... + a_{2n}X_n < b_2$$

3)
$$a_{31}X_1 + a_{32}X_2 + \dots + a_{3n}X_n < b_3$$

4)
$$a_{41}X_1 + a_{42}X_2 + ... + a_{4n}X_n < b_4$$

n)
$$a_{n1}X_1 + a_{n2}X_2 + ... + a_{nn}X_n < b_n$$

Keterangan simbol:

a adalah penggunaan sumber dari b

b₁ adalah bahan baku yang tersedia

b2 adalah kapasitas mesin

b, adalah kemampuan tenaga kerja

b₄ adalah permintaan pasar

b_n adalah keterbatasan yang ke-n, yang dimiliki
perusahaan

C = laba kontribusi

X = jenis produk yang dihasilkan

c) Bentuk pertidaksamaan baik fungsi tujuan maupun kendala diubah menjadi bentuk persamaan dengan menambah variabel slack. Variabel slack adalah variabel yang digunakan dalam Linear Programming untuk mengubah pertidaksamaan menjadi persamaan.

Tujuan Z-mak:

$$C_1X_1 + C_2X_2 + OS_1 + OS_2 + OS_3 + OS_n$$

Kendala:

1)
$$a_{11}X_1 + a_{12}X_2 + 1S_1 = b_1$$

2)
$$a_{21}X_1 + a_{22}X_2 + 1S_2 = b_2$$

3)
$$a_{31}X_1 + a_{32}X_2 + 1S_3 = b_3$$

4)
$$a_{41}X_1 + a_{41}X_2 + 1S_4 = b_4$$

$$n) a_{n1}X_1 + a_{n3}X_3 + 1S_n = b_n$$

Keterangan simbol:

S adalah slack variable

Setelah semua data yang diperoleh dimasukkan dalam langkah-langkah tersebut, maka langkah selanjutnya adalah mengolah data dengan menggunakan komputer yaitu dengan program STORM.

BAB III

METODE PENELITIAN

A. Jenis Penelitian

Jenis penelitian yang digunakan adalah studi kasus. Penelitian ini bertujuan untuk mengkaji lebih dalam mengenai kemampuan perusahaan untuk memproduksi dan menghasilkan laba.

Adapun hasil kesimpulan yang diperoleh hanya berlaku bagi perusahaan "Tegel Jaya" Surakarta dan tidak berlaku untuk perusahaan lain.

B. Lokasi dan Waktu Penelitian

- 1. Lokasi Penelitian: Perusahaan "Tegel Jaya" Surakarta.
- 2. Waktu Penelitian : Bulan Pebruari sampai bulan Maret 1998.

C. Subjek dan Objek Penelitian

1. Subjek Penelitian

- a. Pimpinan perusahaan
- b. Bagian produksi
- c. Bagian pemasaran
- d. Bagian akuntansi
- e. Bagian personalia

2. Objek Penelitian

Objek penelitian merupakan sesuatu yang menjadi pokok pembicaraan di dalam penelitian. Dalam hal ini yang menjadi objek penelitian adalah penentuan kombinasi volume produk, produk optimal dengan menggunakan pendekatan Linear Programming yang meliputi:

- a. Volume produksi dari masing-masing produk selama tahun 1994 sampai tahun 1997.
- b. Volume penjualan dari masing-masing produk selama tahun 1994 sampai tahun 1997.
- c. Biaya semivariabel dan biaya variabel selama tahun 1996 sampai tahun 1997.
- d. Laporan rugi laba.

D. Data yang Dicari

- 1. Macam produk yang dihasilkan oleh perusahaan.
- 2. Jenis bahan baku yang digunakan.
- 3. Harga tiap jenis bahan baku yang digunakan.
- 4. Volume produk yang dihasilkan.
- 5. Biaya semivariabel dan biaya variabel yang dikeluarkan oleh perusahaan.
- 6. Harga jual dan volume penjualan dari masing-masing produk yang dihasilkan.
- 7. Laporan rugi laba.

E. Teknik Pengumpulan Data

1. Wawancara

Wawancara adalah teknik pengumpulan data/informasi dengan jalan mengadakan tanya jawab secara
langsung dengan bagian pembelian, bagian administrasi, bagian produksi dan bagian penjualan.

2. Observasi

Observasi adalah teknik pengumpulan data dengan jalan mengadakan pengamatan langsung terhadap kegiatan perusahaan. Teknik ini digunakan untuk mengungkapkan data yang kurang bisa terungkap bila dilakukan dengan wawancara. Data yang dapat diperoleh dengan pengamatan misalnya: proses percampuran bahan, jenis mesin yang digunakan, jenis bahan yang digunakan, jumlah mesin yang digunakan serta lokasi perusahaan.

3. Dokumentasi

Dokumentasi adalah teknik pengumpulan data dengan cara mencatat data dari buku-buku, catatan-catatan dan laporan-laporan yang dimiliki perusahaan.

Teknik ini digunakan untuk memperkuat data yang disampaikan secara langsung melalui wawancara maupun observasi.

F. Teknik Analisis Data

Untuk menjawab masalah yang ada maka diperlukan langkah-langkah sebagai berikut:

 Menggolongkan biaya sesuai dengan tingkah lakunya dalam kaitannya dengan volume kegiatan.

Teknik yang digunakan untuk memisahkan biaya semivariabel agar menjadi biaya tetap dan biaya variabel adalah dengan menggunakan metode kuadrat terkecil (Least Square Method). Formulasi metode kuadrat terkecil adalah sebagai berikut: (Mulyadi, 1992:517)

$$Y = a + bX$$

Keterangan:

Y = dependent variable

X = independent variable

a = unsur biaya tetap

b = unsur biaya variabel

Rumus menentukan nilai a dan b adalah sebagai berikut:

$$b = \frac{n \sum XY - \sum X \sum Y}{n \sum X^2 - (\sum X)^2}$$

$$a = \frac{\sum Y - b \sum X}{n}$$

2. Menyajikan laporan rugi laba metode variable costing format contribution margin.

Perusahaan Tegel "Jaya"

Laporan Rugi Laba per 31 Desember 1995

Penjualan	xxx	
HPP-variabel		xxx
Manufakturing Margin	xxx	
Biaya Komersial Variabel:		
- Biaya pemasaran	xxx	
- Biaya Administrasi dan Umum	(+	
	(+	xxx
Constribution Margin		xxx
Biaya Tetap:		
- Biaya Administrasi dan Umum	xxx	
- Biaya Pemasaran	xxx	
- Biaya Overhead	xxx	
- Biaya Bunga	(+	
	—— (т	
		(-
Laba Bersih		xxx

3. Menghitung contribution margin tiap jenis produk yang dihasilkan.

Tabel 3.1.

Produk	Harga Jual	Biaya Variabel	Contribution Margin	Contribution Margin Ratio
A	xxx	xxx	xxx	%
В	xxx	xxx	xxx	%
С	xxx	xxx	xxx	%

4. Analisis kombinasi produk yang optimal

Dalam penyelesaian kombinasi produksi, perlu diperhatikan hal-hal yang membatasi luas produksi dan menjadi kendala dalam produksi tersebut. Adapun kendala-kendala yang perlu diperhatikan:

a. Kapasitas mesin

Yaitu kemampuan maksimal dari mesin-mesin di dalam menghasilkan barang produk berdasarkan waktu yang telah ditentukan.

b. Kapasitas bahan baku

Merupakan kemampuan dari perusahaan di dalam menyediakan bahan baku yang diperlukan untuk proses produksi.

c. Kapasitas tenaga kerja

Jumlah tenaga kerja yang bekerja pada perusahaan tersebut berdasarkan waktu yang telah ditentukan.

d. Kapasitas pasar atau permintaan

STORM.

Jumlah maksimal permintaan dari pasar atau konsumen di dalam membeli produk suatu perusahaan, dalam hal ini permintaan terhadap tegel.

Untuk mengetahui jumlah permintaan di dalam periode tertentu digunakan peramalan penjualan

menyelesaikan kombinasi produksi ini adalah metode programasi garis lurus atau *Linear Programming* dengan bantuan program komputer yaitu

(Sales Forecasting). Metode yang digunakan untuk

STORM digunakan setelah melalui langkah-langkah sebagai berikut:

- 1) Mengidentifikasikan informasi dalam dua kelompok yaitu kelompok tujuan dan kelompok kendala. Yang berupa tujuan ialah contribution margin dari masing-masing produk yang dihasilkan. Yang berupa kendala adalah jumlah bahan baku yang tersedia, kemampuan tenaga kerja, kapasitas mesin, dan permintaan pasar.
- 2) Tujuan dan kendala disusun dalam bangun matematik: (Yulian Yamit, 1993:93)

Tujuan Z-mak :
$$C_1X_1 + C_2X_2 + \dots + C_nX_n$$

Kendala: 1) $a_{11}X_1 + a_{12}X_2 + \dots + a_{1n}X_n < b_1$
2) $a_{21}X_1 + a_{22}X_2 + \dots + a_{2n}X_n < b_2$

3)
$$a_{31}X_1 + a_{32}X_2 + ... + a_{3n}X_n < b_3$$

4)
$$a_{41}X_1 + a_{42}X_2 + ... + a_{4n}X_n < b_4$$

n)
$$a_{n1}X_1 + a_{n2}X_2 + ... + a_{nn}X_n < b_n$$

Keterangan simbol:

a adalah penggunaan sumber dari b

b₁ adalah bahan baku yang tersedia

b2 adalah kapasitas mesin

b₃ adalah kemampuan tenaga kerja

 b_4 adalah permintaan pasar

b_n adalah keterbatasan yang ke-n, yang dimiliki perusahaan

C = laba kontribusi

X = jenis produk yang dihasilkan

3) Bentuk pertidaksamaan baik fungsi tujuan maupun kendala diubah menjadi bentuk persamaan dengan menambah variabel slack. Variabel slack adalah variabel yang digunakan dalam Linear Programming untuk mengubah pertidaksamaan menjadi persamaan.

Tujuan Z-mak:

$$c_1 x_1 + c_2 x_2 + os_1 + os_2 + os_3 + os_n$$

Kendala:

1)
$$a_{11}X_1 + a_{12}X_2 + 1S_1 = b_1$$

2)
$$a_{21}X_1 + a_{22}X_2 + 1S_2 = b_2$$

3)
$$a_{31}X_1 + a_{32}X_2 + 1S_3 = b_3$$

4)
$$a_{41}X_1 + a_{41}X_2 + 1S_4 = b_4$$

n)
$$a_{n1}x_1 + a_{n3}x_3 + 1s_n = b_n$$

Keterangan simbol:

S adalah slack variable

Setelah semua data yang diperoleh dimasukkan dalam langkah-langkah tersebut, maka langkah selanjutnya adalah mengolah data dengan menggunakan komputer yaitu dengan program STORM.

BAB IV

GAMBARAN UMUM PERUSAHAAN

A. Sejarah dan Perkembangan Perusahaan

Perusahaan tegel "Jaya" didirikan pada tanggal 1 Maret 1976 oleh bapak Yopie Djasmoro. Perusahaan ini berlokasi di jalan Pucung Sawit No. 3 sampai No. 5 Surakarta, merupakan perusahaan perorangan dan didirikan berdasarkan surat ijin Departemen Perindustrian dengan nomor:

224/5.3W/S-W/67 339.30/135.7/23

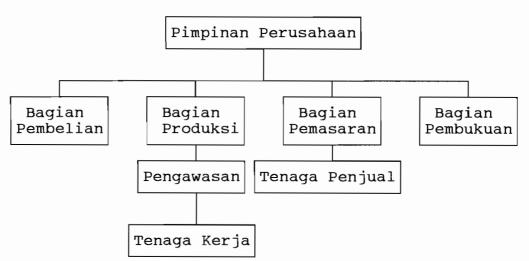
Pada awal usahanya perusahaan memulai dengan menggunakan modal yang sangat terbatas, produksinya masih tradisional. proses Kapasitas produksinya dalam satu hari hanya dapat menghasilkan 35 m² tegel, dan setelah perusahaan beroperasi lebih dari dua tahun, perusahaan tegel Jaya mulai dikenal oleh masyarakat dan para konsumen. Jumlah produksi semakin meningkat. Untuk memenuhi pesanan yang ada, pada tahun 1979 perusahaan menambah fasilitas produksi yang ada dengan menambah beberapa mesin, peralatan-peralatan, dan perusahaan mengadakan diversifikasi (penganekaragaman) produk. Sampai pada tahun 1981 perusahaan telah mempunyai enam buah mesin press tegel serta beberapa macam peralatan lainnya. Pada akhir tahun 1981 diversifikasi produk mengalami penyempitan yang dahulunya memproduksi tujuh macam produk, menjadi empat macam produk yang dirasa potensial dalam pemasarannya.

Adapun keempat macam produk tersebut adalah:

- 1. Produksi jenis tegel abu-abu
- 2. Produksi jenis tegel teraso
- 3. Produksi jenis tegel kembang
- 4. Produksi jenis tegel berwarna

Dengan memusatkan pada keempat produk tersebut, usaha tegel ini mengalami kemajuan yang cukup pesat. Yang mana ditunjang dengan kondisi perekonomian yang semakin membaik seiring pula dengan pembangunan sarana fisik yang semakin meningkat khususnya bidang perumahan baik secara perorangan maupun secara perusahaan memandang perlu untuk kembali menambah macam produk yang dihasilkan. Untuk itu diambil kebijaksanaan mendeversifikasi produk. Pada tahun 1983 seiring kebijaksanaan di bidang perbankan, dan dengan adanya kemudahan didalam pengambilan kredit, perusahaan mengambil kredit untuk menambah macam produk kredit, perusahaan mengambil kredit untuk menambah macam produk yang dihasilkan, yang hingga saat ini perusahaan terus berkembang.

Produk yang dihasilkan sampai saat ini adalah sebagai berikut:


- 1. Tegel, terdiri dari:
 - a. Tegel abu-abu
 - b. Tegel teraso

- c. Tegel kembang
- d. Tegel berwarna
- 2. Paving block (tegel untuk jalan) merupakan produk sampingan.

B. Struktur Organisasi

Perusahaan tegel "Jaya" sampai pada saat ini merupakan perusahaan perseorangan. Struktur organisasi perusahaan dapat dilihat pada Gambar 1.

Gambar 4.1 Struktur Organisasi

Sumber: Pimpinan Perusahaan Tegel "Jaya"

Adapun tugas dan wewenang adalah sebagai berikut:

1. Pimpinan Perusahaan

Pimpinan dan pemilik perusahaan tegel "Jaya" adalah Bapak Yopie Djasmoro, yang bertugas memimpin perusahaan serta berwenang menentukan kebijaksanaan perusahaan, baik secara intern maupun ekstern terutama dalam pemasaran hasil produksi.

2. Bagian Pembelian

Bagian pembelian dipimpin oleh Bapak Irianto, yang mempunyai tugas dan wewenang untuk mengadakan pembelian bahan-bahan serta peralatan-peralatan lainnya yang dibutuhkan dalam proses produksi.

3. Bagian Produksi

Bagian produksi dipimpin oleh Bapak Andi, yang bertanggung jawab langsung kepada pimpinan perusahaan. Bagian ini membawahi enam orang pengawas, bertugas untuk mengawasi jalannya proses produksi. Disamping itu mempunyai wewenang dan tanggung jawab dalam proses produksi untuk menghasilkan produk akhir, dan kualitas produk akhir tersebut. Untuk produk yang berkualitas mewujudkan baik, maka pengawas tersebut mengawasi secara cermat persiapan proses produksi sampai menjadi produk akhir yang siap untuk dipasarkan.

Dengan demikian jika terjadi penyimpangan-penyimpangan dapat dengan mudah diketahui dimana letak penyimpangan tersebut.

4. Bagian Pemasaran

Bagian pemasaran ini dipimpin oleh Bapak Yonathan, yang bertugas dan berwewenang didalam mengurusi pemasaran produk dan menentukan pembayarannya yang dapat dilakukan secara kredit dan tunai.

Penjualan secara kredit biasanya diberikan kepada konsumen yang telah menjadi langganan tetapnya, dan dinilai baik kredibilitasnya.

Selain itu juga dibuka beberapa agen, antara lain di kota dalam wilayah Propinsi Jawa Tengah, dan Jawa Timur.

5. Bagian Pembukuan

Bagian pembukuan dipimpin oleh Bapak Sugianto yang bertugas dan berwewenang membukukan semua kegiatan yang dilakukan oleh perusahaan. Dengan dibukukannya kegiatan yang ada, maka dapat diketahui tentang hal-hal yang menyimpang dari apa yang telah direncanakan sebelumnya. Selain itu, laporan pembukuan tersebut dijadikan pedoman bagi perusahaan dalam menilai tingkat keberhasilan perusahaan dalam melaksanakan kegiatan sehingga dapat juga dijadikan sebagai pedoman pengambilan keputusan perusahaan pada masa yang akan datang.

C. Sumber Daya Manusia

1. Karyawan Perusahaan

Perusahaan tegel "Jaya" mempunyai karyawan sebanyak 72 orang, terdiri dari karyawan yang bekerja pada bagian pembelian, produksi, pemasaran, pembukuan dan buruh angkut. Bagian produksi mempunyai karyawan paling banyak.

2. Waktu Kerja dan Waktu Istirahat

Waktu kerja karyawan sesuai petunjuk dari Departemen Tenaga Kerja yaitu selama tujuh jam kerja ditambah waktu istirahat selama 30 menit, dengan pembagian kerja sebagai berikut: Hari Senin sampai dengan hari Jum'at:

Pagi : Pukul 07.30 sampai dengan pukul 12.00 siang

Istirahat: Pukul 12.00 siang sampai dengan pukul

12.30 siang

Siang : Pukul 12.30 siang sampai dengan pukul

15.00

Jadi jam kerja per hari = 7 jam atau 420 menit.

