DAYA ANTIFUNGUS
CAMPURAN MINYAK ATSIRI BUNGA KENANGA
(Cananga odorata (Lmk) Hook. F. & Thoms) DAN MINYAK ATSIRI
RIMPANG JAHE MERAH (Zingiber officinale Roxb.) TERHADAP Candida
albicans SECARA IN VITRO

SKRIPSI
Diajukan Untuk Memenuhi Salah Satu Syarat
Memperoleh Gelar Sarjana Farmasi (S.Farm)
Program Studi Ilmu Farmasi

Oleh :
SEPTI ISWAHYUNI
NIM : 998114186
NIRM : 990051122004120162

FAKULTAS FARMASI
UNIVERSITAS SANATA DHARMA
YOGYAKARTA
2003
DAYA ANTIFUNGUS
CAMPURAN MINYAK ATSIRI BUNGA KENANGA
(Cananga odorata (Lmk) Hook. F. & Thoms) DAN MINYAK ATSIRI
RIMPANG JAHE MERAH (Zingiber officinale Roxb.) TERHADAP Candida albicans SECARA IN VITRO

SKRIPSI
Diajukan Untuk Memenuhi Salah Satu Syarat
Memperoleh Gelar Sarjana Farmasi (S.Farm)
Program Studi Ilmu Farmasi

Gieh :
SEPTI ISWAHYUNI
NIM : 998114186
NIRM : 990051122004120162

FAKULTAS FARMASI
UNIVERSITAS SANATA DHARMA
YOGYAKARTA
2003
HALAMAN PERSETUJUAN PEMBIMBING

Skripsi dengan judul:

DAYA ANTIFUNGUS CAMPURAN MINYAK ATSIRI BUNGA KENANGA (Cananga odorata (Lmk) Hook. F. & Thoms) DAN MINYAK ATSIRI RIMPANG JAHE MERAH (Zingiber officinale Roxb.) TERHADAP Candida albicans SECARA IN VITRO

yang disusun oleh:
SEPTI ISWAHYUNI
NIM: 998114186
NIRM: 990051122004120162

Telah disetujui oleh:

Pembimbing Utama

Tanggal
Pengesahan Skripsi
Berdasarkan

DAYA ANTIFUNGUS
CAMPURAN MINYAK ATSIRI BUNGA KENANGA
(Cananga odorata (Lmk) Hook. F. & Thoms) DAN MINYAK ATSIRI
RIMPANG JAHE MERAH (Zingiber officinale Roxb.) TERHADAP Candida
albicans SECARA IN VITRO

OLEH:
SEPTI ISWAHYUNI
NIM : 998114186
NIRM : 990051122004120162

Dipertahankan di hadapan Panitia Penguji Skripsi
Fakultas Farmasi
Universitas Sanata Dharma
Pada tanggal :

5 Oktober 2003

Mengetahui
Dekan Fakultas Farmasi
Universitas Sanata Dharma

Pembimbing Utama :

Panitia Penguji :

2. Prof. Dr. S. Brotosisworo, Apt.
Kalakanlah: "Kalau sekitanya lautan menjadi tinta untuk (menulis) kalimat Tuanku, sungguh habislah lautan itu sebelum habis (ditulis) kalimat-kalimat Tuanku, meskipun kami datangkan tambahan sebanyak itu (pula)." (QS. Al-Kahfi : 40).

Aku mendengar tapi aku lupa

Aku melihat maka aku mendengar

Aku berbual maka aku mengerti (Pepalah Cina).

Sihir ini kupersembahkan untuk:
Bapak dan Ibu tercinta sebagai ungkapan rasa sayang dan habisku atas segala doa dan pengorbanan yang selalu ada untukku
Adikku Ari, Anggi, serta semua keluargaku yang selalu mendukung dan senantiasa memberikan kasih dan cintanya
dan Ulamalawi
PERNYATAAN KEASLIAN KARYA

Saya menyatakan dengan sesungguhnya bahwa skripsi yang saya tulis ini tidak memuat karya atau bagian karya orang lain, kecuali yang telah disebutkan dalam kutipan dan daftar pustaka, sebagaimana layaknya karya ilmiah.

Yogyakarta, Oktober 2003

Penulis

[Signature]

Septi Iswahyuni
INTISARI

Minyak atsiri dari bunga kenanga (Cananga odorata (Lmk) Hook.F. & Thoms) dan minyak atsiri rimpang jahe merah (Zingiber officinale Roxb.) telah terbukti mempunyai aktifitas antifungus terhadap Candida albicans. Akan tetapi, penelitian penggunaan campuran minyak atsiri sebagai antifungus belum dilakukan. Oleh karena itu, dilakukan penelitian tentang campuran minyak atsiri untuk menentukan aktifitas antifungusnya.

ABSTRACT

Essential oil of kenanga flower (Cananga odorata (Lmk.) Hook.F.& Thoms) and essential oil of jahe merah rhizome (Zingiber officinale Roxb.) had been proven to have antifungus activity to Candida albicans. However, the research on the usage of essential oil in mixture as antifungus have yet been done. Therefore, the research on these mixtures was carried out to determine the antifungus activity.

This research was an experiment with random design. The ratio of both essential oils was prepared by using simplex lattice design, applying a variety of concentration. Antifungus activity was determined using diffusion method. The data was analized by ANOVA. The result showed that the mixture of essential oils of jahe merah rhizome and kenanga flower with the ratio of 75%:25% gave the best activity and have an addition effect compare to that of using essential oil separately.
KATA PENGANTAR

Alhamdulillah, segala puji syukur penulis panjatkan Allah SWT yang telah melimpahkan rahmat dan karunianya sehingga penulis dapat menyelesaikan skripsi ini.

Dalam penyusunan dan penyelesaian skripsi ini, penyusun banyak dibantu oleh berbagai pihak baik secara langsung maupun tidak langsung. Oleh karena itu pada kesempatan ini, penulis ingin mengucapkan rasa terima kasih sebesar-besarnya kepada:

1. Bapak ibuku yang selalu memberikan doa, dukungan, dan pengorbanan untukku.

3. Bapak Prof. Dr. S. Brotosisworo, Apt. selaku dosen penguji skripsi, yang telah memberikan bantuanannya sehingga tersusunnya skripsi ini.

5. Adikku Ari, Anggi, Mbak Nar dan Mas Agus terimakasih bantuaninya selama ini, dan semua keluargaku, terima kasih atas doa dan dukungannya.

8. Heny beserta keluarga terimakasih bunga kenanganya.

9. Mbak Heny Wea, Lina (Otong), Mbak Widy, Okta, Mbak Wiwik, Dodot, Sigit, Dina, dan Dessy terima kasih atas bantuannya.

10. Seluruh staff Laboratorium Farmakognosi Fitokimia (Mas Wagiran dan Mas Sigit) dan staff Laboratorium Mikrobiologi atas segala bantuannya selama penelitian.

12. Semua pihak yang ikut membantu yang tidak bisa disebutkan satu persatu.

Penulis menyadari bahwa skripsi ini masih jauh dari sempurna mengingat keterbatasan pengetahuan dan pengalaman, oleh karena itu kritik dan saran yang membangun akan bermanfaat bagi kesempurnaan skripsi ini. Semoga skripsi ini dapat bermanfaat bagi kita semua.

Yogyakarta, September 2003

Penulis
HALAMAN JUDUL .. i
HALAMAN PERSETUJUAN PEMBIMBING .. ii
HALAMAN PENGESAHAN ... iii
HALAMAN PERSEMBAHAN ... iv
PERNYATAAN KEASLIAN ... v
INTISARI .. vi
ABSTRACT ... vii
KATA PENGANTAR ... viii
DAFTAR ISI .. x
DAFTAR TABEL .. xiv
DAFTAR GAMBAR ... xv
DAFTAR LAMPIRAN .. xvi
BAB I. PENGANTAR .. 1
 A. Latar Belakang .. 1
 B. Permasalahan ... 2
 C. Keaslian Penelitian ... 2
 D. Manfaat Penelitian ... 2
 E. Tujuan Penelitian ... 3
BAB II. PENELAAHAN PUSTAKA ... 4
 A. Tanaman Bunga Kenanga .. 4
 1. Klasifikasi bunga kenanga .. 4
2. Nama-nama daerah .. 4
3. Tempat tumbuh ... 5
4. Deskripsi tanaman .. 5
5. Kandungan kimia minyak atsiri kenanga 6
6. Khasiat dan penggunaan ... 6

B. Tanaman Jahe Merah .. 7
 1. Klasifikasi jahe merah .. 7
 2. Nama-nama daerah .. 7
 3. Tempat tumbuh ... 8
 4. Deskripsi tanaman .. 8
 5. Kandungan kimia .. 9
 6. Khasiat dan penggunaan 9

C. *Candida Albicans* .. 10
 1. Sistematika *Candida Albicans* 10
 2. Deskripsi .. 10
 3. Morfologi .. 11
 4. Ekologi dan penyebaran 11

D. Minyak Atsiri .. 13

E. Aktifitas Antifungus .. 15

F. Media .. 17

G. Sterilisasi .. 18

H. Penggunaan Obat Antimikroba Gabungan 20

I. *Simplex Lattice Design* ... 22
J. Landasan Teori .. 25

K. Hipotesis ... 25

BAB III. METODOLOGI PENELITIAN .. 26

A. Rancangan dan Jenis Penelitian 26

B. Variabel Penelitian dan Definisi Operasional 26
 a. Identifikasi variabel... 26
 b. Definisi operasional... 27

C. Bahan dan Alat Penelitian .. 28
 1. Bahan penelitian... 28
 2. Alat penelitian.. 28

D. Tata Cara Penelitian ... 29
 1. Determinasi.. 29
 2. Isolasi minyak atsiri rimpang jahe merah..................... 29
 3. Isolasi minyak atsiri bunga kenanga.......................... 29
 4. Penentuan rendemen minyak atsiri............................. 29
 5. Uji aktifitas antifungus.. 30
 a. Sterilisasi alat-alat.. 30
 b. Pembuatan media SDA....................................... 30
 c. Penyiapan stok candida albicans.......................... 30
 d. Penentuan daya antifungus................................ 31
 e. Identifikasi Candida albicans secara mikroskopsis...... 31

E. Analisa Data .. 32
BAB IV. HASIL PENELITIAN DAN PEMBAHASAN 33
 A. Determinasi Tanaman Bunga Kenanga 33
 B. Determinasi Tanaman Jahe Merah 34
 C. Pengumpulan Bahan ... 34
 D. Isolasi Minyak Atsiri .. 35
 E. Uji Daya Antifugus dengan Metoda Difusi 38

BAB V. KESIMPULAN DAN SARAN ... 46
 A. KESIMPULAN .. 46
 B. SARAN ... 46

DAFTAR PUSTAKA .. 47

LAMPIRAN ... 49

BIOGRAFI PENULIS .. 63
<table>
<thead>
<tr>
<th>No</th>
<th>Daftar Tabel</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Rendemen minyak atsiri rimpang kering jahe merah</td>
<td>36</td>
</tr>
<tr>
<td>2.</td>
<td>Rendemen minyak atsiri bunga kenanga</td>
<td>37</td>
</tr>
<tr>
<td>3.</td>
<td>Susut pengerangan rimpang jahe merah</td>
<td>37</td>
</tr>
<tr>
<td>4.</td>
<td>Diameter zona hambat minyak atsiri pada Candida albicans</td>
<td>40</td>
</tr>
<tr>
<td>5.</td>
<td>Rangkuman hasil uji Scheefe</td>
<td>44</td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

1. Sistem dua pelarut yang digunakan untuk menggambarkan optimasi banyaknya zat yang terlarut...22
2. Grafik perbandingan zona hambat Candida albicans41
3. Profil daya hambat campuran minyak atsiri ..43
DAFTAR LAMPIRAN

1. Pengesahan spesimen ... 49
2. Foto tanaman jahe merah .. 50
3. Foto rimpang jahe merah ... 51
4. Foto rimpang jahe merah yang sudah dikeringkan 52
5. Foto tanaman kenanga .. 53
6. Foto bunga kenanga ... 54
7. Foto alat destilasi Sthal .. 55
8. Foto mikroskopis Candida albicans dengan pengecatan Gram 56
9. Foto hasil uji daye antifungus Candida albicans 57
10. Perhitungan dengan rumus simplex lattice design 58
11. Analisa statistik ... 60
12. Uji Validitas varian ... 62
BAB I
PENGANTAR

A. Latar Belakang

Kandidiasis adalah penyakit jamur yang disebabkan oleh genus Candida, biasanya oleh spesies Candida albicans yang dapat mengenai mulut, vagina, kuku, bronki, dan paru-paru. Berdasarkan penyakit yang menyerang manusia tersebut, maka telah dilakukan berbagai penelitian untuk menemukan obatnya. Salah satu yang dilakukan adalah penelitian terhadap tumbuh-tumbuhan yang mengandung minyak atsiri.

Daya antifungus yang besar dari minyak atsiri rimpang jahe merah dan bunga kenanga, disebabkan adanya senyawa fenolik yang bersifat fungisida. Pencampuran kedua minyak atsiri diharapkan akan menghasilkan daya antifungus yang lebih besar daripada pemakaian yang terpisah. Sehubungan dengan hal tersebut, maka dilakukan penelitian untuk mengetahui daya hambat campuran minyak atsiri bunga kenanga dan minyak atsiri rimpang jahe merah terhadap *Candida albicans*, dibandingkan dengan penggunaan yang terpisah.

B. Permasalahan

Apakah campuran minyak atsiri bunga kenanga dan minyak atsiri rimpang jahe merah memiliki daya antifungus terhadap *Candida albicans* yang lebih besar jika dibandingkan dengan penggunaan masing-masing minyak atsiri secara terpisah?

C. Keaslian Penelitian

D. Manfaat Penelitian

Penelitian ini diharapkan dapat memberikan manfaat yaitu:

- **Manfaat teoritis**, dapat digunakan untuk mengembangkan ilmu pengetahuan khususnya dibidang kesehatan, tentang penggunaan campuran minyak atsiri bunga kenanga dan minyak atsiri rimpang jahe merah sebagai antifungus *Candida albicans*.

- **Manfaat praktis** diharapkan dapat memberikan informasi pada masyarakat, penggunaan campuran minyak atsiri bunga kenanga dan minyak atsiri rimpang jahe merah sebagai antifungus.

E. Tujuan Penelitian

Untuk mengetahui daya hambat campuran minyak atsiri bunga kenanga dan minyak atsiri rimpang jahe merah terhadap *Candida albicans* yang lebih besar jika dibandingkan dengan penggunaan masing-masing minyak atsiri secara terpisah.
BAB II

PENELAAHAN PUSTAKA

A. Tanaman Bunga Kenanga (Cananga odorata (Lmk) Hook. f. & Thoms)

1. Klasifikasi bunga kenanga (Cananga odorata (Lmk) Hook. f. & Thoms)

 Divisio : Spermatophyta
 Subdivisio : Angiospermae
 Classis : Dicotyledoneae
 Ordo : Annonales
 Familia : Annonaceae
 Genus : Cananga
 Species : Cananga odorata (Lmk) Hook. f. & Thoms.

 (Backer dan Bakhuizen van den Brink, 1963; Syamsuhiyayat dan Hutapea, 1991; Tjitrosoepomo, 1993)

2. Nama-nama daerah

 Aceh : kenanga, selanga, semanga, tenanga
 Nias : ngana-ngana
 Ambon : kananga wangi
 Minangkabau : inanga atau kananga
 Sunda : kananga
 Bali : sandat atau sandat kananga
 Sulawesi utara : lilingiran atau koringidan
 Gorontalo : wanggalita
Pulau roti : bunga kasik
Pulau seram : sapalin, kupa apate, sukalane, sipaniune
Jawa (Indonesia) : kenanga (Sunanto, 1993).

3. Tempat tumbuhnya

Tanaman kenanga dapat tumbuh baik di seluruh nusantara dengan ketinggian daerah di bawah 1200 m di atas permukaan laut. Semula hanya tumbuh di hutan-hutan tetapi tanaman ini, kini sudah banyak dibudidayakan. Tanaman ini dapat tumbuh lebih baik jika kondisi tanahnya subur, terutama tanah jenis alluvial dan dapat berbunga lebat jika ketinggian daerahnya antara 20-700 m di atas permukaan laut, yang beriklim panas dan lembab (Sunanto, 1993).

4. Deskripsi tanaman

5. Kandungan kimia minyak atsiri bunga kenanga

Minyak atsiri bunga kenanga memiliki kandungan antara lain: geraniol dan linalool terdapat sebagai ester asetat, asam asetat dan asam benzoat, p-kresol, metil ester, kadinena, sesquerpen dan fenol, pinena, benzil alkohol, kresol, eugenol, iso eugenol, safrol, isosafrol, benzoat, metilsalisilat, metilantranilat, asam formiat, asam asetat, asam valerat (valeric acid), asam salisilat (Hegnauer, 1973; Leung, 1996).

6. Khasiat dan penggunaan

B. Tanaman Jahe Merah (*Zingiber officinale* Roxb.)

1. **Klasifikasi jahe merah (*Zingiber officinale* Roxb.)

 Divisi : Spermatophyta

 Subdivisi : Angiospermae

 Classis : Monocotyledoneae

 Ordo : Zingiberales

 Familia : Zingiberaceae

 Genus : Zingiber

 Species : *Zingiber officinale* Roxb.

 (Backer dan Bakhuizen van den Brink, 1963. 1968; Tjitrosoepomo, 1993).

2. **Nama-nama daerah**

 Jawa : jahe (Sunda), jae (Jawa), jhai (Madura), jae (Kangean)

 Sumatera : halia (Aceh), beuing (Gayo), bahing (Batak/karo), pege (Toba),

 jahi (Lampung), pege (Lubu), sipade (Mandailing), lahia (Nias), sipadeh (Minangkabau)

 Bali : jae, jahya, lahya, cipakan (Bali), lea (Flores), alia (Sumba), reja (Bima)

 Sulawesi : laia (Makasar), goraka (Menado), luya (Mongondow),

 moyuman (Poros), melita (Gorontalo), yuyo (Buol), kuya (Baree), pase (Bugis)
Maluku : pusu, seeria, sehi (Ambon, Hila), hairalo (Amahai), sehil (Nusalaut), garaka (Ternate), gora (Tidore), siwei (Buru), laian (Aru)

Irian/papua : marman (Kapaur), lali (Kalanapat)

Indonesia : jahe merah

(Herlina dkk, 2002)

3. Tempat tumbuh

4. Deskripsi tanaman

Terna berbatang semu, tinggi 30-100 cm. Daun berselang-seling teratur, sempit, panjang 5-25 kali lebaranya, tangkainya berambut. Bunga mulai tersembul dipermukaan tanah, bentuk tongkat atau bulat telur sempit, 2.75-3 kali lebaranya, panjang malai 3,5-5 cm, lebar 1,5-1.75 cm, gagang bunga hampir tidak berambut, panjang 25 cm berdekatan atau rapat. Daun pelindung bulat telur terbalik, tidak berambut, berwarna hijau cerah, panjang 2,5 cm, lebar 1-1.75 cm, mahkota bunga bentuk tabung panjang 2-2,5 mm, lebar 3-3.5 mm, bibir ungu gelap berbintik-bintik, putih kekuningan, panjang 12-15, lebar 13 mm, kepala sari ungu, panjang
9 mm, tangkai putik dua buah. Rimpang agak putih, bagian ujung bercabang-cabang, pipih, bulat telur terbalik. Bagian luar rimpang coklat kekuningan, berakar memanjang, bekas patahan berserat menonjol, kuning atau jingga (Backer dan Bakhuizen van den Brink, 1963; 1968)

5. **Kandungan kimia**

Rimpang jahe mengandung 0,6-3 % minyak atsiri yang terdiri dari α-pinene, β-fellandren, borneol, camphene, limonene, linalool, citral, nonyaldehyde, decyaldheide, metil heptenon, cineol, bisabolol, L-α-curcumen, farnesen, hamulen, 60 % zingiberen dan zingiberole menguap (zat pedas), gengerol yaitu: (6)-gingerol 60-85 %; (4)-gingerol; (8)-gingerol 5 %; (10)-gingerol 6-22 %; (12)-gingerol; (6)-metil gengerol, (5)-gingerdiol; (8)-gingerdiol; (10)-gingerdiol; diaril pertanoide; diaril-5-heptanone; aril curcumen; β-bisabolone, (E)-α-farnesen (Sudarsono dkk, 1996).