3. Sistem Pengupahan

Sistem pengupahan yang ada pada perusahaan tegel "Jaya" adalah sebagai berikut:

a. Upah harian

Besarnya upah harian ditentukan oleh banyaknya hari karyawan bekerja dan diberikan setiap hari Sabtu. Besarnya upah harian berkisar antara Rp 2.500 sampai Rp 3.000.

Karyawan yang memperoleh upah harian adalah:

- Karyawan bagian pencampuran
- Karyawan bagian umum

b. Upah borongan

Sistem upah borongan pembayarannya dilakukan setiap hari Sabtu, dengan perhitungan sebagai berikut:

Jumlah produk selesai x tarif upah per unit Karyawan yang memperoleh upah borongan adalah:

- Karyawan cetak tegel
- Karayawan slep

c. Upah lembur

Upah lembur diberikan kepada karyawan yang bekerja lebih dari pukul 15.00 dan besarnya upah lembur adalah, tiap jam = 2 kali upah pokok per jam.

d. Gaji bulanan

Sistem gaji bulanan, pembayarannya dilakukan setiap awal bulan dan besarnya adalah relatif berkisar antara Rp 150.000 sampai Rp 375.000 Yang termasuk dalam upah ini adalah:

- Karyawan bagian administrasi
- Karyawan bagian pengawas atau mandor

4. Jaminan Sosial

Jaminan sosial yang diberikan kepada karyawan adalah sebagai berikut:

a. Tunjangan Hari Raya

Setiap hari raya Idul Fitri/Natal diberikan tunjangan yang besarnya tergantung dari kebijaksanaan perusahaan.

b. Tunjangan lain-lain

Tunjangan lain-lain seperti pengobatan bila sakit, terjadi kecelakaan dalam bekerja dan sebagainya.

Besarnya tunjangan untuk masing-masing karyawan tergantung pada berat ringannya kejadian.

5. Fasilitas Faktor Motivasi Kerja Karyawan
Faktor-faktor motivasi kerja yang diberikan oleh
perusahaan kebanyakan bersifat non material
insentif.

Fasilitas tersebut antara lain:

a. Faktor fisik

- Penyediaan tempat kerja yang luas dan rapi.
- Ruangan kerja yang cukup terang dan memenuhi syarat kesehatan, ventilasi dan penerangan yang cukup pula.
- Peralatan kerja dan mesin-mesin siap pakai.
- Waktu kerja selama tujuh jam dan istirahat 30 menit.

b. Faktor sosial

- Hubungan yang baik antar karyawan pada perusahaan.
- Hubungan antara atasan dan bawahan berjalan dengan baik, dimana karyawan bebas menguta-rakan pendapatnya dan atasan bersedia untuk mendengarkan berbagai keluhan para karyawan.

c. Faktor psikologis

- Menciptakan suasana kerja yang nyawan dan menyenangkan.
- Perusahaan tidak dapat dengan mudah mengeluarkan karyawannya begitu saja tanpa alasan yang pasti.

D. Produksi

Perusahaan tegel "Jaya" menghasilkan berbagai produk antara lain:

- 1. Tegel abu-abu
- Tegel teraso
- 3. Tegel kembang
- 4. Tegel berwarna
- 5. Tegel block (produk sampingan), dalam penelitian produk ini tidak diikutsertakan

1. Bahan Baku

Bahan baku adalah bahan dasar yang akan diproses dalam proses produksi untuk menghasilkan produk jadi. Adapun bahan mentah yang dibutuhkan dalam proses produksi adalah:

a. Semen

Dalam proses produksi tegel ada bermacam-macam semen yang dipergunakan, antara lain:

- Semen abu-abu digunakan untuk semua jenis tegel.
- Semen berwarna dipergunakan untuk membuat jenis tegel berwarna serta tegel kembang.
- Semen putih dipergunakan untuk tegel teraso.

Kebutuhan akan semen abu-abu merupakan unsur pokok dalam proses pembuatan tegel, sebab bahan ini paling banyak dipergunakan pada setiap produksi tegel, baik tegel abu-abu, tegel berwarna, maupun tegel kembang. Untuk tegel teraso semen

yang dipergunakan adalah semen putih untuk bagian atas, sedangkan untuk lapisan kaki masih dipergunakan semen jenis abu-abu.

b. Batu terass dan jenis kembang

Batu terass adalah jenis batu kerang yang terdapat pada dasar laut, yang berwarna keputihputihan, dimana batu terass ini dipergunakan
untuk pembuatan tegel teraso. Batu terass dan
jenis kerang ini banyak didatangkan dari daerah
pesisir, seperti Cirebon, Jepara, Pulau Seribu
serta beberapa daerah pantai lainnya.

c. Pasir

Pasir adalah bahan yang paling banyak dibutuhkan dalam semua proses pembuatan tegel. Kebutuhan dasar ini mudah didapat setiap saat, namun biasanya banyak dibeli dari daerah Pandansimping Klaten.

Dalam usaha menghindari kekurangan bahan baku yang mengakibatkan terganggunya proses produksi, maka perusahaan akan memperhitungkan risiko-risiko yang akan ditimbulkan, dengan mengawasi persediaan bahan baku.

2. Mesin-mesin dan Peralatan

Dalam memproduksi tegelnya, perusahaan menggunakan mesin-mesin yang digerakkan oleh generator, hal ini untuk mengganti proses tradisional yang dahulu pernah dilakukan. Mesin-mesin yang dipergunakan adalah sebagai berikut:

a. Mesin Mixer

Mesin mixer adalah alat untuk mencampur bahan baku yang sedang diproses, selanjutnya mesin ini akan bekerja secara otomatis dalam meratakan semua bahan-bahan yang dicampur tersebut.

b. Mesin press tegel

Mesin ini dipergunakan untuk mengepress tegeltegel yang akan menjadi produk jadi setelah melalui alat-alat cetak. Perusahaan memiliki 4 buah mesin cetak dengan kapasitas produksi 98 m² per hari.

c. Mesin polish dan grinding

Mesin ini biasanya dipergunakan untuk membuat tegel teraso, yaitu untuk menimbulkan kesan batubatuan di atas permukaan tegel teraso, disamping juga untuk menghaluskan.

d. Mesin slep

Perusahaan memiliki 1 buah mesin slep. Mesin ini digunakan untuk menggosok tegel teraso dengan tujuan agar tegel kelihatan batu terasonya. Kapasitas mesinya adalah 30 m² per hari.

Sedangkan peralatan yang dipergunakan dalam proses produksi adalah:

a. Rak pengering

Rak pengering ini dipergunakan untuk menjemur

tegel-tegel yang telah selesai dari perendaman. Rak pengering ada 20 buah dengan kapasitas masing-masing 30 m^2 .

b. Bak perendam

Bak ini dipergunakan untuk merendam tegel-tegel yang telah dijemur atau dianginkan. Adapun manfaat yang diperoleh yaitu supaya tegel yang telah selesai diproses dapat menjadi lebih kuat dan keras serta bahannya dapat lebih menyatu. Perusahaan memiliki 15 buah bak perendaman dengan kapasitas masing-masing 10 m².

3. Proses Produksi

Pada dasarnya perusahaan tegel "Jaya" dalam proses produksinya memiliki dua cara, yaitu:

- a. Proses pembuatan jenis tegel berkepala basah Dalam pembuatan tegel ini, bahan-bahan yang diperlukan adalah sebagai berikut:
 - Untuk bagian kepala, dengan bahan yang terdiri dari: semen, terass, dan air.
 - Untuk wur, dengan bahan yang terdiri dari: semen dan terass.
 - Untuk bagian kaki, dengan bahan yang terdiri dari: semen, pasir, dan air.
- b. Proses pembuatan jenis tegel berkepala kering Dalam pembuatan tegel ini, bahan-bahan yang diperlukan adalah sebagai berikut:

- Untuk bagian kepala, dengan bahan yang terdiri dari: semen, terass, dan air.
- Untuk bagian kaki, dengan bahan yang terdiri dari: semen, pasir dan air.

Proses produksi tegel pada intinya terdiri dari proses mencampur, mencetak dan mengepress, serta menggosok. Pada proses produksi ini setiap mesin ditangani oleh 3 karyawan yaitu bagian pencampur, pencetak dan pengepress serta penggosok.

Perbandingan komposisi bahan baku yang digunakan untuk membuat tegel adalah sebagai berikut:

a. Untuk tegel abu-abu

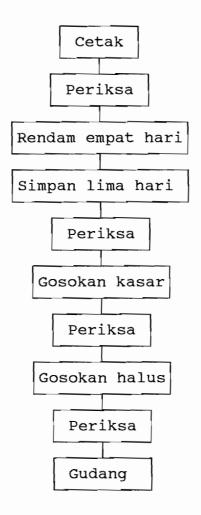
- Untuk bagian lapisan kepala atau lapisan atas digunakan semen yang halus.
- Untuk lapisan tengah digunakan semen biasa dan pasir halus, dengan perbandingan 1 : 2.
- Untuk lapisan bawah atau bagian kaki digunakan semen dan pasir kasar, dengan perbandingan 1:
 5.

b. Untuk tegel teraso

- Untuk bagian atas atau kepala digunakan semen putih atau batu teraso, dengan perbandingan 1: 1,5.
- Untuk lapisan tengah digunakan semen putih dengan mill putih dengan perbandingan 1:5.
- Untuk lapisan bawah atau kaki digunakan semen biasa atau pasir dengan perbandingan 1 : 5.

c. Untuk tegel kembang

- Untuk bagian atas digunakan semen berwarna dan semen putih dengan perbandingan 1: 10.
- Untuk lapisan bagian tengah digunakan semen halus dan pasir halus dengan perbandingan 1 : 2.
- Untuk lapisan kaki digunakan semen biasa dan pasir halus dengan perbandingan 1:5.


d. Untuk tegel berwarna

- Untuk lapisan atas digunakan semen berwarna dan semen putih dengan perbandingan 1:10.
- Untuk lapisan tengah digunakan semen biasa dan pasir halus dengan perbandingan 1 : 2.
- Untuk lapisan bawah digunakan semen biasa dan pasir kasar dengan perbandingan 1:5.

Urutan proses produksi pembuatan tegel dapat dilihat dari Gambar 2, halaman 52.

Gambar 4.2
Rangkaian Proses Produksi

Tahap I:

Sumber: Perusahaan Tegel "Jaya" Surakarta

Keterangan:

Tahap II: Peranginan basah

Tahap III : Bak perendam

Tahap IV: Peranginan kering

Tahap V: Penggosokan sampai halus

Dari gambar di atas, dapat dijelaskan dari masing-masing tahap proses pengolahan bahan baku menjadi tegel adalah sebagai berikut:

1) Tahap I : Persiapan sampai dengan percetakan

Pada tahap persiapan semua bahan-bahan yang dipersiapkan terlebih diperlukan dahulu proses selanjutnya dapat berjalan dengan lancar. Setelah itu dilanjutkan dengan proses pencam-Pada proses ini bahan-bahan dicampur puran. dengan komposisi yang telah ditentukan. Setiap tegel terdiri dari tiga macam lapisan. Tiap lapisan memerlukan komponen campuran yang berbeda-beda. Adapun lapisan-lapisan yang dimaksud adalah sebagai berikut:

- Lapisan kepala, yaitu lapisan yang paling halus
- Lapisan tengah
- Lapisan bawah

Proses pencampuran diselesaikan, diteruskan dengan proses pencetakan. Pencetakan merupakan proses pembuatan tegel yang paling penting. Komposisi campuran bahan dimasukkan dalam alat cetak kemudian ditekan dengan memproses pada tekanan tertentu.

Urut-urutan campuran yang dimasukkan dalam alat/pencetak adalah bagian kepala, kemudian bagian
tengah dan yang terakhir adalah bagian bawah.

2) Tahap II: Peranginan pertama atau peranginan basah

Proses peranginan pertama adalah peranginan basah. Waktu yang diperlukan untuk peranginan

basah adalah satu hari untuk jenis tegel abu-abu, berwarna, kembang, dan teraso.

Semua jenis tegel setiap dua belas jam disiram dengan air dengan tujuan supaya tegel menjadi keras dan kuat.

Peranginan dilakukan di tempat terbuka yang tidak kena sinar matahari secara langsung.

3) Tahap III: Perendaman

Proses perendaham dilakukan selama ± 3 hari. Caranya adalah sebagai berikut: Tegel yang telah dikeringkan pada tahap pertama dimasukkan ke dalam bak perendam.

Tujuan perendaman adalah supaya tegel menjadi lebih keras dan kuat serta tidak mudah rusak.

4) Tahap IV: Peranginan kering atau peranginan kedua

Proses peranginan kedua atau peranginan kering hampir sama dengan proses peranginan pertama atau peranginan basah. Tegel yang telah selesai direndam, dimasukkan dalam rak peranginan ini selama lebih kurang 4 hari dengan posisi miring di tempat terbuka.

5) Tahap V: Penggosokan sampai halus

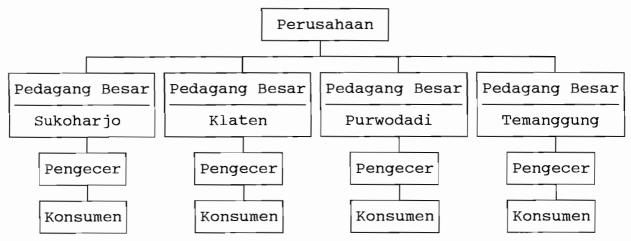
Proses penggosokan merupakan proses terakhir pembuatan tegel, sebelum tegel tersebut siap dipasarkan. Tujuan penggosokan adalah supaya tegel menjadi halus dan bersih dari sisa-sisa semen yang melekat.

Khusus untuk tegel teraso penggosokan dilakukan dengan semen putih agar pori-pori pada permukaan dapat tertutup. Sebelum digosok terlebih dahulu dislep dengan mesin slep dengan tujuan supaya batu terasonya lebih kelihatan.

E. Pemasaran

Suatu perusahaan dapat dikatakan berhasil, apabila perusahaan tersebut berhasil dalam proses produksinya, sekaligus mengalami kelancaran dalam memasarkan hasil produksinya. Hasil produksi tegel "Jaya" sebagian besar dipasarkan di daerah Surakarta dan daerah sekitarnya, seperti Sukoharjo, Klaten, Karanganyar, Boyolali, Purwodadi, Sragen, Ngawi, Salatiga, dan Temanggung.

Untuk menghadapi persaingan, pimpinan perusahaan tegel "Jaya" mengambil kebijaksanaan sebagai berikut:


Melayani konsumen sebaik-baiknya, yaitu dengan mengirim permintaan pedagang besar tepat pada waktunya, sehingga barang tetap tersedia, sebab bila sampai kehabisan barang di pasar, maka kemungkinan besar konsumen akan beralih ke merk lain.

1. Saluran Distribusi

Setelah barang selesai diproduksi, kemudian hasil produksi tersebut dipasarkan melalui saluran distribusi dipasarkan melalui saluran distribusi.

Saluran distribusi dapat dilihat pada Gambar 3 halaman 53.

Gambar 4.3
Saluran Distribusi Perusahaan Tegel "Jaya"

Sumber: Perusahaan Tegel "Jaya" Surakarta

Dari gambar tersebut dapat dijelaskan sebagai berikut:

Hasil produksi perusahaan tegel "Jaya" dipasarkan pada pedagang-pedagang besar antara lain di daerah Sukoharjo, Klaten, Purwodadi, dan Temanggung.

Dari pedagang besar inilah tegel tersebut disalurkan ke pengecer dan pengecer menyalurkan kepada konsumen. Namun selain melalui pedagang besar, perusahaan tegel "Jaya" juga memasarkan secara langsung kepada konsumen dengan menggunakan tenaga kerja perusahaan bagian pemasaran, yang memasarkan secara langsung kepada konsumen dan mempunyai jangkauan yang lebih luas, antara lain di daerah Surakarta dan sekitarnya, seperti Sukoharjo, Klaten, Karanganyar, Boyolali, Purwodadi, Sragen, Ngawi, Salatiga, dan Temanggung.

BAB V DESKRIPSI DATA, ANALISIS DAN PEMBAHASAN

A. Deskripsi Data

Sehubungan dengan topik yang ada yaitu Optimalisasi Laba Perusahaan Melalui Kombinasi Produksi Yang
Optimal maka dibutuhkan data-data yang relevansi dengan
topik yang diambil sehingga dapat mendukung dalam
pemecahan dan penyelesaian masalah. Adapun data-data
yang diperoleh langsung dari Perusahaan Tegel "Jaya"
Surakarta yang merupakan tempat penelitian dapat
dilihat pada Tabel 5.1 sampai dengan 5.7 halaman 57
sampai dengan 62.