6. **Khasiat dan penggunaan**

C. Candida albicans

1. Sistematika Candida albicans

Divisio : Thallophyta
Subdivisio : Fungi
Classis : Eumycetes
Subclassis : Deuteromycetes
Ordo : Moniliiales
Famili : Moniliaceae
Genus : Candida
Spesies : Candida albicans

(Frobisher, 1974)

2. Deskripsi

3. Morfologi

Morfologi *Candida albicans* tampak sebagai ragi lonjong bertunas, gram positif, berukuran 2-3 × 4,6 μm, dan sel-sel bertunas, gram positif yang memanjang menyerupai hifa. Pada agar sauborou yang dieramkan pada suhu kamar, berbentuk koloni-koloni lunak berwarna krem yang mempunyai bau seperti ragi (Jawetz dkk, 1996).

4. Ekologi dan penyebaran

Candida albicans dapat menyebabkan infeksi yang disebut kandidiasis. Bentuk-bentuk kandidiasis yang lazim meliputi:

a. Mulut

Infeksi mulut (sariawan), terutama pada bayi, terjadi pada selaput lendir pipi dan nampak sebagai bercak-bercak putih yang sebagian besar terdiri dari pseudomiselium dan epitel yang terkelupas, dan hanya eros minimal dari selaput lendir (Frobisher, 1974).

b. Genitalia wanita

Vulvovaginitis menyerupai sariawan, tetapi menimbulkan iritasi, gatal-gatal yang hebat, dan mengeluarkan sekret (Frobisher, 1974). Keluar cairan berwarna putih atau kekuningan, dengan gatal dan abrasi lokal, bercak putih atau kecoklatan pada dinding vagina, dengan peradangan lokal dan rasa sakit pada waktu berhubungan kelamin (Cooper, 1996).
c. Kulit

d. Kuku

Rasa sakit, bengkak kemerahan dari lipatan kuku, dapat mengakibatkan penebalan dan alur tranversal pada kuku dan akhirnya kehilangan kuku (Frobisher, 1974).

e. Paru-paru dan organ lain

Infeksi candida dapat merupakan infasi sekunder paru-paru, ginjal dan organ-organ lain dimana terdapat penyakit-penyakit sebelumnya (misalnya tuberkulosis dan kanker) (Frobisher, 1974).

f. Kandidiasis mukokutan menahun

Kelainan ini merupakan tanda kekurangan kekebalan selular pada anak-anak (Frobisher, 1974).

g. Esofagus

Kesukaran menelan, rasa sakit di bawah iga, terjadi regurgitasi, adanya tanda di mulut dan tenggorokan (Cooper, 1996).
Gejala umum infeksi, menyebabkan kedinginan, panas tinggi, tekanan darah rendah, lemah, kadang-kadang ruam. Penderita mungkin juga mengalami gejala lainnya tergantung dari lokasi infeksi, misalnya, paru-paru akan menyebabkan demam dan batuk, atau bahkan batuk darah (Cooper, 1996).

D. Minyak Atsiri

Minyak atsiri tidak berwarna, tersimpan dalam keadaan segar pada tempat yang gelap dan tertutup rapat, tetapi dalam penyimpanan yang lama akan teroksidasi sehingga warnanya dapat berubah menjadi hitam. Pada umumnya minyak atsiri tidak dapat bercampur dengan air tapi larut dengan eter, alkohol, dan kebanyakan pelarut organik (Guenther, 1987).

Umumnya minyak atsiri diperoleh dengan cara destilasi dari bahan tumbuhan. Ada 3 macam cara yang digunakan dalam industri, yaitu:

1. Destilasi air

Destilasi air sangat sesuai untuk simplisia yang tidak rusak oleh pendidihan, karena di dalam proses ini terjadi kontak langsung antara simplisia dengan air mendidih. Selain keuntungan tersebut, destilasi air dapat menekukstraksi minyak atsiri yang berbentuk bubuk (akar, kulit, kayu, dan sebagainya). Bahan tersebut akan menggumpal jika disuling dengan uap, sehingga uap tidak dapat berpenetrasi ke dalam bahan (uap hanya menguapkan minyak atsiri yng terdapat di permukaan gumpalan). Partikel uap hanya akan berpenetrasi keseluruh bagian tanaman, jika bahan tersebut bergerak bebas dalam air mendidih. Oleh karena itu, bahan yang dapat menggumpal hanya
dapat diolah dengan cara destilasi air. Kualitas minyak yang dihasilkan baik, asal suhu tidak terlalu tinggi. Kelemahan dari destilasi air, yaitu komponen minyak yang bertitik didih tinggi dan bersifat larut dalam air tidak dapat menguap secara sempurna, sehingga minyak yang tersuling mengandung komponen yang tidak lengkap. Air dalam proses destilasi akan menyebabkan hidrolisa. Proses penyulingan membutuhkan waktu yang lama (Anonim, 1985).

Bahan tersebut mengapung diatas air atau terendam secara sempurna tergantung dari bobot jenis dan jumlah bahan yang disuling. Air dipanaskan dengan metode pemanasan yang biasa dilakukan, yaitu dengan panas langsung, mantel uap, uap air melingkar tertutup, atau dengan memakai pipa uap berlingkar terbuka atau berlubang. Ciri khas dari metode ini adalah kontak langsung antara bahan dengan air mendidih (Guenther, 1987).

2. Penyulingan dengan uap dan air

Pada metode penyulingan ini, bahanolah diletakkan di atas rak-rak atau saringan berlubang. Ketel suling diisi dengan air sampai permukaan air berada tidak jauh di bawah saringan. Air dapat dipanaskan dengan berbagai cara yaitu dengan uap jenuh yang basah dan bertekanan rendah. Ciri khas dari metode ini, adalah :

- Uap selalu dalam keadaan basah, jenuh dan tidak terlalu panas;
- Bahan yang disuling hanya berhubungan dengan uap dan tidak dengan air panas.
3. Penyulingan dengan uap

Penyulingan dengan uap digunakan untuk membuat minyak atsiri yang umumnya mengandung komponen minyak yang bertitik didih tinggi. Dengan penyulingan uap diperoleh keuntungan antara lain kualitas minyak yang diperoleh cukup baik, tekanan dan suhu dapat diatur, waktu penyulingan pendek, dan hidrolisa tidak terjadi. Penyulingan uap mempunyai kerugian juga yaitu peralatan mahal dan memerlukan tenaga ahli (Anonim, 1985).

Metode ketiga tersebut disebut penyulingan uap atau penyulingan uap langsung dan prinsipnya sama dengan yang telah dibicarakan di atas, kecuali air tidak diisikan dalam ketel. Uap yang digunakan adalah uap jenuh atau uap kelewat panas pada tekanan lebih dari 1 atmosfir. Uap dialirkan melalui pipa uap berlingkar yang berpori yang terletak di bawah bahan, dan uap bergerak ke atas melalui bahan yang terletak di atas saringan (Guenther, 1987).

E. Aktifitas Antifungus

Pengukuran aktifitas antimikroba dapat dilakukan dengan dua cara, yaitu:

1. Metode difusi

Cara ini berdasarkan kemampuan obat untuk berdifusi ke dalam media tempat kuman uji dapat berkembangbiak secara optimal. Cakram kertas yang mengandung antibiotika diletekkan di atas agar, atau bila dengan sumuran, antibiotika diteteskan ke dalam sumuran. Besarnya daerah difusi sesuai dengan daerah pertumbuhan atau hambatan kuman uji, dan sebanding dengan kadar obat yang diberikan.
Metoda difusi dikenal dengan beberapa cara yaitu:

a. Cara Kirby Bauwer

Kapas lidi steril dicelupkan dalam suspensi bakteri atau jamur yang konsentrasi 10^8 CFU/ml, lalu ditekankan pada dinding tabung hingga kapasnya tidak terlalu basah. Kemudian kapas lidi ditekankan pada permukaan media hingga rata. Pada permukaan media diletakkan kertas cakram atau disk yang mengandung larutan antimikroba dan diinkubasikan pada suhu 37°C 18-24 jam (Edber, 1986).

b. Cara tuang (pour plate)

Suspensi mikroba dengan konsentrasi 10^8 CFU/ml diambil secara ose dan dimasukkan dalam media agar yang mempunyai suhu 50°C. Setelah suspensi mikroba dibuat homogen, dituang pada media dan diibiarkan membeku, kemudian di atasnya diletakkan paper disk dan diinkubasikan 37°C, 18-24 jam.

c. Cara sumuran

Pada agar yang telah ditanami jamur, dibuat sumuran dengan garis tengah tertentu. Dan ke dalam sumuran diberi larutan uji dan diinkubasikan pada 37°C selama 18-24 jam.

Hasil dari metoda agar difusi berupa:

- zona radikal: daerah di sekitar disk yang sama sekali tidak ditemukan bakteri,

- zona irradikal: daerah di sekitar disk yang menunjukan pertumbuhan bakteri dihambat oleh larutan uji tetapi tidak dimatikan (Edber, 1986).
2. Metode dilusi

Sejumlah obat dengan seri pengenceran tertentu dicampur dengan media pertumbuhan cair atau padat, kemudian ditanami dengan fungus uji dan diinkubasi. Metode ini tidak mengamati luas daerah hambatan tetapi yang diamati adalah tingkat kekeruhannya.

F. Media

Untuk menumbuhkan suatu mikroorganisme diperlukan suatu substrat makanan yang biasa disebut media, yang mengandung unsur-unsur makanan yang diperlukan oleh jasad tersebut. Unsur-unsur makanan tersebut dapat berupa garam-garam anorganik dan senyawa-senyawa organik seperti protein, pepton, asam-asam amino, dan vitamin yang diperlukan untuk pertumbuhan.

Berdasarkan konsistensinya media dapat dibagi menjadi 3 macam, yaitu:

1. Media padat, dengan contoh media kentang, nasi, wortel, dan lain-lain.
2. Media cair, yaitu media yang berbentuk cair. misalnya media susu, nutrient broth (kaldu daging), glukosa, pepton, dan lain-lain.
3. Media semi padat (semi solid media), yaitu media yang dapat berbentuk padat, apabila suhunya dingin dan dapat berbentuk cair apabila suhunya panas. Media ini merupakan media yang dibubuhri atau ditambahi agar-agar sebagai bahan pemadat.
Berdasarkan komposisi dan susunannya, media dapat dibedakan menjadi:

1. Media sintetik, yaitu media yang dapat diketahui dengan pasti susunan kimianya

2. Media nonsintetik, yaitu media yang tidak dapat diketahui dengan pasti susunan kimianya, merupakan bahan-bahan alami seperti kentang, nutrien kaldu, telur dan sebagainya. Media sintetik dan media nonsintetik dapat dirancang untuk penggunaan khusus seperti:
 a. isolasi suatu mikroorganisme
 b. diferensiasi mikroorganisme
 c. penanaman (propagation) mikroorganisme (Tarigan, 1988).

G. Sterilisasi

Yang dimaksud dengan sterilisasi dalam mikrobiologi adalah suatu proses untuk mematikan semua mikroorganisme yang terdapat pada atau di dalam suatu benda. Ada dua macam cara utama yang umum dipakai dalam sterilisasi yaitu sterilisasi fisik dan sterilisasi kimia. Bila panas digunakan bersama-sama dengan uap air maka disebut sterilisasi basah atau lembab, bila tanpa kelembaban maka disebut sterilisasi panas kering atau sterilisasi kering.
1. Sterilisasi fisik

a. Sterilisasi basah

 Sterilisasi basah biasanya dilakukan di dalam autoklave atau sterilisator uap yang mudah dagingkat dengan menggunakan uap air jenuh bertekanan dengan suhu 121°C selama 15 menit. Sterilisasi basah dapat digunakan untuk mensterilkan bahan apa saja yang dapat ditembus uap air dan tidak rusak bila dipanaskan dengan suhu yang berkisar 110°C dan 121°C. Bahan-bahan yang biasa disterilkan dengan cara ini antara lain medium biakan yang umum, air suling, peralatan laboratorium, biakan yang akan dibuang, medium tercemar, dan bahan-bahan dari karet (Hadioetomo, 1993).

b. Sterilisasi kering

c. Sterilisasi dengan penyaringan

 Proses sterilisasi lain yang juga dilakukan pada suhu kamar ialah penyaringan. Dengan cara ini lanutan atau suspensi dibebaskan dari semua mikroorganisme hidup dengan cara melakukannya lewat saringan dengan ukuran pori yang sedemikian kecil (0,45 atau 0,22 mikron) sehingga bakteri dan sel-sel yang lebih besar tertahan di atasnya, sedangkan filtratnya ditampung di dalam wadah yang steril (Hadioetomo, 1993).
2. Sterilisasi kimia
Pelaksanaannya dilakukan dengan menggunakan gas atau cairan pembunuh kuman yang secara khusus diterapkan untuk bahan yang tidak tahan pemanasan, sediaan atau barang yang jika dipanaskan sekali atau berulangkali sedikit banyak akan mengalami perubahan. Sterilisasi secara kimia dapat menggunakan etilenoksida, asam perasetat, dan formaldehide (Voight, 1995).

H. Penggunaan Obat Antimikroba Gabungan
Alasan penggunaan dua atau lebih jenis obat antimikroba secara bersamaan adalah sebagai berikut:

1. untuk memberikan pengobatan yang cepat pada penderita sakit berat yang diduga menderita infeksi yang gawat, dibuat perkiraan dua atau tiga patogen penyebab yang paling mungkin, dan diberi obat yang ditujukan pada patogen tersebut.

2. untuk memperlambat timbulnya mutan mikroorganisme yang resisten terhadap suatu obat pada infeksi kronis agar menggunakan obat kedua atau ketiga yang tidak bereaksi silang.

3. untuk mengobati infeksi campuran, terutama yang disertai trauma massif atau mengenai struktur vaskuler. Masing-masing obat ditujukan untuk mikroorganisme yang penting.

4. untuk mencapai sinergisme bakterisidal atau untuk menimbulkan kerja bakterisidal. Sinergi ini hanya dapat diperkirakan sebagian, dan pemberian sepasang obat dapat sinergistik hanya untuk strain mikroorganisme
tunggal. Kadang-kadang penggunaan dua obat secara bersamaan memungkinkan pengurangan dosis yang nyata dengan demikian menghindarkan toksisitas tetapi masih memberikan daya kerja antimikroba yang memuaskan (Jawetz dkk, 1996).

Mekanisme:

Bila dua obat antimikroba bekerja secara bersamaan pada populasi mikroorganisme yang homogen, pengaruhnya dapat berupa salah satu dari yang berikut ini:

1. tidak terjadi apa-apa, yaitu daya kerja gabungan tidak lebih besar daripada daya kerja obat yang lebih efektif bila digunakan sendiri (Jawetz dkk, 1996).

2. pertambahan atau adisi, yaitu daya kerja gabungan sama dengan jumlah daya kerja tiap obat jika digunakan sendiri-sendiri (Jawetz dkk, 1996). Efek kombinasi obat A dan B sama dengan komponen tunggal yang lebih aktif dari campuran A + B atau sama jumlah perhitungan efek masing-masing obat dalam dosis yang dipilih. Efek total serupa dapat diperoleh dengan menggunakan satu obat dalam dosis yang setara dengan dosis campuran (Katzung, 1987).

I. Simplex Lattice Design

Formula yang optimal seringkali dapat diperoleh dari penetapan simplex lattice design. Penerapan simplex lattice design digunakan untuk menentukan optimasi formula pada berbagai perbedaan jumlah komposisi bahan (dinyatakan dengan beberapa bagian) yang jumlah totalnya dibuat tetap yaitu sama dengan satu bagian.

Contoh penerapan simplex lattice design dapat digambarkan dalam sistem dua komponen pelarut pada berbagai kombinasi yang berbeda. Dari hasil percobaan dapat dibuat suatu profil yang menggambarkan hubungan antara berbagai kombinasi pelarut dengan banyaknya zat yang terlarut.

![Diagram Solubility](image)

Gambar 1. Sistem dua pelarut yang digunakan untuk menggambarkan optimasi banyaknya zat yang terlarut
Gambar di atas dapat digunakan untuk menggambarkan dasar simplex lattice design. A dan B adalah masing-masing pelarut. Contoh dasar penerapan simplex lattice design adalah penelitian dasar terdiri dari berbagai kelarutan zat pada pelarut A saja (100% = 1 bagian), pada pelarut B saja (100% = 1 bagian), dan campuran pelarut A dan B masing-masing 50% (masing-masing = 0,5 bagian). Sesuai gambar 1, dari hasil percobaan zat yang terlarut pada 100%A, 100%B, 50%A-50%B berturut-turut adalah 10mg/ml, 15mg/ml, dan 25mg/ml. Dalam pendekatan yang sederhana akan dihasilkan persamaan sebagai berikut:

\[Y = a (A) + b (B) + ab (A) (B) \]

Keterangan: \(Y \) = respon (hasil penelitian)

\((A) \) = kadar proporsi komponen A

\((B) \) = kadar proporsi komponen B

a,b,dan ab = koefisien yang dihitung dari pengamatan penelitian

Koefisien a, b, dan ab dapat dihitung dari hasil percobaannya. Percobaan pertama, menggunakan pelarut A saja, berarti:

\((A) = 100\% = 1 \text{ bagian} \)

\((B) = 0\% = 0 \text{ bagian} \)

Hasil percobaan, zat yang terlarut 10mg/ml.

\[Y = a (A) + b (B) + ab (A) (B) \]

\[10 = a (1) + b (0) + ab (1) (0) \]

jadi \(a = 10 \)
Percobaan kedua, menggunakan pelarut B saja, berarti:

(A) = 0% = 0 bagian
(B) = 100% = 1 bagian

Hasil percobaan, zat yang terlarut 15mg/ml.

\[Y = a(A) + b(B) + ab(A)(B) \]
\[15 = 10(0) + b(1) + ab(0)(1) \]

jadi \(b = 15 \)

percobaan ketiga, menggunakan campuran pelarut A dan B masing-masing 50% berarti:

\((A) = 0,5 \) bagian, \((B) = 0,5 \) bagian

Hasil percobaan, zat yang terlarut 20mg/ml

\[Y = a(A) + b(B) + ab(A)(B) \]
\[20 = 10(0,5) + 15(0,5) + ab(0,5)(0,5) \]

jadi \(ab = 30 \)

Hasil persamaan yang didapat: \(Y = 10(A) + 15(B) + 30(A)(B) \)

Dari persamaan yang didapat, bisa diprediksikan jumlah zat yang terlarut pada campuran pelarut dengan komposisi tertentu, sehingga dapat digambarkan profil antara campuran biner pelarut terhadap jumlah zat yang terlarut (gambar 1).