Tabel 5.1
Harga Bahan Baku
(dalam Rupiah)

Jenis Bahan	1994	1995	1996	1997
Pasir 1 m ³	8.650	9.150	9.700	10.150
Semen abu-abu 1 zak 40 kg	5.600	6.100	6.600	8.500
Semen putih 1 zak 40 kg	16.300	16.850	17.300	17.800
Semen meel 100 kg	7.000	7.200	7.400	7.700
Baku teraso 100 kg	9.200	9.500	9.800	10.100
Cat pewarna 1 kg	8.350	8.600	8.850	9.150

Tabel 5.2
Biaya Tenaga Kerja Langsung
(dalam Rupiah)

Tania Magal	1994		1995		1996		1997	
Jenis Tegel	Unit	m ²	Unit	m²	Unit	m²	Unit	m²
Abu-abu	12	300	12	300	17	350	17	350
Berwarna	14	325	14	325	19	450	19	450
Kembang	18	650	18	650	32	750	32	750
Teraso	32	350	32	350	35	375	35	375

Tabel 5.3

Komposisi Pemakaian Bahan Baku dan Penolong

Tiap Jenis Tegel per m²

Jenis Bahan	Abu-abu	Berwarna	Kembang	Teraso	
Pasir	0,060 m ³	0,055 m ³	0,055 m ³	0,075 m ²	
Semen abu-abu	17 kg	3 kg	3,5 kg	6 kg	
Semen putih	-	3 kg	3,5 kg	10,5 kg	
Batu teraso	_	-	-	13 kg	
Tepung meel	_	2,5 kg	3,5 kg	5 kg	
Cat berwarna	-	0,30 kg	0,40 kg	-	

Tabel 5.4a
Biaya Semivariabel Tahun 1996
(dalam Rupiah)

Bulan	Biaya Pemeliharaan Alat Cetak	Biaya Bahan Bakar	Biaya Listrik	Biaya Angkut	Biaya Advertensi	Biaya Pemasaran Lain
1	19.750	20.000	68.300	81.500	6.480	193.900
2	19.650	20.000	69.200	81.700	6.490	194.400
3	19.600	20.000	69.250	82.800	6.490	197.100
4	20.500	20.825	71.000	83.900	6.670	199.700
5	19.700	20.075	68.400	84.500	6.750	201.100
6	19.750	20.125	68.400	84.900	6.730	202.100
7	22.000	22.500	77.000	86.000	6.840	204.700
8	19.800	20.075	68.500	86.600	6.900	206.600
9	21.000	21.600	74.000	84.400	6.710	200.100
10	21.100	21.600	74.100	84.000	6.640	198.800
11	21.350	21.650	74.250	83.000	6.570	196.600
12	21.400	21.700	74.150	93.200	6.610	198.000
	245.600	250.150	856.550	976.500	79.880	2.393.100

Tabel 5.4b

Biaya Semivariabel Tahun 1997

(dalam Rupiah)

Bulan	Biaya Pemeliharaan Alat Cetak	Biaya Bahan Bakar	Biaya Listrik	Biaya Angkut	Biaya Advertensi	Biaya Pemasaran Lain
1	20.000	21.350	72.550	87.500	7.560	188.400
2	20.150	20.900	70.000	89.600	7.660	193.000
3	20.500	21.350	72.000	89.760	7.760	193.300
4	20.500	21.550	72.600	92.100	7.950	198.350
5	19.475	20.250	69.000	93.100	8.040	200.300
6	18.650	21.550	72.650	94.000	8.140	202.700
7	20.150	20.900	70.150	94.250	8.150	205.150
8	20.800	21.500	72.650	95.370	8.340	207.500
9	21.575	22.500	75.000	95.800	8.280	206.300
10	20.900	21.400	72.800	95.900	8.290	206.500
11	21.750	22.650	75.900	95.600	8.240	205.100
12	20.950	21.800	72.950	95.500	8.250	205.600
	245.400	257.700	869.150	1.118.480	96.660	2.412.200

Tabel 5.5a

Produksi Tegel Tahun 1996

(dalam m²)

Bulan	Abu-abu	Berwarna	Kembang	Teraso
1	432	333	240	387
2	432	335	240	385
3	432	336	240	384
4	450	350	250	400
5	432	336	240	384
6	432	336	240	384
7	486	378	270	432
8	432	336	240	384
9	468	363	260	417
10	468	363	260	417
11	468	364	260	416
12	468	364	260	416
	5.400	4.194	3.000	4.806

Tabel 5.5b

Produksi Tegel Tahun 1997

(dalam m²)

Bulan	Abu-abu	Berwarna	Kembang	Teraso
1	450	335	245	400
2	432	336	240	384
3	450	350	250	400
4	450	350	250	400
5	414	322	230	368
6	450	350	250	400
7	432	336	240	384
8	450	350	250	400
9	468	364	261	415
10	450	350	245	405
11	468	364	260	416
12	450	350	250	400
	5.364	4.177	2.971	4.772

Tabel 5.6a
Penjualan Tegel Tahun 1994
(dalam m²)

Bulan	Abu-abu	Berwarna	Kembang	Teraso
1	407	280	192	315
2	409	285	190	320
3	410	290	190	327
4	412	293	193	350
5	413	297	195	366
6	415	305	196	375
7	417	315	198	378
8	420	310	200	380
9	425	317	205	385
10	419	320	201	360
11	425	322	197	358
12	427	310	194	320
	4.999	3.644	2.351	4.234

Tabel 5.6b

Penjualan Tegel Tahun 1995

(dalam m²)

Bulan	Abu-abu	Berwarna	Kembang	Teraso
1	422	308	193	330
2	415	280	190	322
3	418	285	187	324
4	420	290	191	318
5	410	298	195	312
6	413	300	193	320
7	417	315	190	324
8	423	312	191	330
9	428	305	185	335
10	430	300	188	340
11	425	290	194	355
12	428	288	192	360
	5.049	3.571	2.289	3.970

Tabel 5.6c Penjualan Tegel Tahun 1996 (dalam m²)

Bulan	Abu-abu	Berwarna	Kembang	Teraso
1 2	405 408	275 277	194 188	355 351
3	409	280	191	350
4 5	411 414	285 288	197 196	365 367
6	418	303	194	370
7 8	420 422	290 292	215 221	375 380
9	420	285	210	350
10	415 410	287 289	209 189	344 357
12	419	292	180	359
	4.971	3.443	2.284	4.323

Tabel 5.6d Penjualan Tegel Tahun 1997 (dalam m²)

Bulan	Abu-abu	Berwarna	Kembang	Teraso
1	420	300	163	362
2	423	310	164	368
3	425	315	158	372
4	429	320	175	376
5	430	326	173	380
6	435	330	181	384
7	433	337	188	387
8	437	340	202	390
9	430	345	194	381
10	435	342	201	377
11	431	343	195	375
12	434	346	191	369
	5.162	3.954	2.185	4.521

Sumber: Perusahaan Tegel Jaya Surakarta

Tabel 5.7
Harga Jual Tiap Jenis Tegel Per m²
Tahun 1994 - 1997
(dalam rupiah)

Jenis Bahan	1994	1995	1996	1997
Abu-abu	7.500	8.000	8.750	9.700
Berwarna	8.000	8.500	9.400	10.000
Kembang	8.500	9.250	10.100	10.500
Teraso	9.000	10.750	12.500	13.350

B. Analisis Data dan Pembahasan

1. Klasifikasi Biaya

Data yang diperoleh dari hasil temuan lapangan akan dianalisis sehingga dapat digunakan untuk menyelesaikan masalah. Permasalahan yang ada pada penelitian ini adalah penentuan kombinasi produk yang optimal. Pendekatan yang digunakan di dalam penentuan kombinasi produk ini adalah analisis contribution margin. Contribution margin digunakan untuk penentuan fungsi tujuan di dalam linear programming.

Langkah-langkah yang dilakukan untuk menyelesaikan linear programming sesuai dengan teknik analisis data adalah sebagai berikut:

a) Klasifikasi biaya sesuai dengan tingkah lakunya dalam kaitannya dengan volume kegiatan.

Biaya yang terjadi pada perusahaan Tegel "Jaya" diklasifikasikan menjadi tiga macam yaitu biaya tetap, biaya variabel, dan biaya semi-variabel.

1) Biaya bahan baku dan penolong

Biaya bahan baku dan penolong adalah biaya yang dikeluarkan untuk membeli bahan produksi. Biaya bahan baku dan penolong dikelompokkan ke dalam biaya variabel karena biaya ini mengalami perubahan atau fluktuasi jumlah biaya total sebanding dengan perubahan

volume produksi. Biaya bukan baku dan penolong dapat dilihat pada tabel 5.10a, halaman 85.

2) Biaya tenaga kerja langsung

Biaya tenaga kerja langsung adalah biaya yang dikeluarkan oleh perusahaan untuk mem-bayar tenaga kerja yang langsung berhubungan dengan produksi tegel.

Biaya ini dikelompokkan ke dalam biaya variabel karena besar jumlah biaya total akan mengikuti naik turunnya volume produksi.

Untuk lebih jelasnya mengenai jumlah biaya tenaga kerja langsung untuk produk total tahun 1997 dapat dilihat pada tabel 5.10c, halaman 86.

3) Biaya overhead Pabrik

Biaya overhead pabrik adalah biaya yang dikeluarkan oleh perusahaan untuk membiayai kegiatan yang tidak langsung berhubungan dengan proses produksi. Yang termasuk didalam elemen biaya overhead pabrik adalah sebagai berikut:

a) Biaya gaji staf

Biaya ini dikelompokkan ke dalam biaya tetap karena besarnya biaya tidak dipengaruhi oleh besarnya volume produksi. Biaya staf meliputi biaya gaji bagian produksi, pagian pemasaran dan bagian administrasi.

b) Biaya pemeliharaan mesin dan alat cetak

Biaya pemeliharaan mesin dan alat cetak adalah biaya yang dikeluarkan untuk pemeliharaan mesin dan alat cetak untuk produksi. Pemeliharaan mesin dan alat cetak dilakukan secara rutin agar proses produksi dapat berjalan lancar. Biaya ini dikelompokkan ke dalam biaya semivariabel karena perubahan besar biaya tidak sebanding dengan besarnya volume produksi.

c) Biaya pemeliharaan gedung

Biaya ini termasuk biaya tetap karena jumlah biaya yang dikeluarkan tidak berpengaruh oleh volume produksi yang dihasilkan. Kenaikan biaya dari tahun ke tahun dikarenakan terdapat tambahan bangunan maupun karena adanya kenaikan harga dari bahan untuk pemeliharaan mesin.

d) Biaya penyusutan gedung dan mesin

Biaya ini dikelompokkan ke dalam biaya tetap. Besarnya biaya yang dikeluarkan oleh perusahaan tetap untuk setiap bulan. Metode yang digunakan untuk menilai aktiva perusahaan adalah metode garis lurus yaitu dengan cara membagi besarnya investasi terhadap alat-alat produksi maupun gedung dengan umur ekonomis yang telah ditentukan.

e) Biaya bahan bakar

Biaya bahan bakar merupakan biaya yang dikeluarkan untuk pemenuhan bahan-bahan berupa bensin dan solar. Besarnya biaya berubah-ubah tetapi perubahan itu tidak sebanding dengan perubahan volume produksi maka biaya ini dikelompokkan ke dalam biaya semivariabel.

Untuk lebih jelas di bawah ini disajikan klasifikasi BOP perusahaan tegel Jaya tahun 1997. Dengan data ini dapat dianalisis biaya semivariabel ke dalam biaya tetap dan biaya variabel.

Tabel 5.8a

Klasifikasi BOP Perusahaan Tegel Jaya Tahun 1997

(dalam Rupiah)

No.	Elemen BOP	Sifat Biaya	Jumlah Biaya
1.	Biaya gaji staf	Tetap	3.200.000
2.	Biaya pemeliharaan gedung	Tetap	4.400.000
3.	Biaya penyusutan gedung	Tetap	6.150.000
4.	Biaya pemeliharaan mesin	Semivariabel	245.000
5.	Biaya penyusutan mesin	Tetap	3.625.000
6.	Biaya bahan bakar	Semivariabel	257.700
			17.877.700

4) Biaya Pemasaran

Biaya pemasaran merupakan biaya yang terjadi sejak suatu produk selesai diproses dan disimpan di dalam gudang sampai produk tersebut menjadi uang tunai kembali.

Biaya pemasaran yang ada pada perusahaan Tegel Jaya adalah sebagai berikut:

a) Biaya gaji bagian pemasaran

Biaya ini dikelompokkan ke dalam biaya tetap karena tidak terpengaruh oleh volume kegiatan. Berapapun besarnya kegiatan, besarnya biaya ini tetap untuk setiap bulan.

b) Biaya pemeliharaan kendaraan

Besarnya biaya yang dikeluarkan untuk setiap bulan adalah tetap. Biaya ini berupa pembelian suku cadang kendaraan, minyak pelumas mesin dan biaya reparasi kendaraan yang rutin setiap bulan.

c) Biaya angkut

Biaya angkut adalah biaya yang dikeluarkan sehubungan dengan kegiatan yang mendukung penjualan produk. Besarnya biaya tetap untuk setiap bulan.

d) Biaya advertensi

Biaya advertensi adalah biaya yang dikeluarkan sehubungan dengan kegiatan

pemasaran produk yang dihasilkan. Besarnya biaya tetap untuk setiap bulan, tetapi dikelompokkan ke dalam biaya semivariabel.

e) Biaya pemasaran lain

Biaya pemasaran lain misalnya biaya promosi penjualan merupakan biaya yang dikeluarkan untuk kegiatan promosi penjualan produk perusahaan. Biaya ini besarnya tetap untuk setiap bulan tetapi dikelompokkan ke dalam biaya semivariabel.

Di bawah ini akan disajikan tabel biaya pemasaran yang terjadi selama tahun 1997 adalah sebagai berikut:

Tabel 5.8b

Biaya Pemasaran Tahun 1997

(dalam Rupiah)

No.	Jenis Biaya	Sifat Biaya	Jumlah
1.	Biaya gaji bagian pemasaran	Tetap	2.200.000
2.	Biaya pemeliharaan kendaraan	Tetap	2.125.000
3.	Biaya angkut	Tetap	1.118.480
4.	Biaya advertensi	Tetap	96.660
5.	Biaya pemasaran lain	Tetap	2.412.200
			7.952.340

5) Biaya Administrasi dan Umum

Biaya administrasi dan umum yang ada pada perusahaan tegel Jaya meliputi semua biaya yang berhubungan dengan kegiatan administrasi dan tata usaha yaitu:

a) Biaya gaji bagian administrasi

Biaya ini dikelompokkan ke dalam biaya tetap karena besarnya biaya yang dike-luarkan tidak dipengaruhi oleh perubahan volume kegiatan.

b) Biaya perlengkapan kantor

Biaya perlengkapan kantor adalah biaya yang dikeluarkan untuk membeli peralatan kantor. Biaya ini tetap untuk setiap bulan maka dikelompokkan ke dalam biaya tetap.

c) Biaya listrik

Biaya listrik merupakan biaya yang dikeluarkan untuk membiayai listrik. Biaya tidak dimasukkan ini ke dalam biaya produksi karena di dalam memproduksi tidak menggunakan arus listris. Besarnya biaya ini berubah-ubah dalam setiap bulannya tetapi perubahan biaya tidak sebanding dengan perubahan volume kegiatan. Biaya ini dikelompokkan ke dalam biaya semivariabel.

d) Biaya telepon

Biaya ini besarnya dipengaruhi oleh ke-

giatan yang berhubungan dengan pemasaran terutama dengan agen penjual dan kepada konsumen. Besarnya biaya berubah-ubah tetapi perubahan biaya ini tidak sebanding dengan berubahnya volume kegiatan. Biaya ini dikelompokkan ke dalam biaya administrasi.

Untuk jelasnya di bawah ini disajikan biaya administrasi dan umum yang terjadi pada tahun 1997 adalah sebagai berikut:

Tabel 5.8c

Biaya Administrasi dan Umum Tahun 1997

(dalam Rupiah)

No.	Jenis Biaya	Sifat Biaya	Jumlah
1.	Biaya gaji bagian administrasi	Tetap	2.000.000
2.	Biaya perlengkapan kantor	Tetap	1.525.000
3.	Biaya listrik	Tetap	869.150
4.	Biaya telepon	"Tetap	570.000
			4.964.150

Tabel 5.8d

Klasifikasi Biaya Tetap, Biaya Variabel dan

Biaya Semivariabel Tahun 1997

(dalam Rupiah)

No.	Jenis Biaya	Biaya Variabel	Biaya Tetap	Biaya Semivariabel	Total Biaya
1.	Biaya bahan baku	96.253.725,75			96.253.725,75
2.	Biaya tenaga kerja langsung	6.920.125,05			6.920.125,05
3.	Biaya overhead pabrik		17.375.000	502.700	17.877.700
4.	Biaya pemasaran		5.827.340	2.125.000	7.952.340
5.	Biaya administrasi umum		3.525.000	1.439.150	4.964.150
	Biaya Total	103.173.850,8	26.727.340	4.066.850	133.968.040,8

- b) Pemisahan biaya semivariabel Tahun 1996
 - Pemisahan biaya pemeliharaan mesin dan alat cetak, pemisahan biaya bahan bakar, dan biaya listrik tiap tahun

Bulan	Produksi	У ₁	У2	У3	χ²	xy ₁	xy ₂	xy ₃
1.	1.392	19.750	20.000	68.300	1.937.664	27.492.000	27.840.000	95.073.600
2.	1.392	19.650	20.000	69.200	1.937.664	27.352.800	27.840.000	96.326.400
3.	1.392	19.600	20.000	69.250	1.937.664	27.283.200	27.840.000	96.396.000
4.	1.450	20.500	20.825	71.000	2.102.500	29.725.000	30.196.250	102.950.000
5.	1.392	19.700	20.075	68.400	1.937.664	27.422.400	27.944.400	95.212.800
6.	1.392	19.750	20.125	68.400	1.937.664	27.492.000	28.014.000	95.212.800
7.	1.566	22.000	22.500	77.000	2.452.356	34.452.000	35.235.000	120.582.000
8.	1.392	19.800	20.075	68.500	1.937.664	27.561.600	27.944.400	95.352.000
9.	1.508	21.000	21.600	74.000	2.274.064	31.668.000	32.572.800	111.592.000
10.	1.508	21.100	21.600	74.100	2.274.064	31.818.800	32.572.800	111.742.800
11.	1.508	21.350	21.650	74.250	2.274.064	32.195.800	32.648.200	111.969.000
12.	1.508	21.400	21.700	74.150	2.102.500	32.271.200	32.723.600	11.818.200
	17.400	245.600	250.150	856.550	25.277.096	356.734.800	363.371.450	1.244.227.600

 y_1 adalah biaya pemeliharaan mesin dan alat cetak y_2 adalah biaya bahan bakar y_3 adalah biaya listrik

a) Pemisahan biaya semivariabel y₁

$$y_1 = a + bx$$

$$b = \frac{n \sum xy_1 - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$

$$= \frac{12 (356734800) - (17400) (245600)}{12 (25277096) - (17400)^2}$$

$$= 13,05x$$

$$a = \frac{\sum y - (b) (\sum x)}{n}$$

$$= \frac{245600 - (13,05) (17400)}{12}$$

$$= 1544,17$$

$$y_1 = 1455,17 + 13,05x$$

b) Pemisahan biaya semivariabel y2

$$y_2 = a + bx$$

$$b = \frac{12 (363371450) - (17400) (250150)}{12 (25277096) - (17400)^2}$$

$$= 13,89x$$

$$a = \frac{250150 - (13,89) (17400)}{12}$$

$$= 705,33$$

$$y_2 = 705,33 + 13,89x$$

c) Pemisahan biaya semivariabel y3

$$y_3 = a + bx$$

$$b = \frac{12 (1244227600) - (17400) (856650)}{12 (25277096) - (17400)^2}$$

$$= 47,35x$$

$$a = \frac{856550 - (47,35) (17400)}{12}$$

$$= 2721,67$$

$$y_3 = 2721,67 + 47,35x$$

2) Pemisahan biaya angkut, biaya advertensi dan biaya pemasaran lain.

Penjualan	y ₄	У5	У6	X ²	xy ₄	xy ₅	xy ₆
1.229	81.500	6.480	193.900	1.500.625	99.837.500	7.938.000	237.527.500
1.224	81.760	6.490	194.400	1.498.176	100.000.800	7.943.760	237.945.600
1.230	82.800	6.490	197.100	1.512.900	64.944.000	7.982.700	242.433.000
1.258	83.900	6.670	199.700	1.582.564	105.546.200	8.390.860	251.222.600
1.265	84.600	6.750	201.100	1.600.225	106.892.500	8.538.750	254.391.500
1.285	84.900	6.730	202.100	1.651.225	109.096.500	8.648.050	259.698.500
1.300	86.100	6.840	204.700	1.690.000	111.800.000	8.892.000	266.110.000
1.315	86.600	6.900	206.600	1.729.225	113.879.000	9.073.500	271.679.000
1.265	84.400	6.710	200.100	1.600.225	106.766.000	9.488.150	253.126.500
1.255	84.000	6.640	198.800	1.575.025	105.420.000	9.333.200	249.494.000
1.245	83.000	6.570	196.600	1.550.025	103.335.000	9.179.650	244.767.000
1.250	93.200	6.610	198.000	1.562.500	104.000.000	9.262.500	247.500.000
15.117	976.500	79.880	2.393.100	19.052.715	1.231.517.500	100.671.120	3.015.895.200
	1.229 1.224 1.230 1.258 1.265 1.300 1.315 1.265 1.255 1.245	1.229 81.500 1.224 81.760 1.230 82.800 1.258 83.900 1.265 84.600 1.300 86.100 1.315 86.600 1.265 84.400 1.255 84.000 1.245 83.000 1.250 93.200	1.229 81.500 6.480 1.224 81.760 6.490 1.230 82.800 6.490 1.258 83.900 6.670 1.265 84.600 6.750 1.300 86.100 6.840 1.315 86.600 6.900 1.265 84.400 6.710 1.255 84.000 6.640 1.245 83.000 6.570 1.250 93.200 6.610	1.229 81.500 6.480 193.900 1.224 81.760 6.490 194.400 1.230 82.800 6.490 197.100 1.258 83.900 6.670 199.700 1.265 84.600 6.750 201.100 1.285 84.900 6.730 202.100 1.300 86.100 6.840 204.700 1.315 86.600 6.900 206.600 1.265 84.400 6.710 200.100 1.255 84.000 6.640 198.800 1.245 83.000 6.570 196.600 1.250 93.200 6.610 198.000	1.229 81.500 6.480 193.900 1.500.625 1.224 81.760 6.490 194.400 1.498.176 1.230 82.800 6.490 197.100 1.512.900 1.258 83.900 6.670 199.700 1.582.564 1.265 84.600 6.750 201.100 1.600.225 1.300 86.100 6.840 204.700 1.690.000 1.315 86.600 6.900 206.600 1.729.225 1.265 84.400 6.710 200.100 1.600.225 1.255 84.000 6.640 198.800 1.575.025 1.245 83.000 6.570 196.600 1.550.025 1.250 93.200 6.610 198.000 1.562.500	1.229 81.500 6.480 193.900 1.500.625 99.837.500 1.224 81.760 6.490 194.400 1.498.176 100.000.800 1.230 82.800 6.490 197.100 1.512.900 64.944.000 1.258 83.900 6.670 199.700 1.582.564 105.546.200 1.265 84.600 6.750 201.100 1.600.225 106.892.500 1.285 84.900 6.730 202.100 1.651.225 109.096.500 1.300 86.100 6.840 204.700 1.690.000 111.800.000 1.315 86.600 6.900 206.600 1.729.225 113.879.000 1.265 84.400 6.710 200.100 1.600.225 106.766.000 1.255 84.000 6.640 198.800 1.575.025 105.420.000 1.245 83.000 6.570 196.600 1.550.025 103.335.000 1.250 93.200 6.610 198.000 1.562.500 104.000.000	1.229 81.500 6.480 193.900 1.500.625 99.837.500 7.938.000 1.224 81.760 6.490 194.400 1.498.176 100.000.800 7.943.760 1.230 82.800 6.490 197.100 1.512.900 64.944.000 7.982.700 1.258 83.900 6.670 199.700 1.582.564 105.546.200 8.390.860 1.265 84.600 6.750 201.100 1.600.225 106.892.500 8.538.750 1.285 84.900 6.730 202.100 1.651.225 109.096.500 8.648.050 1.300 86.100 6.840 204.700 1.690.000 111.800.000 8.892.000 1.315 86.600 6.900 206.600 1.729.225 113.879.000 9.073.500 1.265 84.400 6.710 200.100 1.600.225 106.766.000 9.488.150 1.255 84.000 6.640 198.800 1.575.025 105.420.000 9.333.200 1.245 83.000 6.570 196.600 1.550.025 103.335.000 9.179.650 1.25

 y_4 adalah biaya angkut

y₅ adalah biaya advertensi

y₆ adalah biaya pemasaran lain

a) Pemisahan biaya semivariabel (y₄)

$$y_4 = a + bx$$

$$b = \frac{12 (1231517500) - (15117) (976500)}{12 (19052715) - (15117)^2}$$

$$= 0,079x$$

$$a = \frac{976500 - (0,079) (15117)}{12}$$

$$= 81274,24$$

$$y_4 = 81274,24 + 0,079x$$

b) Pemisahan biaya semivariabel y₅

$$y_5 = a + bx$$

$$b = \frac{12 (100671120) - (15117) (79880)}{12 (19052715) - (15117)^2}$$

$$= 0,002x$$

$$a = \frac{79880 - (0,002) (15117)}{12}$$

$$= 6645,23$$

$$y_5 = 6645,23 + 0,002x$$

c) Pemisahan biaya semivariabel y6

$$y_6 = a + bx$$

$$b = \frac{12 (3015895200) - (15117) (2393100)}{12 (19052715) - (15117)^2}$$

$$= 0,069x$$

$$a = \frac{2393100 - (0,069) (15117)}{12}$$

$$= 87,23$$

$$y_6 = 87,23 + 0,069x$$

- C. Pemisahan biaya semivariabel Tahun 1997
 - Pemisahan biaya pemeliharaan mesin dan alat cetak, pemisahan biaya bahan bakar, dan biaya listrik tiap tahun

Bulan	Produksi	у ₁	У2	У3	X ²	xy ₁	ху2	хуз
1.	1.450	20.000	21.350	72.550	2.102.500	29.000.000	30.957.500	105.197.500
2.	1.392	20.150	20.900	70.000	1.937.664	28.048.800	29.092.800	97.440.000
3.	1.450	20.500	21.350	72.960	2.102.500	29.725.000	30.957.500	105.705.000
4.	1.450	20.500	21.550	72.600	2.102.500	29.725.000	31.247.500	105.270.000
5.	1.332	19.475	20.250	69.000	1.779.556	25.979.650	27.013.500	92.046.000
6.	1.450	18.650	21.550	72.650	2.102.500	27.042.500	31.247.500	105.342.500
7.	1.392	20.150	20.900	70.150	1.937.664	28.048.800	29.092.800	97.648.800
8.	1.450	20.800	21.500	72.650	2.102.500	30.160.000	31.175.000	105.342.500
9.	1.508	21.575	22.500	75.000	2.274.064	32.535.100	33.930.000	113.100.000
10.	1.450	20.900	21.400	72.800	2.102.500	30.305.000	31.030.000	105.560.000
11.	1.508	21.750	22.650	75.900	2.274.064	32.799.000	34.156.200	114.457.200
12.	1.450	20.950	21.800	72.950	2.102.500	30.377.500	31.610.000	105.777.500
	17.284	245.400	257.700	869.150	24.920.512	353.746.350	371.510.300	1.252.887.000

 \mathbf{y}_1 adalah biaya pemeliharaan mesin dan alat cetak

y₂ adalah biaya bahan bakar

 y_3 adalah biaya listrik

a) Pemisahan biaya semivariabel y_1

$$y_1 = a + bx$$

$$b = \frac{n \sum xy_1 - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$

$$= \frac{12 (363746350) - (17284) (245400)}{12 (24920512) - (17284)^2}$$

$$= 11,19x$$

$$a = \frac{\sum y - (b) (\sum x)}{(\sum x)^2}$$

$$= \frac{245400 - (11,19) (17284)}{12}$$

$$= 4332,67$$

$$y_1 = 4332,67 + 11,19x$$

b) Pemisahan biaya semivariabel y2

$$y_2 = a + bx$$

$$b = \frac{12 (371510300) - (17284) (257700)}{12 (24920512) - (17284)^2}$$

$$= 13,03x$$

$$a = \frac{257700 - (13,03) (17284)}{12}$$

$$= 2707,45$$

$$y_2 = 2707,45 + 13,03x$$

c) Pemisahan biaya semivariabel y3

$$y_3 = a + bx$$

$$b = \frac{12 (1252887000) - (17284) (869150)}{12 (24920512) - (17284)^2}$$

$$= 39,60x$$

$$a = \frac{869150 - (39,60) (17284)}{12}$$

$$= 15391,97$$

$$y_3 = 15391,97 + 39,6x$$

2) Pemisahan biaya angkut, biaya advertensi dan biaya pemasaran lain.

Bln	Penjualan	У4	У5	У ₆	χ²	xy ₄	xy ₅	xy ₆
1.	1.248	87.500	7.560	188.400	1.550.025	108.937.500	9.412.200	234.558.000
2.	1.265	89.600	7.660	193.000	1.600.225	113.344.000	9.689.900	244.145.000
3.	1.270	89.760	7.760	193.300	1.612.900	113.995.200	9.855.200	245.491.000
4.	1.300	92.100	7.950	198.350	1.690.000	119.730.000	10.335.000	257.855.000
5.	1.309	93.100	8.040	200.300	1.713.481	121.867.900	10.524.360	262.192.700
6.	1.330	94.000	8.140	202.700	1.768.900	125.020.000	10.826.200	269.591.000
7.	1.345	94.250	8.150	205.150	1.809.025	126.766.250	10.961.750	275.926.750
8.	1.369	95.370	8.340	207.500	1.874.161	130.561.530	11.417.460	284.067.500
9.	1.350	95.800	8.280	206.300	1.822.500	129.330.000	11.178.000	278.505.000
10.	1.355	95.900	8.290	206.500	1.836.025	129.944.500	11.232.950	279.807.500
11.	1.344	95.600	8.240	205.100	1.806.336	128.486.400	11.074.560	275.654.400
12.	1.340	95.500	8.250	205.600	1.795.600	127.970.000	11.055.000	275.504.000
	15.822	1.118.480	96.660	2.412.200	20.879.178	1.475.953.280	127.562.580	3.183.297.850

y₄ adalah biaya angkut

y₅ adalah biaya advertensi

y₆ adalah biaya pemasaran lain

a) Pemisahan biaya semivariabel (y_4)

$$y_4 = a + bx$$

$$b = \frac{12 (1475953280) - (15822) (1118480)}{12 (20879178) - (15822)^2}$$

$$= 69,24x$$

$$a = \frac{1118480 - (69,24) (15822)}{12}$$

$$= 1912,92$$

$$y_4 = 1912,92 + 69,24x$$

b) Pemisahan biaya semivariabel y₅

$$y_5 = a + bx$$

$$b = \frac{12 (127562580) - (15822) (96660)}{12 (20879178) - (15822)^2}$$

$$= 5,94x$$

$$a = \frac{96660 - (5,94) (15822)}{12}$$

$$= 234,8$$

$$y_5 = 234,8 + 5,94x$$

c) Pemisahan biaya semivariabel y6

$$y_6 = a + bx$$

$$b = \frac{12 (3183297850) - (15822) (2412200)}{12 (20879178) - (15822)^2}$$

$$= 149,12x$$

$$a = \frac{2412200 - (149,12) (15822)}{12}$$

$$= 4551,90$$

$$y_6 = 4551,90 + 149,12x$$

2. Alokasi Pemisahan Biaya Semivariabel

Biaya semivariabel dialokasikan ke masingmasing jenis produk dengan kriteria sebagai berikut:

Jenis biaya y_1 , y_2 dan y_3 baik dari tahun 1996 sampai dengan tahun 1997 dialokasikan kepada masing-masing jenis tegel atau dasar jumlah produksi dari masing-masing tegel tersebut.

Jenis biaya y_4 , y_5 dan y_6 baik dari tahun 1996

sampai dengan tahun 1997 dialokasikan ke masingmasing jenis tegel atas dasar jumlah penjualan dari masing-masing jenis tegel tersebut.

a) Alokasi biaya variabel dari pemisahan biaya semivariabel tahun 1996

Biaya variabel dari pemisahan biaya semivariabel jenis y_1 , y_2 dan y_3 adalah sebagai berikut: 13,05x + 13,89x + 47,35x = 74,29x

1) Dialokasikan ke jenis tegel abu-abu

$$\frac{5400}{17400} (74,29) = 23,05x_1$$

2) Dialokasikan ke jenis tegel berwarna

$$\frac{4194}{17400} (74,29) = 17,90x_2$$

3) Dialokasikan ke jenis tegel kembang

$$\frac{3000}{17400} (74,29) = 12,80x_3$$

4) Dialokasikan ke jenis tegel teraso

$$\frac{4806}{17400} (74,29) = 20,51x_4$$

Biaya variabel dari pemisahan biaya semivariabel jenis y_4 , y_5 dan y_6 adalah sebagai berikut: 0,079x + 0,002x + 6,069x = 0,15x.

5) Dialokasikan ke jenis tegel abu-abu

$$\frac{4971}{15121} (0,15) = 0,049x_1$$

6) Dialokasikan ke jenis tegel berwarna

$$\frac{3443}{15121} \quad (0,15) = 0,034x_2$$

7) Dialokasikan ke jenis tegel kembang

$$\frac{2384}{15121} (0,15) = 0,023x_3$$

8) Dialokasikan ke jenis tegel teraso

$$\frac{4323}{15121} \quad (0,15) = 0.042x_4$$

Jadi biaya variabel dari pemisahan biaya semivariabel tiap jenis tegel per m² dalam tahun 1996 adalah sebagai berikut:

$$x_1 = 23,05 + 0,049 = 23,099$$

 $x_2 = 17,90 + 0,034 = 17,934$
 $x_3 = 12,80 + 0,023 = 12,823$

$$x_4 = 20,51 + 0,042 = 20,552$$

b) Alokasi biaya variabel dari pemisahan biaya semivariabel tahun 1997

Biaya variabel dari pemisahan biaya semivariabel jenis y_1 , y_2 dan y_3 adalah sebagai berikut: 11,19x + 13,03x + 39,6x = 63,82x

1) Dialokasikan ke jenis tegel abu-abu

$$\frac{5364}{17284} (63,82) = 19,80x_1$$

2) Dialokasikan ke jenis tegel berwarna

$$\frac{4177}{17284} (63,82) = 15,42x_2$$

3) Dialokasikan ke jenis tegel kembang

$$\frac{2971}{17284} (63,82) = 10,97x_3$$

4) Dialokasikan ke jenis tegel teraso

$$\frac{4772}{17284} (63,82) = 17,62x_4$$

Biaya variabel dari pemisahan biaya semivariabel jenis y_4 , y_5 dan y_6 adalah sebagai berikut: 69,24x + 5,94x + 149,12x = 224,3x.