Dari profil tersebut dapat secara teoritis diketahui diprediksi campuran pelarut dengan berapa bagian pelarut A dan berapa bagian pelarut B yang dapat menghasilkan jumlah zat yang terlarut secara optimum. Hasil teoritis ini perlu dicek dengan percobaan (Bolton, 1997).
J. Landasan Teori

Candida albicans sering ditemukan pada saluran pencernaan, saluran urogenital, mulut, kulit, dan tenggorokan. Dalam keadaan normal, fungus ini tidak menimbulkan penyakit, tetapi bila terjadi penurunan daya tahan tubuh hospes, dapat menyebabkan penyakit oleh jamur tersebut. Penyakit oleh jamur ini dapat diobati dengan obat yang bersifat fungisida yang mengandung senyawa fenolik. Minyak atsiri mengandung senyawa fenolik, sehingga dapat bersifat sebagai fungisida.

Sampai saat ini, telah dilakukan penelitian mengenai aktifitas daya antifungus minyak atsiri rimpang jahe merah dan bunga kenanga masing-masing komponen secara terpisah, tetapi penelitian tentang penggunaan bersama kedua komponen minyak atsiri dalam bentuk campuran belum pernah dilakukan. Hal ini berdasarkan asumsi bahwa pemakaian dua senyawa obat yang memiliki fungsi yang sama, dapat menghasilkan efek yang lebih kuat (sinergisme) daripada penggunaan secara terpisah. Senyawa fenolik yang terkandung dalam masing-masing minyak atsiri apabila pemakaiannya bersama-sama diharapkan menghasilkan aktifitas daya antifungus yang lebih besar daripada penggunaan yang terpisah.

K. Hipotesis

Campuran minyak atsiri bunga kenanga dan minyak atsiri rimpang jahe merah memiliki aktifitas antifungus yang lebih besar terhadap *Candida albicans* dibandingkan dengan penggunaan masing-masing minyak atsiri secara terpisah.
BAB III

METODOLOGI PENELITIAN

A. Jenis dan Rancangan Penelitian

Penelitian ini termasuk jenis penelitian eksperimental murni yang dilakukan di Laboratorium Mikrobiologi dan Laboratorium Farmakognosi Fitokimia Fakultas Farmasi Universitas Sanata Dharma, dengan Rancangan Acak Lengkap Pola searah.

B. Variabel Penelitian dan Definisi Operasional

1. Identifikasi variabel
 a. Variabel bebas
 Minyak atsiri bunga kenanga 100 %, minyak atsiri rimpang jahe merah 100 %, campuran minyak atsiri rimpang jahe merah dan minyak atsiri bunga kenanga dengan perbandingan 50%: 50% dan 75% : 25%.
 b. Variabel tergantung
 Diameter zona hambat *Candida albicans*.
 c. Variabel pengacau
 - Sterilisasi alat
 - Media percobaan
 - Suhu percobaan
 - Keaseptisan cara inokulasi

26
2. Definisi operasional

a. Penelitian in vitro adalah penelitian yang dilakukan di luar jaringan hidup, misalnya laboratorium.

b. Minyak atsiri bunga kenanga adalah minyak atsiri dari bunga kenanga segar yang diperoleh dengan metode destilasi air.

c. Minyak atsiri rimpang jahe merah adalah minyak atsiri dari rimpang kering jahe merah yang diperoleh dengan cara destilasi air.

d. Daya antifungus adalah kemampuan suatu zat atau bahan obat untuk menghambat pertumbuhan atau membunuh fungus tersebut.

e. Zona radikal adalah daerah disekitar sumuran yang sama sekali tidak ditekan adanya pertumbuhan mikroba.

f. Zona irradikal adalah daerah disekitar sumuran yang pertumbuhan mikroba nanya dihambat tetapi tidak dimatikan.

g. Jamur oportunistis adalah jamur yang dapat menyebabkan penyakit pada orang yang mekanisme pertahannya terganggu.

h. Minyak atsiri bunga kenanga 100% adalah satu bagian minyak atsiri bunga kenanga dengan konsentrasi 2%.

i. Minyak atsiri rimpang jahe merah 100% adalah satu bagian minyak atsiri rimpang jahe merah dengan konsentrasi 2%.
C. Bahan dan alat penelitian

1. Bahan penelitian
 - Bunga kenanga segar dan rimpang jahe merah kering
 - PEG 400 sebagai pengencer minyak atsiri dan kontrol negatif
 - *Candida albicans* diperoleh dari laboratorium mikrobiologi, Fakultas Farmasi, Universitas Sanata Dharma
 - Aquadest sebagai pelarut SDA
 - Media SDA (Sobouroud Dextrose Agar)
 - Media Sobouroud Dextrose Liquid

2. Alat penelitian
 - Alat-alat gelas untuk wadah medium fungus dan aquadest
 - Alat destilasi air untuk mengisolasi minyak atsiri
 - Autoclave untuk sterilisasi alat dan media fungus
 - Laminar Air Flow sebagai ruangan pada saat menginokulasikan fungus
 - Kompor listrik untuk memanaskan media
 - Inkubator untuk mengembangbiakkan fungus dengan suhu yang sesuai
 - Mikropipet untuk mengukur minyak atsiri yang akan dituangkan ke dalam sumuran
 - Jarum ose untuk menginokulasi fungus
 - Shake vortex untuk menghomogenkan larutan stok *Candida albicans*
 - Sumuran nomor 4 (8,00 mm)
 - *Jangka sorong* untuk mengukur diameter zona hambat
D. Tatacara Penelitian

1. Determinasi tanaman

Determinasi dilakukan dengan menggunakan kunci determinasi pada buku Flora of Java (Backer and Bakhuizen van den brink, 1963; 1968).

2. Isolasi minyak atsiri jahe merah

Rimpang segar jahe merah dirajang dengan ketebalan 5 mm kemudian dikeringkan dalam oven dan dimasukkan ke dalam labu destilasi yang telah berisi air sampai terendam semua. Labu dihubungkan dengan alat penyulingan dan dididihkan. Uap air dan minyak dialirkan melalui pendingin sehingga mengembun dan ditampung dalam buret. Setelah semua didestilasi, kemudian dipisahkan antara lapisan minyak dan air.

3. Isolasi minyak atsiri bunga kenanga

Bunga kenanga segar 50 gram dimasukkan ke dalam 300 ml aquadest, setelah itu dimasukkan ke dalam labu destilasi Stahl, kemudian dipanaskan dengan alat termostat suhu 50°C selama 5 jam, setelah itu dipisahkan antara fraksi air dan minyak.

4. Penetapan rendemen minyak atsiri

Sebanyak 10 gram bahan didestilasi dengan menggunakan alat destilasi Stahl. Setelah diperoleh minyak atsirinya, kadar minyak atsiri dihitung dalam v/b.
5. Uji aktifitas antifungus

a. Sterilisasi alat-alat
Alat-alat yang akan disterilkan, dibungkus dengan kertas payung, kemudian dimasukkan dalam autoclave, kemudian penutup ditutup rapat dan sumber uap dipanaskan diatur pada suhu 121°C selama 20 menit. Setelah waktu tersebut, sumber uap dimatikan dan ketika tekanan 0 atmosfir, klep dibuka perlahan-lahan dan udara dibiarkan keluar. Penutup dibuka dan alat-alat dikeluarkan kemudian dikeringkan dalam oven.

b. Pembuatan media SDA
Sebanyak 65 gram SDA dimasukkan ke dalam erlenmeyer ditambah 1 liter air suling, ditutup dengan kapas dan kertas lalu disterilkan pada suhu 121°C dengan tekanan 1 atm selama 15 menit.

c. Penyiapan stok Candida albicans
Candida albicans diambil dari kultur simpanan menggunakan ose, diambil 3-4 koloni tunggal, diinokulasikan pada 10 ml SDA dengan tabung reaksi dan diinkubasikan selama 16-24 jam pada temperatur kamar. Setelah diinkubasikan, diambil 1 ml dari 10 ml suspensi mikroba tersebut untuk diencerkan dengan aquadest steril sampai sama dengan standart Macfarland nomor 1 dengan jumlah bakteri 3×10^8 Coloni Forming Unit (CFU/ml).
d. Penentuan daya antifungus campuran minyak atsiri bunga kenanga dan minyak atsiri rimpang jahe merah

Media agar yang telah diinokulasion dengan 1 ml larutan stok *Candida albicans* dibagi lima bagian sama besar. Pada setiap bagian dibuat sumuran dengan ukuran 8 mm. Dua sumuran masing-masing diteteskan minyak atsiri bunga kenanga 100% dan minyak atsiri rimpang jahe merah 100%, sedangkan dua sumuran berikutnya diteteskan masing-masing dengan campuran minyak atsiri rimpang jahe merah dan minyak atsiri bunga kenanga dengan perbandingan 50% : 50% dan 75% : 25%. Kontrol negatif digunakan PEG 400. Volume minyak atsiri yang diteteskan pada masing-masing sumuran adalah 50 µl untuk setiap penetesan, kemudian cawan petri diinkubasikan selama 24 – 46 jam.

e. Identifikasi *Candida albicans* secara mikroskopis

f. Cara analisis

Penelitian ini menggunakan minyak atsiri yang berbeda yaitu minyak atsiri bunga kenanga dan minyak atsiri rimpang jahe merah, selain itu digunakan dua campuran dari kedua minyak atsiri di atas. Pelakuan yang dilakukan sebanyak tiga kali terhadap subyek uji dan kontrol negatif. Untuk mengetahui pengaruh perbedaan khasiat masing-masing campuran minyak atsiri dibandingkan dengan masing-masing komponen minyak atsiri secara terpisah maka digunakan analisis ANOVA satu arah dan dilanjutkan dengan uji Scheffe dengan taraf kepercayaan 95 %.
BAB IV
HASIL PENELITIAN DAN PEMBAHASAN

A. Determinasi Tanaman Jahe Merah

Tanaman jahe merah yang digunakan untuk penelitian diperoleh dari daerah Kulonprogo, Yogyakarta. Tanaman jahe merah ini perlu dideterminasi terlebih dahulu dengan tujuan untuk menghindari terjadinya kesalahan dan untuk memperoleh kepastian bahwa rimpang yang digunakan benar berasal dari tanaman jahe yang dimaksud. Determinasi menggunakan kunci determinasi (Backer dan Bakhuizen van den Brink, 1963, 1968) dengan hasil kunci determinasi sebagai berikut:

1b-2b-3b-4b-12b-13b-14b-17b-18b-19b-20b-21b-22b-23b-24b-25b-26b-27a-28b-29b-30b-31a-32b-33a-34b-333b-334b-335a-336a-337b-338a-339b-340a-------------------207.Zingiberaceae

1a-2b-6a--1. Zingiber

1a-2b-6a-7a-------------------------------------Zingiber officinale Roxb. (Backer dan Bakhuizen van den Brink, 1963; 1968).

Dari determinasi tersebut, dapat dinyatakan bahwa tanaman yang akan digunakan dalam penelitian ini adalah tanaman jahe merah (lampiran 1).

33
B. Determinasi Tanaman Kenanga

Dalam penelitian ini, digunakan tanaman kenanga yang diperoleh dari daerah Tegalrejo, Yogyakarta. Determinasi menggunakan kunci determinasi (Backer dan Bakhuizen van den Brink, 1963) dengan hasil kunci determinasi dari tanaman kenanga (*Cananga odorata* (Lmk) Hook.f.&Thoms) sebagai berikut:

1a-2b-3b-4b-12b-13b-14b-17b-18b-19b-20b-21b-22b-23b-24b-25b-26b-27a-28b-29b-30b-31a-32a-33a-34b-35a-36d-37d-41b-42b-44b-45b-46e-50b-51b-53b-54b-56b-57b-58b-59d-72b-73b-74a-75b-76a-77a-78a-79b-80b-186b-287b-289b-298b-302b-308b-309b-310b-311a-312a-313b------------------------(10.Annonaceae)

1b-10b-13b-17b-18b-19b-21a---------------------------------------(5.Cananga)

--(Cananga odorata (Lmk) Hook.f.&Thoms).

C. Pengumpulan Bahan

D. Isolasi Minyak Atsiri

Metode isolasi dan perhitungan rendemen minyak atsiri rimpaang jahe merah dan minyak atsiri bunga kenanga yang digunakan dalam penelitian ini adalah destilasi air dengan alat destilasi Stahl. Ciri khas dari metode ini adalah kontak langsung bahan dengan air mendidih. Pengisian bahan dalam labu alas bulat tidak boleh terlalu penuh hal ini untuk menghindari bahan jangan sampai ikut naik bersama air mendidih menuju kondensor dan mengotori minyak yang sudah terser. Jika air mendidih pada tekanan tertentu, maka kondensat akan mulai keluar dari ujung kondensor dan menetes kealat pemisah minyak, yang sebelumnya telah diisi air.

Kelebihan metode destilasi air adalah alat sederhana, cocok untuk bahan-bahan yang mudah menggumpal dengan uap langsung sehingga uap tidak dapat berpenetrasi ke dalam bahan. Kelemahan dari metode ini yaitu konstituen minyak atsiri yang berbentuk didih lebih tinggi dan larut dalam air tidak dapat menguap dengan sempurna, sehingga minyak yang tersuling mengandung komponen yang tidak lengkap. Minyak atsiri yang mengandung komponen yang tidak lengkap akan mengakibatkan kadar minyak atsiri yang diperoleh akan rendah.
Minyak atsiri hasil destilasi rimpang jahe merah yang diperoleh berbau harum dan berwarna kuning kecoklatan. Rendemen minyak atsiri rimpang jahe merah dapat dilihat pada tabel I. Foto alat destilasi Stahl yang digunakan dalam penelitian dapat dilihat pada lampiran 7.

Tabel I. Rendemen minyak atsiri rimpang kering jahe merah

<table>
<thead>
<tr>
<th>NO</th>
<th>BERAT BAHAN (GRAM)</th>
<th>VOL. MINYAK ATSIRI</th>
<th>RENDEMEN (% B/V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>0,162</td>
<td>1,62</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0,158</td>
<td>1,58</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>0,160</td>
<td>1,60</td>
</tr>
</tbody>
</table>

\[X \pm SD = 1,6\% \pm 0,02 \text{ (% v/b)} \]

Dari hasil penetapan rendemen diperoleh hasil purata rendemen minyak atsiri rimpang jahe merah adalah 1,6\% \pm 0,02 \text{ (%v/b)}. Menurut Materia Medika Indonesia (Anonim, 1978), kadar minyak atsiri yang terkandung dalam rimpang jahe merah tidak kurang dari 0,7 \% v/b, sehingga dapat dikatakan bahwa minyak atsiri yang dihasilkan dalam isolasi ini memenuhi syarat yang ada.

Minyak atsiri hasil destilasi bunga kenanga yang diperoleh, berbau harum dan berwarna bening kekuningan. Rendemen minyak atsiri bunga kenanga yang diperoleh, dapat dilihat pada tabel II.
Tabel II. Rendemen minyak atsiri bunga kenanga

<table>
<thead>
<tr>
<th>NO</th>
<th>BERAT BAHAN (GRAM)</th>
<th>VOL. MINYAK ATSIRI (ML)</th>
<th>RENDEMEN (% v/b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>0,09</td>
<td>0,9</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0,085</td>
<td>0,85</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>0,09</td>
<td>0,9</td>
</tr>
</tbody>
</table>

\[X \pm SD = 0,88\% \pm 0,029 \text{ (% v/b)} \]

Dari hasil penetapan rendemen, diperoleh hasil purata rendemen minyak atsiri bunga kenanga 0,88\% ± 0,029 (%v/b).

Rimpang jahe merah dikeringkan dengan menggunakan oven dengan suhu terkontrol sekitar 50\(^\circ\)C, sehingga panas yang mengenai rimpang tidak terlalu tinggi dan penguapan minyak atsiri tidak terlalu besar. Pengereman ini bertujuan untuk mendapatkan simplisia yang dapat disimpan untuk waktu yang lama. Data rendemen pengereman rimpang jahe merah dapat dilihat pada tabel III.

Tabel III. Rendemen pengerenan rimpang jahe merah

<table>
<thead>
<tr>
<th>NO</th>
<th>BERAT BASAH (GRAM)</th>
<th>BERAT KERING</th>
<th>RENDEMEN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>1,1850</td>
<td>11.85</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1,1860</td>
<td>11.86</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>1,1287</td>
<td>11.29</td>
</tr>
</tbody>
</table>

\[X \pm SD = 11,67 \% \pm 0,33 \text{ (% v/b)} \]

Dari hasil penelitian, diperoleh perhitungan rendemen pengerenan rimpang jahe merah sebesar 11,67 \% ± 0,33 (%v/b).
A. Uji Daya Antifungus Dengan Metode Difusi

Uji aktifitas antifungus dengan metode difusi dengan cara sumuran. Cara sumuran dipilih karena minyakatsiri akan langsung berhubungan dengan media bagian dalam dan dapat langsung berdifusi ke dalam lapisan media. Semakin banyak minyak atsiri yang berdifusi ke dalam media maka semakin tinggi zona hambat yang dihasilkan. Pada penelitian ini digunakan sumuran dengan diameter 8,00 mm pada media SDA. Konsentrasi yang digunakan adalah minyak atsiri rimpang jahe merah 100%, minyak atsiri bunga kenanga 100%, campuran minyak atsiri rimpang jahe merah-minyak atsiri bunga kenanga 50%-50% dan 75%-25%.

PEG 400 digunakan untuk kontrol negatif, karena pada penelitian ini PEG 400 sebagai pelarut minyak atsiri. Kontrol negatif digunakan disini untuk memastikan bahwa PEG 400 tidak bisa memiliki aktifitas antimikroba terhadap Candida albicans, sehingga diameter zona hambat yang terbentuk pada tiap-tiap konsentrasi benar-benar merupakan aktifitas dari tiap-tiap konsentrasi minyak atsiri tersebut.

Pengujian daya antifungus ini dilakukan sebanyak tiga kali. Aktifitas antifungus minyak atsiri ditunjukkan dengan adanya zona hambat disekitar sumuran. Pada pengukuran diameter zona hambat, pengukuran dilakukan dengan mengukur diameter zona hambat secara menyeluruh dan tidak dibedakan menjadi zona radikal atau zona irradikal.

Hasil pengukuran diater zona hambat minyak atsiri rimpang jahe merah dan minyak atsiri bunga kenanga serta campuran keduanya dapat dilihat pada tabel IV. Foto hasil uji daya antifungus minyak atsiri yang menunjukan zona hambatan dapat dilihat pada lampiran 9.
Tabel IV. Diameter zona hambat minyak atsiri pada *Candida albicans*

<table>
<thead>
<tr>
<th>Konsentrasi</th>
<th>Rata-rata (mm)</th>
<th>$\mu \pm SD$</th>
</tr>
</thead>
<tbody>
<tr>
<td>JM 100%</td>
<td>9,7</td>
<td>9,7 ± 0,20</td>
</tr>
<tr>
<td>K 100%</td>
<td>4,4</td>
<td>4,4 ± 0,21</td>
</tr>
<tr>
<td>JM:K=50%:50%</td>
<td>9,3</td>
<td>9,3 ± 0,42</td>
</tr>
<tr>
<td>JM:K=75%:25%</td>
<td>13,0</td>
<td>13,0 ± 0,90</td>
</tr>
</tbody>
</table>

Keterangan:

- **JM 100%**: minyak atsiri rimpang jahe merah 100%
- **K 100%**: minyak atsiri bunga kenanga 100%
- **JM:K=50%:50%**: campuran minyak atsiri rimpang jahe merah-minyak atsiri bunga kenanga 50%:50%
- **JM:K=75%:25%**: campuran minyak atsiri rimpang jahe merah-minyak atsiri bunga kenanga 75%:25%

Dari hasil pengukuran diameter zona hambat dibuat suatu grafik perbandingan diameter zona hambat pertumbuhan *Candida albicans* pada berbagai konsentrasi minyak atsiri rimpang jahe merah dan minyak atsiri bunga kenanga serta campuran keduanya (gambar 2).
Gambar 2. Grafik Perbandingan Zona Hambat *Candida albicans*