5) Dialokasikan ke jenis tegel abu-abu

$$\frac{5162}{15822} \quad (224,3) = 73,17x_1$$

6) Dialokasikan ke jenis tegel berwarna

7) Dialokasikan ke jenis tegel kembang

$$\frac{2185}{15822} \quad (224,3) = 30,9x_3$$

8) Dialokasikan ke jenis tegel teraso

$$\frac{4521}{----} (224,3) = 64,09x_4$$

$$15822$$

Jadi biaya variabel dari pemisahan biaya semivariabel tiap jenis tegel per m² dalam tahun 1997 adalah sebagai berikut:

$$x_1 = 19,80 + 73,17 = 92,97$$

 $x_2 = 15,42 + 56,05 = 71,47$

$$x_3 = 10,97 + 30,9 = 41,87$$

$$x_4 = 17,62 + 64,09 = 81,71$$

Tabel 5.9a

BOP Tetap dan BOP Variabel Tahun 1997

(dalam Rupiah)

No.	Jenis Biaya	Sifat Biaya	Jumlah Biaya
1.	Biaya pemeliharaan gedung	Tetap	4.400.000
2.	Biaya penyusutan gedung	Tetap	6.150.000
3.	Biaya pemeliharaan mesin	Tetap	51.992,04
4.	Biaya pemeliharaan mesin	Variabel	193.407,96
5.	Biaya penyusutan mesin	Tetap	3.625.000
6.	Biaya gaji staf	Tetap	3.200.000
7.	Biaya bahan bakar	Tetap	32.489,4
8.	Biaya bahan bakar	Variabel	225.210,52
	Jumlah biaya overhead te Jumlah biaya overhead va		17.459.481,16 418.618,48
	Jumlah biaya overhead pa	brik	17.878.099,64

Tabel 5.9b

Biaya Pemasaran Tetap dan Variabel Tahun 1997

(dalam Rupiah)

No.	Jenis Biaya	Sifat Biaya	Jumlah Biaya
1.	Biaya gaji bagian pemasaran	Tetap	2.200.000
2.	Biaya pemeliharaan kendaraan	Tetap	2.125.000
3.	Biaya angkut	Tetap	22.955,04
4.	Biaya angkut	Variabel	1.196.774,6
5.	Biaya advertensi	Tetap	2.817,6
6.	Biaya advertensi	Variabel	102.666,96
7.	Biaya pemasaran lain	Tetap	54.622,8
8.	Biaya pemasaran lain	Variabel	2.577.390,08
	Jumlah biaya pemasaran t Jumlah biaya pemasaran v	_	4.405.395,44 3.876.801,2
	Jumlah biaya pemasaran		8.282.196,64

Tabel 5.9c

Biaya Administrasi dan Umum Tetap dan Variabel Tahun 1997

(dalam Rupiah)

No.	Jenis Biaya	Sifat Biaya	Jumlah Biaya					
1.	Biaya gaji bagian administrasi	Tetap	2.000.000					
2.	Biaya perlengkapan kantor	Tetap	1.525.000					
3.	Biaya listrik	Tetap	184.692					
4.	Biaya listrik	Variabel	684.446,4					
5.	Biaya telepon	Tetap	570.000					
	Jumlah biaya administrasi tetap 4.279.692 Jumlah biaya administrasi variabel 684.446							
	Jumlah biaya administrasi dan umum 4.964.138,4							

Tabel 5.10a

Biaya Bahan Baku dan Penolong per m²

(dalam Rupiah)

Tahun	Abu-abu	ou-abu Berwarna		Teraso
1996	3.387	5.204,75	6.423,75	7.902,75
	4.221,5	5.468,25	6.789	8.406,75

Tabel 5.10b

Biaya Bahan Baku dan Penolong Total

(dalam Rupiah)

Tahun	Abu-abu	Berwarna	Kembang	Teraso
1996	16.836.777 21.791.383	17.919.954,25 21.621.460,5	15.314.220 14.833.965	34.163.588,25 38.006.916,75
Jumlah	73.692.723	78.109.495,83	84.234.539,5	96.253.725,25

Tabel 5.10c

Biaya Tenaga Kerja Langsung Total

(dalam Rupiah)

Tahun	Abu-Abu	Berwarna	Kembang	Teraso
1996	1.739.850	1.549.350	1.788.000	1.621.125
1 9 9 7	1.806.700	1.779.300	1.638.750	1.695.375
Jumlah	5.694.050	5.552.625	6.698.325	6.920.125

Tabel 5.10d

Biaya Variabel Lainnya Per m²

(dalam Rupiah)

Tahun	Abu-Abu	Berwarna	Kembang	Teraso
1 9 9 6 1 9 9 7	23,009 92,97	17,934 71,47	12,823 41,87	20,552 81,71
Jumlah	309,69	305,54	74,408	288,02

Tabel 5.10e
Biaya Variabel Total
(dalam Rupiah)

Tahun	Abu-Abu	Berwarna	Kembang	Teraso
1 9 9 6	3.760,09 4.664,47	5.672,68 5.989,72		8.298,3 8.863,46
Jumlah	21.965,44	23.879,18	24.917,64	27.098,52

Tabel 5.11a

Laba Kontribusi Per m² Tahun 1996

(dalam Rupiah)

Produk	Abu-abu	Berwarna	Kembang	Teraso
Harga jual per m² Biaya variabel			10.100 7.186,57	12.500
Contribution Margin	4.989,93	3.727,32	2.913,42	4.201,7
Contribution Margin Ratio	42,97%	60,34%	71,15%	66,38%

Tabel 5.11b

Laba Kontribusi Per m² Tahun 1997

(dalam Rupiah)

Produk	Abu-abu	Berwarna	Kembang	Teraso
Harga jual per m² Biaya variabel	9.700 4.664,47	10.000 5.989,72	10.500 7.580,87	13.350 8.863,46
Contribution Margin	5.035,53	4.010,28	2.919,13	4.486,54
Contribution Margin Ratio	48,08%	59,89%	72,19%	66,39%

3. Menentukan Komposisi Produk Optimal Dari Tahun 1996-1997

Untuk menentukan komposisi produk optimal adalah dengan menggunakan komputer program Storm. Data yang diperoleh dari hasil temuan lapangan sebelum dimasukkan dalam Storm terlebih dahulu disusun dalam formulasi linear programming sehingga data tersebut dapat diolah oleh program.

Data yang diperoleh dari temuan lapangan harus memenuhi asumsi-asumsi linear programming. Asumsi-asumsi linear programming itu adalah:

a. Linearitas

Fungsi tujuan maupun fungsi kendala harus dapat dibuat dalam satu set fungsi linear. Asumsi ini menyatahkan bahwa perubahan nilai fungsi tujuan (Z) dan penggunaan sumber daya sebanding dengan perubahan kegiatan.

Bila fungsi tujuan (Z) dan penggunaan sumber daya perubahannya tidak sebanding dengan kegiatan maka hal ini tidak dapat diformulasikan keadaan linear programming.

b. Desibility

Asumsi ini menyatakan bahwa keluaran (output) yang dihasilkan oleh setiap kegiatan dan nilai fungsi tujuan (Z) yang dihasilkan dapat berupa bilangan pecahan.

Berikut ini langkah-langkah untuk menyusun formulasi linear programming:

- a. Menentukan biaya variabel yang terjadi di perusahaan Tegel Jaya
 - 1) Biaya bahan baku dan penolong Biaya bahan baku dan penolong untuk menghasilkan tegel per m² dapat dilihat pada Tabel 5.10a, halaman 85.
 - 2) Biaya tenaga kerja langsung

 Berdasarkan hasil temuan lapangan maka
 biaya tetap kerja langsung untuk menghasilkan tegel per m² adalah seperti terlihat
 pada Tabel 5.10c, halaman 86.
 - Biaya Variabel lainnya diperoleh dari pemisahan biaya semivariabel yang terdapat dalam Tabel 5.10d. halaman 86.

 Biaya variabel total per m² diperoleh dari penjualan biaya bahan baku dan penolong, biaya tenaga kerja langsung dan biaya variabel dari perusahaan biaya semivariabel.

 Biaya variabel total disajikan dalam Tabel 5.10e, halaman 87 yang terjadi selama tahun
- b. Menentukan laba kontribusi per m² pada masingmasing jenis tegel

1996-1997.

Laba kontribusi per m^2 diperoleh dari pengurangan harga jual per m^2 dengan biaya variabel per m^2 . Laba kontribusi dari masing-

masing jenis tegel yang terjadi selama tahun 1996-1997 dapat dilihat dalam Tabel 5.11a - 5.11b, halaman 87.

Laba kontribusi yang hanya laba kontribusi pada tahun 1996 dan tahun 1997 yang merupakan fungsi tujuan dari linear programming.
Jadi fungsi tujuan linear programming adalah
sebagai berikut:

Tahun 1996

 $Z=4.989,93 X_1+3.727,32 X_2+2.913,43 X_3+4.201,7 X_4$ Tahun 1997

 $Z=5.035,53 X_1+4.010,28 X_2+2.919,13 X_3+4.486,54 X_4$ Keterangan:

X₁ adalah tegel abu-abu

X₂ adalah tegel berwarna

X3 adalah tegel kembang

 ${\rm X_4}$ adalah tegel teraso

c. Menentukan kendala atau fungsi pembatas

Kapasitas mesin cetak/press

Perusahaan memiliki 6 buah mesin cetak tegel dengan kapasitas masing-masing 18 m² setiap hari, dalam satu tahun kapasitas masing-masing 5400 m² = (300×18) dengan demikian kapasitas total dari mesin cetak tegel adalah 32.400 = (6×5.400) .

Dari data tersebut dapat dirumuskan fungsi pembatas dari mesin cetak tegel adalah sebagai berikut:

$$1X_1 + 1X_2 + 1X_3 + 1X_4 \le 32.400$$

2) Peranginan Pertama atau Peranginan Basah

Perusahaan memiliki 10 buah rak peranginan basah. Kapasitas dari masing-masing rak adalah 25 m², dengan demikian daya tampung totalnya adalah 250 m² = (10×25) .

Waktu yang dibutuhkan untuk peranginan basah adalah satu hari dengan demikian dalam satu tahun kapasitasnya adalah 75.000 m² = (250 x 300). Dari data tersebut dapat dirumuskan fungsi pembatas dari rak peranginan basah adalah sebagai berikut:

$$1X_1 + 1X_2 + 1X_3 + 1X_4 \le 75.000$$

3) Bak Perendam

Perusahaan memiliki 13 buah bak perendam, dengan kapasitas masing-masing 100 m² sehingga daya tampung seluruhnya 1300 m² = (13×100) , sedangkan waktu yang dibutuhkan untuk perendaman adalah 3 hari.

Dengan demikian dalam satu tahun kapasitasnya adalah 130.000 = ((300:3)|300).

Jadi fungsi pembatas dari bak perendam dapat dirumuskan sebagai berikut:

$$1X_1 + 1X_2 + 1X_3 + 1X_4 \le 130.000$$

4) Rak Peranginan Kedua atau Peranginan Kering

Perusahaan memiliki 15 buah rak peranginan kering dengan kapasitas masing-masing 30 m², daya tampung seluruhnya 450 m² = (15x30). Waktu yang digunakan untuk peranginan kedua adalah 4 hari. Dalam waktu tahun kapasitasnya total dari peranginan kedua adalah: 33.750 = ((300:4)450).

Berdasarkan data di atas maka fungsi pembatas dari rak peranginan dua adalah dapat dirumuskan sebagai berikut:

$$1X_1 + 1X_2 + 1X_3 + 1X_4 \le 33.750$$

5) Mesin Slep

Perusahaan memiliki 1 buah mesin slep dengan kapasitas 23 m² per hari. Dalam satu tahun kapasitasnya adalah 6.900 m² (23 x 300).

Mesin slep digunakan untuk menslepo tegel teraso agar kelihatan batu terasonya, dengan demikian kendala mesin slep hanya berlaku untuk tegel teraso.

Bentuk fungsi pembatas dari mesin slep adalah sebagai berikut: $X_4 \le 6.900$

Fungsi pembatas tersebut di atas dari tahun 1996 sampai tahun 1997 belum mengalami perubahan sehingga fungsi pembatas tersebut dari tahun 1996 sampai tahun 1997 sama.

6) Permintaan Pasar

Permintaan pasar digunakan untuk menentukan batasan permintaan atau daya serap pasar terhadap produk yang dihasilkan perusahaan. Cara menentukan permintaan pasar adalah dengan membuat ramalan penjualan. Ramalan penjualan dibuat dengan menggunakan komputer program Storm. Jadi ramalan penjualan digunakan sebagai batasan permintaan.

Di bawah ini disajikan tabel permintaan pasar adalah sebagai berikut:

Tabel 5.13
Permintaan Pasar per m²

Jenis Tegel	Tahun 1996	Tahun 1997	
Abu-abu	5.249	5.644	
Berwarna	3.814	4.078	
Kembang	2.411	2.604	
Teraso	4.312	4.415	

Secara keseluruhan fungsi tujuan dan fungsi pembatas dapat disusun sebagai berikut:

$$Z=4.989,93 X_1+3.727,32 X_2+2.913,43 X_3+4.201,7 X_4$$

Kendala: 1)
$$1X_1 + 1X_2 + 1X_3 + 1X_4 \le 32.400$$

2)
$$1X_1 + 1X_2 + 1X_3 + 1X_4 \le 75.000$$

3)
$$1X_1 + 1X_2 + 1X_3 + 1X_4 \le 130.000$$

4)
$$1X_1 + 1X_2 + 1X_3 + 1X_4 <== 33.750$$

5)
$$X_4 \le 6.900$$

6)
$$X_1 <== 5.249$$

7)
$$X_2 \iff 3.814$$

8)
$$X_3 \le 2.411$$

Tahun 1997

 $Z=5.035,53 X_1+4.010,28 X_2+2.919,13 X_3+4.486,54 X_4$

Kendala: 1)
$$1X_1 + 1X_2 + 1X_3 + 1X_4 \le 32.400$$

2)
$$1X_1 + 1X_2 + 1X_3 + 1X_4 \le 75.000$$

3)
$$1X_1 + 1X_2 + 1X_3 + 1X_4 \le 130.000$$

4)
$$1X_1 + 1X_2 + 1X_3 + 1X_4 \le 33.750$$

5)
$$X_4 \le 6.900$$

6)
$$X_1 \le 5.644$$

7)
$$X_2 <== 4.078$$

8)
$$X_3 \le 2.604$$

9)
$$X_4 <== 4.415$$

Fungsi tujuan dan fungsi pembatas tersebut merupakan data untuk diolah dengan komputer program Storm dengan metode Linear Programming. Tujuan pengolahan tersebut adalah untuk mengetahui komposisi produk optimal.

Tabel 5.14a

Perhitungan Laba Kontribusi Sesungguhnya Tahun 1996

(dalam Rupiah)

Jenis Tegel	Laba Kontribusi	Penjualan Aktual	Hasil
Abu-abu	4.989,93	4.971	24.804.942,03
Berwarna	3.727,32	3.443	12.833.162,76
Kembang	2.913,43	2.384	6.945.617,12
Teraso	4.201,7	4.323	18.163.949,1
	Jumlah		62.747.671,01

Tabel 5.14b

Perhitungan Laba Kontribusi Sesungguhnya Tahun 1997

(dalam Rupiah)

Jenis Tegel	Laba Kontribusi	Penjualan Aktual	Hasil
Abu-abu	5.035,53	5.162	25.993.405,86
Berwarna	4.010,28	3.954	15.856.647,12
Kembang	2.919,13	2.185	6.378.299,05
Teraso	4.486,54	4.521	20.283.647,34
	Jumlah		68.511.999,37

Tabel 5.14c
Komposisi Produk Optimal per m²

Jenis Tegel	Tahun 1996	Tahun 1997
Abu-abu	5.249	5.644
Berwarna	3.814	4.078
Kembang	2.411	2.604
Teraso	4.312	4.415
Laba Kontribusi	65.550.200	72.183.940

4. Menghitung selisih rupiah laba kontribusi sesungguhnya dengan laba kontribusi pada komposisi produk optimal dari tahun 1996-1997.

Untuk menghitung selisih tersebut, langkahnya adalah membandingkan antara laba kontribusi

pada komposisi sesungguhnya dengan laba kontribusi pada komposisi produk optimal. Laba kontribusi pada komposisi sesungguhnya terdapat pada tabel.

Tabel 5.14d
Perbedaan Laba Kontribusi
(dalam Rupiah)

Tahun	Laba Kontribusi sesungguhnya	Laba Kontribusi Optimal	Selisih
1996	62.747.671,01 68.511.999,37	65.550.200 72.183.940	2.802.528,99 3.671.940,63
Jml	121.324.871	127.244.200	6.474.469,62

Berdasar Tabel 5.14d di atas laba kontribusi pada komposisi penjualan produk optimal tahun 1996 dan tahun 1997 lebih besar dibandingkan dengan laba kontribusi pada penjualan sesungguhnya. Akibatnya terjadi selisih yang menguntungkan apabila perusahaan menjual produksi dengan komposisi optimal. Selisih total tersebut adalah 6.474.469,62.

5. Optimalisasi Komposisi Produk

1) Tahun 1996

Dari hasil pengolahan komputer dengan program Storm seperti yang tercantum pada bagian lampiran, terlihat bahwa komposisi produk optimal pada tahun 1996 tercapai pada

jumlah produksi sebagai berikut: Tegel abu-abu 5249 m², tegel berwarna 3814 m², tegel kembang 2411 m², dan tegel teraso 4312 m². Laba kontribusi sebesar Rp 65.550.200.

Berdasarkan pengolahan data komputer dengan Storm tersebut terlihat pula adanya slack. Untuk slack mesin cetak nilainya 16.614 unit, untuk rak peranginan basah 59.214 unit, untuk bak perendaman 144.214 unit, untuk rak peranginan kering 17.964 unit dan mesin slep 2.588 unit. Hal ini menunjukkan bahwa kapasitas dari peralatan tersebut masih menganggur. Besarnya kapasitas yang menganggur adalah sebesar slack dari masing-masing peralatan tersebut. Sedangkan slack dari permintaan X_1 , X_2 , X_3 dan X_4 nilainya maksimal, seluruh permintaan pasar sudah terpenuhi.

Komposisi produk optimal tersebut di atas dapat dikatakan sama dengan produk yang dijual. Hal ini terjadi karena slack variables dari seluruh permintaan pasar bernilai nol. Dengan demikian dapat dikatakan bahwa keterbatasan dari permintaan pasar dari masingmasing produk tersebut merupakan kendala utama dalam mencapai laba yang maksimal.

Berdasarkan pengolahan data dengan Storm terlihat pula adanya shadow price. Shadow

price merupakan harga bayangan yang menunjukkan bahwa apabila kapasitas dari kendala yang mengandung shadow price tambah 1 unit akan bertambah besarnya laba kontribusi sebesar shadow price tersebut. Shadow price ada karena slack bernilai nol. Besarnya nilai shadow price dari permintaan X_1 adalah Rp 4.989,94, besarnya nilai shadow price dari permintaan X_2 Rp 3.727,32, besarnya nilai shadow price dari permintaan X_3 Rp 2.913,43, dan besarnya nilai shadow price dari permintaan X_4 Rp 4.201,70.

Analisis sensitivitas dari hasil pengolahan dengan Storm menunjukkan bahwa komposisi produk tetap optimal apabila terjadi
perubahan baik fungsi tujuan maupun batas
kanan dari coustraint produk. Perubahan tersebut dapat berupa penambahan atau pengurangan
dari laba kontribusi dan kapasitasnya.

Besarnya perubahan agar komposisi produk tetap optimal yaitu tidak boleh kurang dari nilai allowable minimum (batas minimum) dan tidak boleh melebihi allowable maximum (batasan).

2) Tahun 1997

Dari hasil pengolahan komputer dengan program Storm seperti yang tercantum pada bagian lampiran, terlihat bahwa komposisi

produk optimal pada tahun 1997 tercapai pada jumlah produksi sebagai berikut: Tegel abu-abu 5644 m², tegel berwarna 4078 m², tegel kembang 2604 m², dan tegel teraso 4415 m². Laba kontribusi sebesar Rp 72.183.940.

Berdasarkan pengolahan data komputer dengan Storm tersebut terlihat pula adanya slack. Untuk slack mesin cetak nilainya 15.659 unit, untuk rak peranginan basar 58.259 unit, untuk bak perendaman nilainya 113.259 unit, untuk rak peranginan kering nilainya 17.009 unit dan mesin slep nilainya 2.485 unit. Hal ini menunjukkan bahwa kapasitas dari peralatan tersebut masih menganggur. Besarnya kapasitas yang menganggur adalah sebesar slack dari masing-masing peralatan tersebut. Sedangkan slack dari permintaan X_1 , X_2 , X_3 dan X_4 nilainya nol. Hal ini menunjukkan bahwa permintaan pasar sudah maksimal, seluruh permintaan pasar sudah terpenuhi.

Komposisi produk optimal tersebut di atas dapat dikatakan sama dengan produk yang dijual. Hal ini terjadi karena slack variables dari seluruh permintaan pasar bernilai nol. Dengan demikian dapat dikatakan bahwa keterbatasan dari permintaan pasar dari masing-

masing produk tersebut merupakan kendala utama dalam mencapai laba yang maksimal.

Berdasarkan pengolahan data dengan Storm terlihat pula adanya shadow price. Shadow price merupakan harga bayangan yang menunjuk-kan bahwa apabila kapasitas dari kendala yang mengandung shadow price tambah 1 unit akan bertambah besarnya laba kontribusi sebesar shadow price tersebut.

Shadow price ada karena slack bernilai nol. Besarnya nilai shadow price dari permintaan X_1 adalah Rp 5.035,53, besarnya nilai shadow price dari permintaan X_2 adalah Rp 4.010,28, besarnya nilai shadow price dari permintaan X_3 adalah Rp 2.919,13, dan besarnya nilai shadow price dari permintaan X_4 adalah Rp 4.486,54.

Analisis sensitivitas dari hasil pengolahan dengan Storm menunjukkan bahwa komposisi produk tetap optimal apabila terjadi perubahan baik fungsi tujuan maupun batas kanan dari coustraint produk. Perubahan tersebut dapat berupa penambahan atau pengurangan dari laba kontribusi dan kapasitasnya.

Besarnya perubahan agar komposisi produk tetap optimal yaitu tidak boleh kurang dari nilai allowable minimum (batas minimum) dan tidak boleh melebihi allowable maximum (batas atas).

Untuk mengetahui apakah komposisi produk sesungguhnya yang dilakukan oleh perusahaan sudah optimal langkahnya adalah dengan membandingkan antara produksi sesungguhnya dengan batas atas dan batas bawah.

Tabel 5.15a

Penentuan Produk Optimal Produksi Sesungguhnya Tahun 1996

Jenis Tegel	Produksi sesungguhnya	Produksi Optimal	Batas Maksimum
Abu-abu	5.400	5.249	21.863
Berwarna	4.192	3.814	20.428
Kembang Teraso	3.000 4.806	2.411 4.312	19.025
leraso	4.800	4.312	0.900

Tabel 5.15b

Penentuan Produk Optimal Produksi Sesungguhnya Tahun 1997

Jenis Tegel	Produksi sesungguhnya	Produksi Optimal	Batas Maksimum
Abu-abu	5.364	5.644	21.863
Berwarna	4.177	4.078	20.428
Kembang	2.971	2.604	19.025
Teraso	4.772	4.415	6.900

Berdasarkan tabel di atas (Tabel 5.15a dan Tabel 5.15b) produksi sesungguhnya masih optimal, sebab produksi sesungguhnya tersebut

nilainya masih berada diantara minimum dengan batas maksimum.

Produksi sesungguhnya tahun 1997 untuk jenis tegel abu-abu tidak optimal. Hal ini terjadi karena produksi sesungguhnya jenis tegel abu-abu tahun 1997 berada di bawah batas minimum.

3) Selisih rupiah antara laba kontribusi sesungguhnya dengan laba kontribusi pada komposisi produk optimal

Selisih rupiah laba kontribusi dihitung dengan membandingkan antara penjualan pada komposisi produk optimal dengan penjualan sesungguhnya dikalikan dengan laba kontribusi dari masing-masing jenis produk tersebut.

Di bawah ini adalah perincian selisih rupiah dari penjualan pada komposisi produk optimal dengan penjualan sesungguhnya tahun 1996.

Selisih tahun 1996

Tegel abu-abu 5.249-4.971=278 (4.989,94) = Rp 1.387.203,32

Tegel berwarna 3.814-4.443=371 (3.727,32) = Rp 1.382.835,72

Tegel kembang 2.411-2.384= 27 (2.913,43) = Rp 78.662,61

Tegel teraso 4.312-4.323=-11 (4.201,7) = Rp 46.218,7

Rp 2.802.482,95

Berdasarkan perhitungan di atas selisih antara laba kontribusi sesungguhnya tahun 1996

dengan laba kontribusi pada komposisi produk optimal 1996 adalah sebesar Rp 2.802.482,95. Selisih tersebut adalah menguntungkan apabila perusahaan menjual produk pada komposisi produk optimal. Hal ini disebabkan oleh jumlah penjualan per m² pada komposisi produk optimal lebih tinggi bila dibandingkan dengan penjualan pada komposisi yang sesungguhnya.

Selisih yang menguntungkan tersebut disebabkan oleh penjualan tegel abu-abu sesungguhnya sebesar 278 m², penjualan tegel berwarna sesungguhnya sebesar 371 m², penjualan pada komposisi produk optimal tegel kembang di atas penjualan tegel kembang sesungguhnya 27 m², dan penjualan pada komposisi produk optimal tegel teraso di bawah penjualan tegel teraso sesungguhnya sebesar 11 m².

Di bawah ini adalah perincian selisih rupiah dari penjualan pada komposisi produk optimal dengan penjualan sesungguhnya tahun 1997.

Selisih tahun 1997

Tegel abu-abu 5644-5162 = 482 (5.035,53) = Rp 2.427.125,46

Tegel berwarna 4.078-3954 = 124 (4.010,28) = Rp 497.274,72

Tegel kembang 2.604-2.185 = 419 (2.919,13) = Rp 1.223.115,47

Tegel teraso 4.515-4.521 = -106(4.486,54) = Rp -475.573,24

Rp 3.671.942,41

Berdasarkan perhitungan di atas selisih antara laba kontribusi sesungguhnya tahun 1997 dengan laba kontribusi pada komposisi produk optimal 1997 adalah sebesar Rp 3.671.942,41. Selisih tersebut adalah menguntungkan apabila menjual produk pada perusahaan komposisi produk optimal. Hal ini disebabkan oleh jumlah penjualan per m² pada komposisi produk optimal lebih tinggi bila dibandingkan dengan penjualan pada komposisi yang sesungguhnya.

Selisih yang menguntungkan tersebut disebabkan oleh penjualan tegel abu-abu sesungguhnya sebesar 482 m², penjualan pada komposisi optimal tegel berwarna di produk penjualan tegel berwarna sesungguhnya sebesar 124 m², dan penjualan pada komposisi produk optimal tegel kembang diatas penjualan tegel kembang sesungguhnya sebesar 419 penjual pada komposisi produk optimal tegel teraso dibawah penjualan tegel traso sesungguhnya sebesar 106 m2.

BAB VI

KESIMPULAN DAN SARAN

A. Kesimpulan

Berdasarkan analisa dan pembahasan dari data yang diperolah dari temuan lapangan di perusahaan Tegel Jaya Surakarta, maka dapat disimpulkan sebagai berikut:

 Pengolahan data dengan storm bertujuan untuk menentukan komposisi produk yang optimal yang dihitung dengan linear programming.

Komposisi produk optimal untuk tiap jenis tegel pada tahun 1996 adalah: tegel abu-abu 5.249 m², tegel berwarna 3.814 m², tegel kembang 2.411 m² dan tegel teraso 4.312 m² dengan laba kontribusi Rp. 65.550.200.

Komposisi produk optimal untuk tiap jenis tegel pada tahun 1997 adalah tegel abu-abu 5.644 m², tegel berwarna 4.078 m², tegel kembang 2.605 m², dan tegel teraso 4.415 m² dengan laba kontribusi 72.183.940.

- 2. Laba kontribusi pada penjualan sesungguhnya dengan laba kontribusi pada penjualan produk optimal terdapat selisih:
 - a. Tahun 1996

Selisih laba kontribusi untuk tahun 1996 adalah Rp. 2.802.482,95. Selisih tersebut merupakan selisih yang menguntungkan apabila perusahaan menjual produk pada komposisi produk optimal. Hal

ini terjadi jumlah penjualan sesunggunya lebih rendah dibandingkan dengan penjualan pada komposisi produk optimal.

b. Tahun 1997

Selisih laba kontribusi untuk tahun 1997 adalah Rp. 3.671.942,41. Selisih tersebut merupakan selisih yang menguntungkan apabila perusahaan menjual produk pada komposisi produk optimal. Hal ini terjadi karena jumlah penjual sesungguhnya lebih rendah dibandingkan dengan penjualan pada komposisi produk optimal.

B. Keterbatasan

Di dalam penelitian ini, kami yang mengasumsikan bahwa harga jual, biaya variabel dan kapasitas produksi tidak mengalami perubahan. Asumsi-asumsi tersebut tentunya secara mutlak tidak dapat dipenuhi. Sehingga apabila terjadi perubahan mengenai harga jual, biaya variabel dan kapasitas produksi maka fungsi tujuan programming harus dirumuskan kembali.

Dengan demikian adanya perubahan mengenai harga jual, biaya variabel dan kapasitas produksi akan mempengaruhi hasil dari penelitian yang dilakukan pada perusahaan yang bersangkutan.

C. Saran

Berdasarkan analisis dan pembahasan dari temuan lapang di Perusahaan Tegel Jaya Surakarta, maka kami memberikan saran-saran sebagai berikut:

- 1. Sebaiknya perusahaan memproduksi produk pada komposisi produksi yang optimal dengan alasan bahwa laba kontribusi pada komposisi produk optimal lebih tinggi bila dibandingkan dengan laba kontribusi pada komposisi produk sesungguhnya.
- 2. Laba kontribusi tidak akan meningkat apabila perusahaan tidak dapat memperluas pemasaran. Hal ini terjadi karena kendala volume dalam komposisi produk optimal adalah permintaan pasar. Oleh karena itu perusahaan sebaiknya memperluas pemasaran agar laba yang menjadi tujuan utama perusahaan dapat tercapai.

DAFTAR PUSTAKA

- Adler Haymans Manurung, (1991), Pengambilan Keputusan Pendekatan Kuantitatif, PT. Rineka Cipta, Jakarta.
- Adolf Matz dan Amilton Usry, (1990), Akuntansi Biaya Perencanaan dan Pengendalian, Jilid III, Edisi 3, Erlangga, Jakarta.
- Agus Ahyari, (1983), Manajemen Produksi, Perencanaan Sistem Produksi, BPFE UGM, Yogyakarta.
- Hamilton Emmons, A Date Flowers, Candraslukhar, M. Khott, Kamlesh Mathur, (1989), STORM Quantitative Modeling for Decision Support, Holden Day Inc., Oackland, Ohio, Canada.
- Mulyadi, (1992), Akuntansi Biaya I, STIE-YKPN, Yogyakarta.
- ———— (1984), Akuntansi Manajemen: Konsep Manfaat dan Rekayasa, BPFE STIE-YKPN, Yogyakarta.
- Pangestu Hadi, (1984), Forecasting: Konsep dan Aplikasi, BPFE-UGM, Yogyakarta.
- Siswanto (1987), Pemrograman Linear Dasar, Sisi Kuantitatif dari Manajemen, UAJY, Jakarta.
- Slamet Sugiri, (1994), Akuntansi Manajemen, UPP AMP YKPN, Yogyakarta.
- Subagyo, Pangestu, dkk., (1990), Dasar-dasar Operation Research, BPFE, Yogyakarta.
- Supriyono, R.A., (1987), Akuntansi Manajemen, Konsep Dasar Akuntansi Manajemen dan Proses Perencanaan, Edisi I, BPFE-UGM, Yogyakarta.
- Sutrisno Hadi (1977), Statistik Jilid 2, Fakultas Psikologi UGM, Yogyakarta.
- Supranto, Johanes, (1989), Riset Operasi Untuk Pengambilan Keputusan, UI, Jakarta.
 - (1984), Metode Peramalan Kuantitatif Untuk Perencanaan, Edisi 2, Gramedia, Jakarta.
- Yulian Yamit, (1993), Manajemen Kuantitatif Untuk Bisnis (Operation Research), BPFE, UII.

LAMPIRAN

STORM DATA SET LISTING LINEAR & INTEGER PROGRAMMING DATA SET

Problem Description Parameters

Number of variables : 9

Monter of constraints : 9

Starting soution gives : MO

Object two laps of DARBOARDS and HAR

STORM DATA SET LISTING DETAILED PROBLEM DATA LISTING FOR

KOMPOSISI ROW LABEL	OPTIMAL ABU-ABU	PRODUKSI THN. BERWARNA	1996 TEGEL KEMBANG	JAYA SURAKAR TERASO CON	
11777 (3.18-6	4969,93	3722.34	2913.42	420 i 7	$\lambda \times \lambda \times$
MSN WETAK	1	1	5. 7. B	i	1. iii
FAR I	i "		1 ,	# .5 x	
1374K		4 .5. u	1		Çiv
RAK 2	i	1 1	1,		4, 10
Mak W.Er	() "	C. L.	O.	1	Ę. ##
PERMITTE A	§	ν, Σ ,,	W.	O.	4, 4
PERMININ X2	Ο.,	I A m	C.,	(") "	×
PERMATA XX	(),	(1)	1	1.1.	Çalı
PERMAIN X4	O.	0	0.	ļ	< =
VAHOL TYCH	119199	Phy8	F1786	147369	AZAZ
LOWR GOUND		**		.4	XXXX
UP: No. (1.17) (1114))	,	L.			$\lambda \times \times X$
THE SULM	0.,	() "	(),	Đ.	XXXX

STORM DATA SET LISTING DETAILED PROBLEM DATA LISTING FOR KOMPOSISI OPTIMAL PRODUKSI THN.1996 TEGEL JAYA SURAKARTA ROW LABEL R H S RANGE

raka (njihih	$X \times X \times X$	XXXX
Mindy the CAR.	36,46ac	P
FORK J	75(0.)().	
. 164 B	J. Advante.	
RAK k	33750.	
MAN ALER	64700	
PERMINEN XI	5249.	
PERMITTE XZ	38145	
FERMININ KS	24 ()	
FERMINE XA	4.5157.	ı
VARSE TYPE	$X \setminus X \setminus X$	$x \times \lambda \lambda$
LOWE SITEMO	4 X X X	$\lambda + \lambda \times$
UPCR DUNING	$\chi \chi \chi \chi \chi$	4 % 4 X
(N) I HILL		
The state of the s	the state of the s	

OBLIMUT SOFITION - SOMMUNES LEGET TAYA SOFFES) KOMBOSISI OBLIMUT BEODOKSI LHN'TAAR LEGET TAYA SOFFES)

 COURTS
 APPENDIX
 APPENDIX
 APPENDIX
 APPENDIX

 CONTRACT
 CONTRACT
 CONTRACT
 APPENDIX
 APPENDIX

Objective Function Value = 65550200

Variable Value Cost Report OPTIMAL SOLUTION - DETAILED REPORT VALUE OPTIMAL PRODUKSI THN.1996 TEGEL JAYA SURAKARTA