<table>
<thead>
<tr>
<th>Komposisi minyak atsiri</th>
<th>Diameter zona hambat (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 100</td>
<td>4.4</td>
</tr>
<tr>
<td>C50%-50%</td>
<td>9.3</td>
</tr>
<tr>
<td>C75%-25%</td>
<td>12.4</td>
</tr>
<tr>
<td>JM 100</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Keterangan:
- **JM 100%**: minyak atsiri rimpang jahe merah 100%
- **K 100%**: minyak atsiri bunga kenanga 100%
- **C 50%-50%**: campuran minyak atsiri rimpang jahe merah-minyak atsiri bunga kenanga 50%-50%
- **C 75%-25%**: campuran minyak atsiri rimpang jahe merah-minyak atsiri bunga kenanga 75%-25%

Dari data di atas, terlihat bahwa minyak atsiri rimpang jahe merah 100% memiliki zona hambatan yang lebih besar daripada minyak atsiri bunga kenanga 100%. Pada campuran minyak atsiri rimpang jahe merah dan minyak atsiri bunga kenanga 50%-50% diperoleh hambatan yang hampir sama dengan zona hambat pada minyak atsiri rimpang jahe merah 100%. Diameter zona hambat pada campuran rimpang jahe merah-minyak atsiri bunga kenanga 75%-25% diperoleh
zona hambat yang lebih besar daripada zona hambat yang diperoleh baik pada minyak atsiri rimpang jahe merah 100% maupun minyak atsiri bunga kenanga 100%. Diameter yang lebih besar pada campuran 75%-25% mungkin karena adanya reaksi adisi yang dihasilkan oleh kedua minyak atsiri. Reaksi adisi yaitu daya kerja gabungan sama dengan jumlah daya kerja tiap obat bila digunakan sendiri-sendiri (Jawetz dkk, 1996).

Profil daya hambat campuran minyak atsiri rimpang jahe merah dan minyak atsiri bunga kenanga tanpa melakukan percobaan, pada campuran minyak atsiri dapat diprediksi melalui pendekatan simplex lattice design dengan dua komponen, diperlukan 3 percobaan, yaitu, minyak atsiri rimpang jahe merah 100%, minyak atsiri bunga kenanga 100%, dan campuran minyak atsiri jahe merah – minyak atsiri bunga kenanga 50% - 50%.

Dari data yang diperoleh dan berdasarkan perhitungan yang tertera pada lampiran 10, diperoleh rumus:

\[Y : 9,7 \times (A) + 4,4 \times (B) + 9,2 \times (A) \times (B) \]

Dengan keterangan: \(Y \) : diameter zona hambat minyak atsiri

\(A \) : kadar minyak atsiri rimpang jahe merah

\(B \) : kadar minyak atsiri bunga kenanga

Berdasarkan rumus yang diperoleh, dibuat perhitungan uji validitas yang diperoleh nilai \(F \) hitung yang lebih besar daripada \(F \) tabel yang berarti ada regresi, sehingga persamaan ini dapat digunakan untuk perhitungan campuran minyak atsiri sebagai antifungus. Profil daya hambat campuran minyak atsiri rimpang jahe merah dan minyak atsiri bunga kenanga dapat dilihat pada gambar 3.
Gambar 3. Profil daya hambat campuran minyak atsiri rimpang jahe merah dan bunga kenanga

Graph

Komposisi Minyak Atsiri

- JM 100% : minyak atsiri rimpang jahe merah 100%
- K 100% : minyak atsiri bunga kenanga 100%
- C 50%:50% : campuran minyak atsiri rimpang jahe merah- ATSIRI bunga kenanga 50%:50%
- C 75%:25% : campuran minyak atsiri rimpang jahe merah-ATSIRI bunga kenanga 75%:25%

Besarnya hambatan ini berbanding lurus dengan jumlah minyak atsiri jahe merah dalam campuran.
Untuk mengetahui daya antifungus yang berbeda dari masing-masing konsentrasi minyak atsiri dan campurannya maka dilakukan analisis statistik dengan ANOVA satu arah dan dilanjutkan dengan uji Scheffe, dengan taraf kepercayaan 95%. Analisis ini digunakan untuk menunjukkan bahwa masing-masing konsentrasi minyak atsiri dan campurannya menunjukan diameter zona hambat yang berbeda secara bermakna. Analisis statistik dengan ANOVA satu arah dan dilanjutkan dengan uji Scheffe dapat dilihat pada lampiran 11.

Rangkuman hasil analisis uji Scheefe dapat dilihat pada tabel V.

Tabel V. Rangkuman hasil uji Scheefe

<table>
<thead>
<tr>
<th>NO</th>
<th>PERLAKUAN</th>
<th>PERLAKUAN</th>
<th>HASIL ANALISA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>JAHE 100 %1</td>
<td>K 100%</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>C 50%:50%</td>
<td>Tidak berbeda bermakna</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>C 75%:25%</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>4</td>
<td>K 100%</td>
<td>JAHE100%</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>C 50%</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>C75%:25%</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>7</td>
<td>C 50%:50%</td>
<td>JAHE 100%</td>
<td>Tidak berbeda bermakna</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>K 100%</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>C 75%:25%</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>10</td>
<td>C 75%:25%</td>
<td>JAHE 100%</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>K 100%</td>
<td>Berbeda bermakna</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>C 50%:50%</td>
<td>Berbeda bermakna</td>
</tr>
</tbody>
</table>
Keterangan:

- JM 100% : minyak atsiri rimpang jahe merah 100%
- K 100% : minyak atsiri bunga kenanga 100%
- C 50%:50% : campuran minyak atsiri rimpang jahe merah-minyak atsiri bunga kenanga 50%:50%
- C 75%:25% : campuran minyak atsiri rimpang jahe merah-minyak atsiri bunga kenanga 75%:25%

Dari data di atas terlihat adanya perbedaan yang bermakna antar perlakuan, kecuali antara minyak atsiri rimpang jahe merah 100% dengan campuran minyak atsiri rimpang jahe merah dan minyak atsiri bunga kenanga 50%:50% tidak ada perbedaan yang bermakna.
BAB V
KESIMPULAN DAN SARAN

A. Kesimpulan
Campuran minyak atsiri rimpang jahe merah dan minyak atsiri bunga kenanga dengan perbandingan 75%:25% memiliki aktivitas antifungus yang tertinggi dan bersifat adisi jika dibandingkan dengan penggunaan masing-masing minyak atsiri secara terpisah.

B. Saran
1. Perlu dilakukan penelitian lebih lanjut dengan menggunakan konsentrasi minyak atsiri yang lebih beragam di sekitar perbandingan 75%:25%.
2. Perlu dicoba pada jamur lain selain Candida albicans

DAFTAR PUSTAKA

Lampiran
SURAT KETERANGAN

Yang bertanda tangan di bawah ini Kepala Bagian Biologi Farmasi Fakultas Farmasi UGM menerangkan bahwa:

Nama : Septi Iswahyuni
No. Mhs. : 998114186

telah mengidentifikasi serbuk rimpang Zingiber officinale Roxb. dan bunga Cananga odorata (Lmk.) Hook. f. & Thoms. di Laboratorium Farmakognosi Bagian Biologi Farmasi Fakultas Farmasi UGM.

Pada tanggal 30 Juli 2003
Surat keterangan ini dapat digunakan sepihanya.

Yogyakarta, 31 Juli 2003
Bagian Biologi Farmasi
Kepala

[Signature]

Dr. Subagus Wahyono, Apt.
NIK. 130604698
Lampiran 2. Foto tanaman jahe merah
Lampiran 3. Foto rimpang jahe merah
Lampiran 4. Foto rimpang jahe merah yang sudah dikeringkan
Lampiran 5. Foto tanaman bunga kenanga
Lampiran 6. Foto bunga kenanga
Lampiran 7. Foto alat destilasi Sthal
Lampiran 9. Foto hasil uji daya antifungus *Candida albicans*

Keterangan:
A: kontrol negatif
B: minyak atsiri rimpang jahe merah 100%
C: minyak atsiri bunga kenanga 100%
D: campuran minyak atsiri rimpang jahe merah - bunga kenanga 50%:50%
E: campuran minyak atsiri rimpang jahe merah - bunga kenanga 75%:25%
Lampiran 10.

PERHITUNGAN DIAMETER ZONA HAMBAT DENGAN METODA SIMPLEX LATTICE DESIGN

Rumus simplex lattice design, yaitu :

\[Y = a \ (A) + b \ (B) + ab \ (A) \ (B) \]

Keterangan :
\[Y \] = diameter zona hambat minyak atsiri
\[A, b, ab \] = koefisien yang diperoleh dari hasil percobaan
\[(A), (B) \] = kadar campuran minyak atsiri

penerapan simplex lattice design :

formula 1 = minyak atsiri rimpang jahe merah 100% = 1 bagian
\[Y_1 \] = diameter zona hambat = 9,7 mm

\[Y_1 = a \ (A) + b \ (B) + ab \ (A) \ (B) \]

\[(A) = 1, (B) = 0 \]
\[9,7 = a \ (1) + b \ (0) + ab \ (1)(0) \]
\[a = 9,7 \]

formula 2 = minyak atsiri bunga kenanga 100% = 1 bagian
\[Y_2 \] = diameter zona hambat = 4,4 mm
\[Y_2 = a \ (A) + b \ (B) + ab \ (A) \ (B) \]

\[(A) = 0, (B) = 1 \]
\[4,4 = 9,7 \ (0) + b \ (1) + ab \ (0) \ (1) \]
\[b = 4,4 \]

formula 3 = campuran minyak atsiri 1+2 = 50%- 50 %
\[Y_3 \] = diameter zona hambat campuran = 9,3
\[(A) = 0,5 \] bagian
\[(B) = 0,5 \] bagian
\[Y_3 = a \ (A) + b \ (B) + ab \ (A) \ (B) \]
\[9,3 = 9,7 \ (0,5) + 4,3 \ (0,5) + ab \ (0,5) \ (0,5) \]
\[9.3 = 4.85 + 2.15 + 0.25 \text{ ab}\]
\[9.3 = 7.0 + 0.25 \text{ ab}\]
\[\text{ab} = 9.2\]