4 4 4 - A - A - A - A - A - A - A - A -	648.11161	Angers".	· · · · · · () " ()	PARIMEN AS	<i>:</i> 1
2000/00/2004	Carlott 1777 All Color	11 14000 1 1	gamp a	27 MINHAM 51	. :
Committee of the commit	1909-81-626-8	$[H(X^{n}(Y^{n}))]$	0000110	T.Y. GLODINGS.	111
F - 7 - 5 - 5	CARNERS FAR	4.0.000	0000017802	-04119 (E.A) :	Α.
1 (3.59)	0040010	0000000	000011747.1	K ADA	\$ 2
May be only	titja er og r	SHOWN FOR	000001 D (25 (1	44914	2
, 11 mm (+p)	4.5[1/10.77]	11 11 11 11 11 11	Q((((() *) *) * / ()	Y 28934	4.5
17 4177	A Company of the Company	()(*()() * ()	00000103991	BULLED NEW	i,
				esidainaV Ap	PIS
71(0.747)	(Mercelly)	0007.2027	000012TSD	USWABI	1/
7: 5: 5:	74747 (C) T()	0081/18/58	()	adModifical	
14 \$ ED 81 \$1	4000°C	002217227	(90)0(11) ((9)	Whitehdala	
07307		0017. " 684b	$(\mathcal{M}(\mathcal{M}(\mathcal{M})) \cap \mathcal{M}(\mathcal{M}(\mathcal{M}))$	(1947 -: WIK)	:

A CONTRACTOR OF THE STATE OF TH

Obsocked = autsV noithnn avirable

TAX Northerfold 1995

4 - 1 "Mg " (1

Constraint Type RHS SINGLED REPORT OPTIMAL SOLUTION - DETAILED REPORT KOMPOSISI OPTIMAL PRODUKSI THU.1996 TEGEL JAYA SURAKARTA

	Contract and a second	- 51/400 / 31/20	.:	Proceedings of the second of t	
	14(44)40 C3	Out of the best	3-	5 % 3414 (444) 334	
	Q(3(2)) * (4	Section 1994 Average		the first terms	
entropy of the first than	productivity)	Color of the Color of the	72" (A	MARKET AND AND	
. 100007113	$(N^{\prime}(Y^{\prime}(Y^{\prime}),Y^{\prime}(Y^{\prime}),Y^{\prime}(Y^{\prime}))) = (N^{\prime}(Y^{\prime}(Y^{\prime}),Y^{\prime}))$	$C_{i}^{*}(Q_{i}) \cap C_{i}^{*}(Q_{i}) = C_{i}^{*}(Q_{i}^{*}(Q_{i})) \cap C_{i}^{*}(Q_{i}^{*}(Q_{i}))$	· · ·	. 111	
1736 1 174	1700001403677	19 March 1991			4.5
Angle enve	1997 OF \$1,749	A Charles A Charles		14 \$ 1 T (\$1
The Transition		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	'-	50 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1	2
And the second	* :	to the first of the second		MALEST MEST	:

00202022 = 9016V notionn 9vitosid0

KOMPOSISI OPTIMAL PRODUKSI THU.1996 TEGEL JAYA SURAKARTA TTERATION O PHASE 2 - SUMMARY REPORT (NONZERO VARIABLES)

7.79(5) 1 1	0000077585	ta N.I.Nwade	V. (.
00000	000013772	SIX NUMBERS	2.5
$I(M[M]) \cap I(M[M])$	000000000000000000000000000000000000000	ZX Nilmahad	[]
1) (1) (1) (1)	0000°Z425	ry Mandaelad	()]
AND CHARLES	()(Y(XX*())/49	HTTM: NAM	ź.
(1()()(: ° ()	(1000 * 019 / \$18)	Z 31474	13
$\mathcal{J}(\mathcal{H}(\mathcal{H}(\mathcal{H})))$	GC 90 T 100051	MUA	
(((A(A(A(A(A(A(A(A(A(A(A(A(A(A(A(A(A(A	000010005/	I MAM	i.y
()(b)); *();	();)()() ((d))(/<\$	AUTHOR NEW	٠.
		saldaineV Abs	FIS

0 = aulsV nottonV avitosidO

Asriable Coeff. Minimum Maximum Current Allowable Allowa

Aqauq (U)	000000	000411023	1153945-11	ţy.
15. \$ 3. 1 (C) \$ 3.1 (C)	0.0000	(2005) 医乳毛病的	HINDAMAELY	37
CHIUTJU!	6.000010	00/3017/3781	HERWINGHH	
Anthropic	('11')('16')('11')	()()(\text{\tin}\text{\tex{\tex	1679-1679	1

ROWPOSISI OPTIMAL PRODUKSI THW.1996 TEGEL JAYA SURAKARTA CUTTEN ALIOMADIE VALUES CUTTEN ALIOMADIE VALUES

mumixaM	mumtaiM	antaV	LAbe	Constraint	
Victorian;	0000198701	0000°00483	;	MSM DETAK	1.
MARKET CO.	00000148481	0000100GK	200 jb	\$ MANA	2
** * # # () [] () []	OCHOLESKI	0000.000000	n.a. j.	NAM	90
A : 1011 - 117	190000000000000000000000000000000000000	00000104455		et Mitth	þ
A DESTRUCTION	900012384	::00010069	77.)	ABTIS NOW	53
Mark Market and the	1 (MW-74)	0000°6469	***	3 / Milmiddel	?
en eller de transfer de la companyation de la compa	$(A_{ij}(M) \cap A_{ij}(M)) = (A_{ij}(M) \cap A_{ij}(M))$	1000 C 1000 C	and the	CERRENTE XX	
CAMBON STATE	14(3)(4(3)17)	150) 1(51 + (4x)2	99.3	왕조 네티케티펜트	}~{
999973089	(9000 9	Philips 13, 13, 14,		EX NUMBER	Ć.

STORM DATA SET LISTING LINEAR & INTEGER PROGRAMMING DATA SET

Problem Description Parameters

The state of the property of the state of th

STORM DATA SET LISTING DETAILED PROBLEM DATA LISTING FOR

KOMPOSIS	ABU-ABU	PRODUKSI THI BERWARNA	N.1997 TEGEL KEMBANG		
Jest Gallett	Legacy Period Carlo	401.7 X8	256 [4] [4]	1498.03	2. Z 2 X
milita ole na)	Ä. :	1	1,	i,
1437		i ,	·	j.,	
14.48	J	Å. n	1. p	1, 0	N. 1.
Hi /	1 7 = 11	i		i "	4, 1
HAN WEE	i'r	9	·) .,	1	
Perondal A.	1	(_1	:	· Zie	
RESHMAN ST	(')	į	C.	() · · · ·	8.00
FIRMURIA X3	17.	(7)		1	4, 1
PERMINEN XI	€.	17.4		; ; , ,	4, 7 .
54463 TVP5	14.65	2011 B	1 1 1 1	, 1 <u>15.</u>	VX XX
LEWIN BULLER		u.			XXXX
CENTAL EDUCATE		9		å	XXXX
right shirth	(1			O.,	

STORM DATA SET LISTING DETAILED PROBLEM DATA LISTING FOR KOMPOSISI OPTIMAL PRODUKSI THN.1997 TEGEL JAYA SURAKARTA ROW LABEL R H S RANGE

to a second second second	5 90	
CH.) LOEFF		±X + ₹
Hira ChinaK	Maria No.	
RAL I	Charles and the second	
Y, 1(1) 1.	· Attada	
Aviet.		
Willy may be	4.1.51	
s HRITE BOOK	のみや	:
1.146 Mg, 41 X2	45.775.	:
PERMAN NO YOU	V12+140 .	1
Establish XII	4 - 1 - 1 - 1	
Makal Laber	$\mathcal{K} \mathcal{V} \mathcal{A} \mathcal{X}$	A A 4 Z
Fillian en della	72 N.A	N A N
OF FIRE SHIPE OF	MX.V	X 41 Y 11
tigil faggil	1.2.1	1 m 7

KOMPOSISI OPTIMAL PRODUKSI THN.1997 TEGEL JAYA SURAKARTA OPTIMAL SOLUTION - SUMMARY REPORT (NONZERO VARIABLES) Variable Value Cost

1.	(A):44 (-1477)	156444 2 2 3555	ar 457 (750).
ď.	BENVAREDE	407346000	40:0.2309
. `.	the intervalsary	2601.0000	zá tvitotr
4	14:4374:50	4414,0000	4496,310
	ck Variables	a silva di carratta di vita	
	ck Variables	g tije tiev gebende	·), (a.(C)
Sla 5		36/254.0van) 58/259.00 A)	
ņ	NEW GETTON		0.000
5	HAM GETAS RAK J	58259 00 70	0,000 0.000 0.000 0.000

Objective Function Value = 72183940

KOMPOSISI OPTIMAL PRODUKSI THN.1997 TEGEL JAYA SURAKARTA OPTIMAL SOLUTION - DETAILED REPORT

	Variable	Value	Cost	Red. cost	Status
1	Aleria Alari	\$ A 9 \$ 1,100 000	rosting time	the the MAC	132:0-14
M.	BERWARNA	4971.0000	4010,20300	$= (i_1)([i_1,i_2],i_3)$	E / Fig. 1
ist.	ARTHOMERAL.	74(4(3 m.) (14 <u>)</u>)((h.)	Property of March	-y#(6n)	Harrida
· i	15代代码。1	4415,0000	44535234193	$(\cdot,\cdot)(\cdot,\cdot)_{\lambda,\lambda}$	\$\$\$\$\$\$ 12 m
Sla	ck Variables				
11	MSW CETAR	11.757.77 4 (2006)	$x_{n,N}(f(x))$.) , , , ()()()	Paul miliar de
. 19	73/48. i	36259,0000	$C_{n}(\Omega,\Omega)$		A - 12- 1.
7) 1. :5	133257.Occo	0.000	$\omega_{i,j}(0,\omega_{i})$	has it
3	KAK Z	i 7000.0000	$Q_{+}(QQGG)$	$(\lambda^{-n})(M)((n))$	Herasu.
1.1	HEN SLEET	2480 G000	w. Down	Cassina	First Sin
1,00	PERMITH VI	0.1/4/4/90	·: ":)()()()()	-9035,1300	Country by a car.
1.)	PERMINEN XX	(,,,() -,),)	$(x,y) \cap (x,y)$	acio, veraj	a over thousast
	PERENTE X:	$O_{\pi}(n, \mathbb{R})$	() , ()()()()	-2912,13NO	Topogram thousand
1	FERMINE X4	$x \in \mathcal{X}_{0} \setminus \{1, 2\}, x \in \mathcal{X}_{0}$	OLOND HE	A ARALL DARM	Acough English

Objective Function Value = 72183940

KOMPOSISI OPTIMAL PRODUKSI THN.1997 TEGEL JAYA SURAKARTA ITERATION O PHASE 2 - DETAILED REPORT

	Variable	Value	Cost	Red. cost	Status
Į.	ARIH-ARIJ	34.4.00	5034,5300	044.35.04590	Llowar Broth C
21	Fighton that	(),()()()()	4971 (1, 3040)()	GUID (12 256)	Tanger Lagran
, 4,	KELOMALI	$C_{\mathcal{F}}(\mathcal{F}(\mathcal{F}))$	2019, (300	2717.5300	Lower bring
i	1 Details	13443131313	$\langle \{\beta\}, \{A_{t_{n+1}}, \beta_{t_{n+1}}\}, \{\beta_{t_{n}}\} \rangle$	THE STATE OF STREET	The Section of Section 1997
Sla	ck Variables				
	PERMITTERS	Visitory and Ori	12. A 4 31.1	0.000	Electrical
Ç.Y	H-1994	75000, Ja. 60		$(O_{\pm}())(\cup_{i\in I})$	Pfuse July
.:	(4/4/4)	industry of the second	er, Orbito	0.1000	Harry J. L.
Ð	HAK X	33750,0000	() , $(:()()()()$	Ö.J.J.A.J.	Bagin.
Q.	HEN STEE	$E(\mathcal{H}(0))$, $E(\mathcal{H}(0))$	O _ 1_01_01_01_01_01_01_01_01_01_01_01_01_01	() Hare +)	f (41 i.t.
i (Ö	FERMITIN XI	5644,0000	1) _(0.100)	0.000	Post
: 1	PERMININ XZ	4678.0660		(+, ()(+p)	6.89 E - FA
15	FERBNIN 13	94.34.35 da	0.00	(n) (n) (n)	Carry, L.
1.34	r Herschlicht Mic Vick	14 (1)	er jarjaj	Ogsberts.	1

Objective Function Value = 0

CONSTRAINT TYPE RHAS SIACK Shadow price SONSTRAIN O PHASE 2 - DETAILED REPORT

1(10)() * ()	○RFO(C) 以至区域	6-000107±t		NAMED A 4	(1)
(d)(d) *()	 (30)000 (40000) 	0000000000	- 1,2	SI MINMERE	43
1014 (C) " (0000177205	0000118704	#" j.	2 K NJ BUNJEd	1
With the figure	()(1:10) * (x(x())	() 3(h) 1 b b 20	um 154	TY NUMBER	1,7
$\mathcal{O}(\mathcal{O}(\mathcal{H}) \cap \mathcal{O}$	00.00000059	$\langle (\mathcal{M}_{\mathcal{O}}(\mathcal{O}), (\mathcal{M}_{\mathcal{O}}(\mathcal{O})) \rangle = \langle (\mathcal{M}_{\mathcal{O}}(\mathcal{O}), (\mathcal{O}_{\mathcal{O}}(\mathcal{O})) \rangle$	av þ	dffle, rask	17
SAMO D	(9000000,7\$%)	()(1)(B)	3.7	Programme Commencer	ţ.
(- () () () () ()	0.000*000000	5000°0000ST	10.3	N 98	5.
0)0330077	ANDO NEW YORK	$(P_{\alpha}(t)) \cap_{\alpha} (XM) \stackrel{T}{\to} (XM)$	-5	(>\\/\	
$(A_{i,j},A_{i,j}) \in \mathcal{C}(A_{i,j},A_{i,j}) \cap \mathcal{C}(A_{i,j},A_{i,j})$: (((() () (() () () (() () () (() () ()	UODO106485		ARM OF LYK	- 1

0 = suteV notion Alue = 0

KOMPOSISI OPTIMAL PRODUKSI THN.1997 TEGEL JAYA SURAKARTA CUTTENT ALLOWADIE ALIOWADIE Variable Coeff. Minimum Maximum Variable Coeff.

April 1994	$(M(M^2)C)^{-n}C$	() / (A /)	("IN (1://) (Pr.)	Ÿ
Aga (ggag	$C^{*}(G)(G)(G) \subseteq C^{*}(G)$	()() YT " 6 Y 6 K	E ([4114]) [1474] [5]	57
N. J. T. S. E. J. S. C.	("("(")(") " " ")	CHARLETT PROGRAM	(eta ja jihayyaa eest	2
19949341	$(f(A)) \not = (f(A))$	(M)>1\$110\$100	DEW-PARK	1

CONSTRAINT TYPE CURRENT THOUSE THAND SIDE VALUES CURRENT ANALYSIS OF RIGHT—HAND SIDE VALUES CURRENT TYPE VAIUE MARARTE

000010087	$O(O(C)^{\frac{1}{2}}(C)$	O(/O() = 1-144	5.5 3	DX NINHHHH	E,
OOO: \$59587	((((((((((((((((((((((((((((((((((((0000° † 094	=: >	PERMINEN X.S	83
7000017576761	·)()()() " ()	(7000) * 870 jy)	ZX NIEKHEL	£.
00001500152	00000"0	() () () () () () () () () () () () () (### (b)	ak NUMAHAR	()
A1744().44	O()O() " 5 7 4 5	0000" (V)69	*** :	dans NSW	63
ATTULLUT	()(P)() * 1 b/(9)	0000-05733	ma (5	S MARI	17
Agrugian	()()()() = \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	OOOCE (== >-	계신된	1
A4 YUY J. UJ	()()()()*T†/.9T	0000°000SZ	pr (4	1 300	<i>ć</i> .
有事有权等其相关	()()()() " (†√(9))	0000,000498	88.3	MY: HO NAM	Ŧ

STORM DATA SET LISTING FORECASTING DATA SET

Problem Description Parameters

Title : PERUSAHAAN TEGEL JAYA SURAKARTA

Number of time series : 4

Maximal length of any series : 48

STORM DATA SET LISTING DETAILED PROBLEM DATA LISTING FOR PERUSAHAAN TEGEL JAYA SURAKARTA

ROW LABEL	ABU-ABU	BERWARNA	SURAKARTA KEMBANG	TERASO
			KENDANG	TERASO
DATA TYPE	INT	INT	INT	INT
DATA RANGE	POS	POS	POS	POS
SEASON LNG	12	12	12	12
MODEL VAL	0	0	0	0
PLAN HORIZ	1	1	1	1
LEVL ALPHA	0.2	0.2	0.2	0.2
TRND ALPHA	0.2	0.2	0.2	0.2
SEAS ALPHA SEARCH ?	0.2	0.2	0.2	0.2
STEP SIZE	YES	YES	YES	YES
MODEL	0.1	0.1	0.1	0.1
JAN 94	BEST 407	BEST	BEST	BEST
PEB 94	407	280	192	315
MART 94	410	285 290	190	320
APRL 94	412	293	190 193	327
MEI 94	413	297	195	350 366
JUNI 94	415	305	196	375
JULI 94	417	315	198	378
AGT 94	420	310	200	380
SEPT 94	425	317	205	385
OKT 94	419	320	201	360
NOP 94	425	322	197	358
DES 94	427	310	194	320
JAN 95	422	308	183	330
PEB 95	415	280	190	322
MART 95	418	285	187	324
APRL 95	420	290	191	318
MEI 95	410	298	195	312
JUNI 95	413	300	193	320
JULI 95	417	315	190	324
AGT 95	423	312	191	330
SEPT 95	428	305	185	335
OKT 95 NOP 95	430	300	188	340
DES 95	425	290	194	355
JAN 96	428 405	288	192	360
PEB 96	408	275 277	194	355
MART 96	409	280	188 191	351
APRL 96	411	285	197	350 365
MEI 96	414	288	196	367
JUNI 96	418	303	194	370
JULI 96	420	290	215	375
AGT 96	422	292	221	380
SEPT 96	420	285	210	350
OKT 96	415	287	209	344
NOP 96	410	289	189	357
DES 96	419	292	180	359
JAN 97	420	300	163	362
PEB 97	423	310	164	368