Jadi \(Y = 9.7 \text{ (A)} + 4.4 \text{ (B)} + 9.2 \text{ (A) (B)}\)

Dari rumus dapat diketahui berapa diameter zona hambat jika digunakan campuran A : B = 75% : 25%.

\[Y = 9.7 \text{ (A)} + 4.4 \text{ (B)} + 9.2 \text{ (A) (B)}\]
\[Y = 9.7 \times 0.75 + 4.4 \times 0.25 + 9.2 \times 0.75 \times 0.25\]
\[Y = 7.275 + 1.1 + 1.725\]
\[Y = 10.10 \text{ mm.}\]

Campuran A : B = 25% : 75%:

\[Y = 9.7 \text{ (A)} + 4.4 \text{ (B)} + 9.2 \text{ (A) (B)}\]
\[Y = 9.7 \times 0.25 + 4.4 \times 0.75 + 9.2 \times 0.25 \times 0.75\]
\[Y = 2.425 + 3.3 + 1.725\]
\[Y = 7.45 \text{ mm.}\]

Jadi berdasarkan perhitungan untuk campuran minyak atsiri rimpang jahe merah dan bunga kenanga 75% : 25% dapat diperoleh diameter zona hambat 10.10 mm dan campuran 25% : 75% diperoleh diameter zona hambat 7.45 mm.
NPar Tests

One-Sample Kolmogorov-Smirnov Test

<table>
<thead>
<tr>
<th></th>
<th>KONSENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>12</td>
</tr>
<tr>
<td>Normal Parameters[^a,b]</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2,500</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>1,1677</td>
</tr>
<tr>
<td>Most Extreme</td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>.166</td>
</tr>
<tr>
<td>Positive</td>
<td>.166</td>
</tr>
<tr>
<td>Negative</td>
<td>-1.66</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>.574</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.897</td>
</tr>
</tbody>
</table>

[^a]: Test distribution is Normal.
[^b]: Calculated from data.

Oneway

Descriptives

<table>
<thead>
<tr>
<th>ZNHBT</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>3</td>
<td>9.700</td>
<td>.2000</td>
<td>.1155</td>
<td></td>
<td></td>
<td></td>
<td>9.5</td>
<td>9.9</td>
</tr>
<tr>
<td>2.0</td>
<td>3</td>
<td>4.367</td>
<td>.2082</td>
<td>.1202</td>
<td></td>
<td></td>
<td></td>
<td>4.2</td>
<td>4.6</td>
</tr>
<tr>
<td>3.0</td>
<td>3</td>
<td>9.267</td>
<td>.4163</td>
<td>.2404</td>
<td></td>
<td></td>
<td></td>
<td>8.8</td>
<td>9.6</td>
</tr>
<tr>
<td>4.0</td>
<td>3</td>
<td>12.433</td>
<td>.9016</td>
<td>.5207</td>
<td></td>
<td></td>
<td></td>
<td>11.5</td>
<td>13.3</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>8.942</td>
<td>3.0682</td>
<td>.8857</td>
<td></td>
<td></td>
<td></td>
<td>4.2</td>
<td>13.3</td>
</tr>
</tbody>
</table>

Test of Homogeneity of Variances

<table>
<thead>
<tr>
<th>ZNHBT</th>
<th>Levene Statistic</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.170</td>
<td>3</td>
<td>8</td>
<td>.170</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th>ZNHBT</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Between Groups</td>
<td>101,409</td>
<td>3</td>
<td>33,803</td>
<td>128,367</td>
</tr>
<tr>
<td></td>
<td>Within Groups</td>
<td>2,140</td>
<td>8</td>
<td>.267</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>103,549</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Post Hoc Tests

Multiple Comparisons

Dependent Variable: ZNHBT

Schefue

<table>
<thead>
<tr>
<th>(L) KONSENT</th>
<th>(J) KONSENT</th>
<th>Mean Difference (L-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>2,0</td>
<td>5.333*</td>
<td>.4223</td>
<td>.000</td>
<td>3.858 - 6.808</td>
</tr>
<tr>
<td>1,0</td>
<td>3,0</td>
<td>4.433</td>
<td>.4223</td>
<td>.002</td>
<td>-1.042 - 1.908</td>
</tr>
<tr>
<td>1,0</td>
<td>4,0</td>
<td>-2.733*</td>
<td>.4223</td>
<td></td>
<td>-4.208 - -1.258</td>
</tr>
<tr>
<td>2,0</td>
<td>1,0</td>
<td>-5.333*</td>
<td>.4223</td>
<td>.000</td>
<td>-6.808 - -3.858</td>
</tr>
<tr>
<td>2,0</td>
<td>3,0</td>
<td>-4.900*</td>
<td>.4223</td>
<td>.000</td>
<td>-6.375 - -3.425</td>
</tr>
<tr>
<td>2,0</td>
<td>4,0</td>
<td>-8.067*</td>
<td>.4223</td>
<td>.000</td>
<td>-9.542 - -6.592</td>
</tr>
<tr>
<td>3,0</td>
<td>1,0</td>
<td>4.333</td>
<td>.4223</td>
<td>.005</td>
<td>1.908 - 1.042</td>
</tr>
<tr>
<td>3,0</td>
<td>2,0</td>
<td>4.900*</td>
<td>.4223</td>
<td>.000</td>
<td>3.425 - 6.375</td>
</tr>
<tr>
<td>3,0</td>
<td>4,0</td>
<td>3.167</td>
<td>.4223</td>
<td>.001</td>
<td>-1.692 - 4.208</td>
</tr>
<tr>
<td>4,0</td>
<td>1,0</td>
<td>2.733*</td>
<td>.4223</td>
<td>.002</td>
<td>1.258 - 4.208</td>
</tr>
<tr>
<td>4,0</td>
<td>2,0</td>
<td>8.067*</td>
<td>.4223</td>
<td>.000</td>
<td>6.592 - 9.542</td>
</tr>
<tr>
<td>4,0</td>
<td>3,0</td>
<td>3.167</td>
<td>.4223</td>
<td>.001</td>
<td>1.692 - 4.642</td>
</tr>
</tbody>
</table>

*: The mean difference is significant at the .05 level.

Homogeneous Subsets

ZNHBT

Schefue

<table>
<thead>
<tr>
<th>KONSENT</th>
<th>N</th>
<th>Subset for alpha = .05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2,0</td>
<td>3</td>
<td>4,367</td>
</tr>
<tr>
<td>3,0</td>
<td>3</td>
<td>9,267</td>
</tr>
<tr>
<td>1,0</td>
<td>3</td>
<td>9,700</td>
</tr>
<tr>
<td>4,0</td>
<td>3</td>
<td>12,433</td>
</tr>
<tr>
<td>Sig</td>
<td></td>
<td>1,000</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 3,000.

KETERANGAN: A. 1,00 : minyak atsiri rimpang jahe merah 100%

B. 2,00 : minyak atsiri bunga kenanga 100%

C. 3,00 : campuran minyak atsiri rimpang jahe merah:bunga kenanga 50%:50%

D. 4,00 : campuran minyak atsiri rimpang jahe merah:bunga kenanga 75%:25%
Lampiran 11

Uji validitas Varian untuk Diameter Zona Hambat Minyak Atsiri

<table>
<thead>
<tr>
<th>Formula</th>
<th>Yij</th>
<th>\bar{y}</th>
<th>\hat{y}</th>
<th>\bar{y}</th>
<th>ss total</th>
<th>Ss residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahe Merah 100%</td>
<td>1</td>
<td>9,7</td>
<td>9,7</td>
<td>8,9</td>
<td>0,64</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9,5</td>
<td>9,7</td>
<td>8,9</td>
<td>0,36</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9,9</td>
<td>9,7</td>
<td>8,9</td>
<td>1,00</td>
<td>0,04</td>
</tr>
<tr>
<td>Campuran 50%:50%</td>
<td>1</td>
<td>9,4</td>
<td>9,3</td>
<td>8,9</td>
<td>0,25</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8,8</td>
<td>9,3</td>
<td>8,9</td>
<td>0,01</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9,6</td>
<td>9,3</td>
<td>8,9</td>
<td>0,49</td>
<td>0,09</td>
</tr>
<tr>
<td>Campuran 75%:25%</td>
<td>1</td>
<td>11,5</td>
<td>12,4</td>
<td>10,1</td>
<td>8,9</td>
<td>6,76</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12,5</td>
<td>12,4</td>
<td>10,1</td>
<td>8,9</td>
<td>12,96</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>13,3</td>
<td>12,4</td>
<td>10,1</td>
<td>8,9</td>
<td>19,36</td>
</tr>
<tr>
<td>Bunga Kenanga 100%</td>
<td>1</td>
<td>4,6</td>
<td>4,4</td>
<td>4,4</td>
<td>8,9</td>
<td>18,49</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4,2</td>
<td>4,4</td>
<td>4,4</td>
<td>8,9</td>
<td>22,09</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4,3</td>
<td>4,4</td>
<td>4,4</td>
<td>8,9</td>
<td>21,16</td>
</tr>
</tbody>
</table>

SS regresi = SS total − SS residual

= 103,57 − 18,48

= 85,09

<table>
<thead>
<tr>
<th>SS</th>
<th>Degrees of freedom</th>
<th>Mean square</th>
<th>F hitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>regresi</td>
<td>85,09</td>
<td>3</td>
<td>28,36</td>
</tr>
<tr>
<td>residual</td>
<td>18,48</td>
<td>8</td>
<td>2,31</td>
</tr>
<tr>
<td>total</td>
<td>103,57</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan : F Tabel = 4,07.
BIOGRAFI PENULIS