STORM DATA SET LISTING DETAILED PROBLEM DATA LISTING FOR PERUSAHAAN TEGEL JAYA SURAKARTA

ROW LABEL	ABU-ABU	BERWARNA	KEMBANG	TERASO
MART 97	425	315	158	372
APRL 97	429	320	175	376
MEI 97	430	326	173	380
JUNI 97	435	330	181	384
J ULI 97	433	337	188	387
AGT 97	437	340	202	390
SEPT 97	430	345	194	381
OKT 97	435	342	201	377
NOP 97	431	343	195	375
DES 97	434	346	191	369

PERUSAHAAN TEGEL JAYA SURAKARTA SUMMARY REPORT

	ABU-ABU	BERWARNA	KEMBANG	TERASO		
Number of Periods	48	48	48	48		
Model Selected	Level	Trend	Level	Level		
Level Smoothing Constant	0.900	0.900	1.000	0.900		
Trend Smoothing Constant	N/A	0.100	N/A	N/A		
Seasonal Smoothing Constant	N/A	N/A	N/A	N/A		
Model Fitting Error	Statistics					
Number of Periods Mean Err Mean % Err Mean Absolute Err Mean Abs % Err Root Mean Sq Err	24 0.417 8.882E-02 3.833 0.912 4.958	24 1.333 0.410 5.500 1.851 7.583	-0.154 7.708	24 1.292 0.332 6.542 1.799 8.876		
Final Model Components						
Level Trend	433.736 N/A	345.989 2.650	191.000 N/A	369.625 N/A		

PERUSAHAAN TEGEL JAYA SURAKARTA INITIAL CONDITIONS FOR ABU-ABU

		Level	Trend	Seagenal	mand_Coog
				Seasonal	Trend-Seas
Component		Model	Model	Model	Model
Level		421.2722	424.0067	420.1333	422.9751
Trend		N/A	0.5061	N/A	0.3528
Seasonal	1	N/A	N/A	1.0006	1.0053
Seasonal	2	N/A	N/A	0.9859	0.9897
Seasonal	3	N/A	N/A	0.9927	0.9957
Seasonal	4	N/A	N/A	0.9975	0.9997
Seasonal	5	N/A	N/A	0.9759	0.9773
Seasonal	6	N/A	N/A	0.9827	0.9833
Seasonal	7	N/A	N/A	0.9917	0.9915
Seasonal	8	N/A	N/A	1.0054	1.0042
Seasonal	9	N/A	N/A	1.0172	1.0152
Seasonal	10	N/A	N/A	1.0204	1.0176
Seasonal	11	N/A	N/A	1.0108	1.0071
Seasonal	12	N/A	N/A	1.0177	1.0131

Above values are based on the first 24 periods of data

PERUSAHAAN TEGEL JAYA SURAKARTA LEVEL MODEL FITTING STATISTICS FOR ABU-ABU SMOOTHING CONSTANTS USED: 0.90(LEVEL)

Period	Actual	Forecast	Error	Level
TAN 06	405	401	1.6	406 6272
JAN 96	405	421	-16	406.6272
PEB 96	408	407	1	407.8627
MART 96	409	408	1	408.8863
APRL 96	411	409	2	410.7886
MEI 96	414	411	3	413.6789
JUNI 96	418	414	4	417.5679
JULI 96	420	418	2	419.7568
AG T 96	422	420	2	421.7757
SEPT 96	420	422	-2	420.1776
OKT 96	415	420	- 5	415.5178
NOP 96	410	416	- 6	410.5518
DES 96	419	411	8	418.1552
JAN 97	420	418	2	419.8155
PEB 97	423	420	3	422.6816
MART 97	425	423	2	424.7682
APRL 97	429	425	4	428.5768
MEI 97	430	429	1	429.8577
JUNI 97	435	430	5	434.4858
JULI 97	433	434	-1	433.1486
AGT 97	437	433	4	436.6149
SEPT 97	430	437	- 7	430.6615
OKT 97	435	431	4	434.5661
NOP 97	431	435	-4	431.3566
DES 97	434	431	3	433.7357

PERUSAHAAN TEGEL JAYA SURAKARTA

MODEL FITTING /	/ VALIDATION F Level		ICS FOR AI Seasonal	BU-ABU Trend-Seas
Statistic	Model	Model	Model	Model
Model Fitting Error	Statistics for	or 24 periods	from JAN	96
Mean Err	0.4167	0.0833	0.2083	-0.1250
Mean % Err	0.0888	0.0109	0.0468	-0.0316
Mean Absolute Err	3.8333	4.1667	5.0417	5.3750
Mean Abs % Err	0.9123	0.9946	1.2007	1.2818
Root Mean Sq Err	4.9582	5.6569	6.5352	7.3001

Model selected was Level

PERUSAHAAN TEGEL JAYA SURAKARTA LEVEL MODEL FORECASTS FOR ABU-ABU Extended Forecasts for Periods beyond DES 97

Period		Forecast
PERIOD	49	434
PERIOD	50	434
PERIOD	51	434
PERIOD	52	434
PERIOD	53	434
PERIOD	54	434
PERIOD	55	434
PERIOD	56	434
PERIOD	5 7	434
PERIOD	58	434
PERIOD	5 9	434
PERIOD	60	434

PERUSAHAAN TEGEL JAYA SURAKARTA INITIAL CONDITIONS FOR BERWARNA

		INIII 00111)		
		Level	Trend	Seasonal	Trend-Seas
Component	:	Model	Model	Model	Model
Level		300.0335	298.1277	299.0808	296.4949
Trend		N/A	-0.2781	N/A	-0.4525
Seasonal	1	N/A	N/A	1.0249	1.0154
Seasonal	2	N/A	N/A	0.9411	0.9337
Seasonal	3	N/A	N/A	0.9578	0.9519
Seasonal	4	N/A	N/A	0.9741	0.9697
Seasonal	5	N/A	N/A	0.9999	0.9971
Seasonal	6	N/A	N/A	1.0084	1.0073
Seasonal	7	N/A	N/A	1.0573	1.0580
Seasonal	8	N/A	N/A	1.0468	1.0493
Seasonal	9	N/A	N/A	1.0273	1.0315
Seasonal	10	N/A	N/A	1.0125	1.0184
Seasonal	11	N/A	N/A	0.9818	0.9891
Seasonal	12	N/A	N/A	0.9717	0.9806

Above values are based on the first 24 periods of data

PERUSAHAAN TEGEL JAYA SURAKARTA TREND MODEL FITTING STATISTICS FOR BERWARNA SMOOTHING CONSTANTS USED: 0.90(LEVEL), 0.10(TREND)

Period	Actual	Forecast	Error	Level	Trend
JAN 96	275	298	-23	277.2850	-2.335
PEB 96	277	275	2	276.7950	-2.150
MA RT 96	280	275	5	279.4645	-1.668
APRL 96	285	278	7	284.2796	-1.020
MEI 96	288	283	5	287.5260	-0.593
JUNI 96	303	287	16	301.3933	0.8528
JULI 96	290	302	- 12	291.2246	-0.249
AGT 96	292	291	1	291.8975	-0.157
SEPT 96	285	292	- 7	285.6740	-0.764
OKT 96	287	285	2	286.7910	-0.576
NOP 96	289	286	3	288.7215	-0.325
DES 96	292	288	4	291.6396	-7.318E-04
J AN 97	300	292	8	299.1639	0.7518
PEB 97	310	300	10	308.9916	1.6594
MART 97	315	311	4	314.5651	2.0508
A PRL 97	320	317	3	319.6616	2.3553
MEI 97	326	322	4	325.6017	2.7138
JUNI 97	330	328	2	329.8316	2.8654
JULI 97	337	333	4	336.5697	3.2527
AGT 97	340	340	0	339.9822	3.2687
SEPT 97	345	343	2	344.8251	3.4261
OKT 97	342	348	- 6	342.6251	2.8635
NOP 97	343	345	-2	343.2489	2.6395
DES 97	346	346	0	345.9888	2.6496

PERUSAHAAN TEGEL JAYA SURAKARTA MODEL FITTING / VALIDATION ERROR STATISTICS FOR BERWARNA

MODEL FITTING / Statistic	VALIDATION Level Model	Trend SModel	CS FOR BEI Seasonal Model	
Model Fitting Error	Statistics	for 24 periods	from JAN	96
Mean Err Mean % Err Mean Absolute Err Mean Abs % Err Root Mean Sq Err	1.9167 0.5582 5.9167 1.9671 7.9162	1.3333 0.4097 5.5000 1.8509 7.5829	2.7083 0.8039 8.4583 2.8201 11.6351	1.8333 0.5839 8.5000 2.8400 11.2101

Model selected was Trend

PERUSAHAAN TEGEL JAYA SURAKARTA TREND MODEL FORECASTS FOR BERWARNA Extended Forecasts for Periods beyond DES 97

Period		Forecast
PERIOD	49	349
PERIOD	50	351
PERIOD	51	354
PERIOD	52	357
PERIOD	53	359
PERIOD	54	362
PERIOD	55	365
PERIOD	56	367
PERIOD	5 7	370
PERIOD	58	372
PERIOD	59	375
PERIOD	60	378

PERUSAHAAN TEGEL JAYA SURAKARTA INITIAL CONDITIONS FOR KEMBANG

		Level	Trend	Seasonal	Trend-Seas
Component		Model	Model	Model	Model
_					
Level		191.8194	188.5197	191.0090	187.4169
Trend		N/A	-0.3567	N/A	-0.4956
Seasonal	1	N/A	N/A	0.9653	0.9510
Seasonal	2	N/A	N/A	0.9981	0.9859
Seasonal	3	N/A	N/A	0.9838	0.9744
Seasonal	4	N/A	N/A	1.0045	0.9975
Seasonal	5	N/A	N/A	1.0248	1.0203
Seasonal	6	N/A	N/A	1.0158	1.0140
Seasonal	7	N/A	N/A	1.0022	1.0031
Seasonal	8	N/A	N/A	1.0077	1.0114
Seasonal	9	N/A	N/A	0.9806	0.9868
Seasonal	10	N/A	N/A	0.9928	1.0018
Seasonal	11	N/A	N/A	1.0199	1.0318
Seasonal	12	N/A	N/A	1.0091	1.0236

Above values are based on the first 24 periods of data

PERUSAHAAN TEGEL JAYA SURAKARTA LEVEL MODEL FITTING STATISTICS FOR KEMBANG SMOOTHING CONSTANTS USED: 1.00(LEVEL)

Period	Actual	Forecast	Error	Level
			_	
JAN 96	194	192	2	194.0000
PEB 96	188	194	-6	188.0000
MART 96	191	188	3	191.0000
APRL 96	197	191	6	197.0000
MEI 96	196	197	-1	196.0000
JUNI 96	194	196	-2	194.0000
JULI 96	215	194	21	215.0000
AGT 96	221	215	6	221.0000
SEPT 96	210	221	-11	210.0000
OKT 96	209	210	-1	209.0000
NOP 96	189	209	-20	189.0000
DES 96	180	189	- 9	180.0000
JAN 97	163	180	-17	163.0000
PEB 97	164	163	1	164.0000
MART 97	158	164	-6	158.0000
APRL 97	175	158	17	175.0000
MEI 97	173	175	-2	173.0000
JUNI 97	181	173	8	181.0000
JULI 97	188	181	7	188.0000
AGT 97	202	188	14	202.0000
SEPT 97	194	202	-8	194.0000
O K T 97	201	194	7	201.0000
NOP 97	195	201	- 6	195.0000
DES 97	191	195	-4	191.0000

PERUSAHAAN TEGEL JAYA SURAKARTA

MODEL FITTING , Statistic	/ VALIDATION	N ERROR STATIST:	ICS FOR KI	EMBANG
	Level	Trend	Seasonal	Trend-Seas
	Model	Model	Model	Model
Model Fitting Error	Statistics	for 24 periods	from JAN	96
Mean Err	-0.0417	0.1667	-0.0833	0.0000
Mean % Err	-0.1541	0.0126	-0.1766	-0.0519
Mean Absolute Err	7.7083	8.1667	8.2500	8.2500
Mean Abs % Err	4.0716	4.3012	4.3409	4.2976
Root Mean Sq Err	9.7104	10.1530	10.3360	10.7626

Model selected was Level

PERUSAHAAN TEGEL JAYA SURAKARTA LEVEL MODEL FORECASTS FOR KEMBANG Extended Forecasts for Periods beyond DES 97

Period		Forecast
PERIOD	49	191
PERIOD	50	191
PERIOD	51	191
PERIOD	52	191
PERIOD	53	191
PERIOD	54	191
PERIOD	55	191
PERIOD	56	191
PERIOD	5 7	191
PERIOD	58	191
PERIOD	59	191
PERIOD	60	191

PERUSAHAAN TEGEL JAYA SURAKARTA INITIAL CONDITIONS FOR TERASO

		Level	Trend	Seasonal	Trend-Seas
~					
Component		Model	Model	Model	Model
Level		339.7094	326.2073	334.6452	320.5702
Trend		N/A	-1.0760	N/A	-1.9201
Seasonal	1	N/A	N/A	0.9898	0.9593
Seasonal	2	N/A	N/A	0.9697	0.9448
Seasonal	3	N/A	N/A	0.9773	0.9576
Seasonal	4	N/A	N/A	0.9665	0.9522
Seasonal	5	N/A	N/A	0.9532	0.9443
Seasonal	6	N/A	N/A	0.9764	0.9729
Seasonal	7	N/A	N/A	0.9873	0.9892
Seasonal	8	N/A	N/A	1.0036	1.0112
Seasonal	9	N/A	N/A	1.0180	1.0314
Seasonal	10	N/A	N/A	1.0256	1.0450
Seasonal	11	N/A	N/A	1.0669	1.0932
Seasonal	12	N/A	N/A	1.0722	1.1051

Above values are based on the first 24 periods of data

PERUSAHAAN TEGEL JAYA SURAKARTA LEVEL MODEL FITTING STATISTICS FOR TERASO SMOOTHING CONSTANTS USED: 0.90(LEVEL)

	Directining comb	TIMES OFF	. 0.30(2212	
Period	Actual	Forecast	Error	Level
JAN 96	355	340	15	353.4709
P E B 96	351	353	-2	351.2471
MART 96	350	351	-1	350.1247
APRL 96	365	350	15	363.5125
MEI 96	367	364	3	366.6512
JUNI 96	370	367	3	369.6651
JULI 96	375	370	5	374.4665
AG T 96	380	374	6	379.4467
SEPT 96	350	379	-29	352.9447
OKT 96	344	353	- 9	344.8945
NOP 96	357	345	12	355.7894
DES 96	359	356	3	358.6789
JAN 97	362	359	3	361.6679
P E B 97	368	362	6	367.3668
MART 97	372	367	5	371.5367
APRL 97	376	372	4	375.5537
MEI 97	380	376	4	379.5554
JUNI 97	384	380	4	383.5555
JULI 97	387	384	3	386.6556
AGT 97	390	387	3	389.6656
SEPT 97	381	39 0	- 9	381.8666
OKT 97	377	382	- 5	377.4867
NOP 97	375	377	-2	375.2487
DES 97	369	375	-6	369.6249

PERUSAHAAN TEGEL JAYA SURAKARTA

MODEL FITTING /	VALIDATION Level Model			ERASO Trend-Seas Model
Model Fitting Error	Statistics i	for 24 periods	from JAN	96
Mean Err Mean % Err Mean Absolute Err Mean Abs % Err Root Mean Sq Err	1.2917 0.3322 6.5417 1.7993 8.8765	0.5833 0.1495 7.0000 1.9384 10.7277	0.1667 0.0461 9.5000 2.6085 13.3760	-1.0833 -0.2685 12.4167 3.4079 18.7483

Model selected was Level

PERUSAHAAN TEGEL JAYA SURAKARTA LEVEL MODEL FORECASTS FOR TERASO Extended Forecasts for Periods beyond DES 97

Period		Forecast
PERIOD	49	370
PERIOD	50	370
PERIOD	51	370
PERIOD	52	370
PERIOD	53	370
PERIOD	54	370
PERIOD	55	370
PERIOD	56	370
PERIOD	57	370
PERIOD	58	370
PERIOD	59	370
PERIOD	60	370

DAFTAR RIWAHAT HIDUP

Yang bertanda tangan di bawah ini:

N a m a : Maria Petronela Mbindi

U m u r : 23 tahun

Tempat/Tgl. Lahir : Maumere, 18 September 1974

Alamat : Jl. Pringgodani No. 8

Yogyakarta

Menerangkan dengan sesungguhnya

PENDIDIKAN

1. SDK SANTA URSULA - ENDE-FLORES : Tahun 1981 s/d 1987

2. SMP KATOLIK KARTINI : Tahun 1987 s/d 1990

3. SMA KATOLIK FRATERAN NDAO

ENDE-FLORES : Tahun 1990 s/d 1993

4. UNIVERSITAS SANATA DHARMA

YOGYAKARTA : Tahun 1993 s/d 1998

Demikian daftar riwayat hidup ini saya buat dengan sebenarnya.

30 Juni 1998

Saya yang bersangkutan

(Maria Petronela Mbindi)