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Well-balanced computations of weak local
residuals for the shallow water equations
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Abstract

The one-dimensional shallow water equations describe mass con-
servation and momentum conservation. We propose a well-balanced
numerical technique for computing weak local residuals of the momen-
tum equation. We compare the performance of weak local residuals of
the momentum equation to those of the mass equation. All weak local
residuals behave similarly.
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1 Introduction

Karni, Kurganov and Petrova [5] originally proposed using weak local residuals
(or local truncation errors) as smoothness indicators for conservation laws.
The available theory supporting weak local residuals as smoothness indicators
is only valid for scalar conservation laws, but with numerical experiments
weak local residuals as smoothness indicators were seen to be also valid for
systems of conservation laws [4, 5]. A conservation law is homogeneous and
so does not have any source terms. Section 2 derives the weak local residual
for the scalar balance law.

In this article we measure the smoothness of solutions of the one-dimensional
shallow water equations. The shallow water equations form a system of
balance laws, that is, a system of conservation laws with an additional
nonzero source term. The system consists of a homogeneous equation of mass
conservation and a non-homogeneous equation of momentum conservation.
We propose a numerical technique for measuring the smoothness of momentum
by computing the weak local residuals of the momentum equation. Mungkasi
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and Roberts [9] discussed measuring the smoothness of water height using
mass conservation. In Section 3 we describe our numerical technique for
computing the weak local residuals of the momentum equation.

Due to the existence of a source term in the momentum equation (equation
of momentum conservation), the computation of the equation’s weak local
residuals must be well-balanced. A non-well-balanced computation of a weak
local residual may lead to spurious oscillations of the residual, leading to
incorrect smoothness or error indicators. In this article we consider the
steady state of a lake at rest. We develop well-balanced treatments for two
different weak local residuals of the momentum equation. In addition, a wet/
dry interface treatment is also given in order to maintain the well-balanced
property at wet/dry interfaces. Section 4 provides numerical tests for the
performance of the weak local residuals.

2 Weak local residuals for balance laws

Kurganov et al. [4, 5] formulated the weak local residuals for conservation
laws. These conservation laws are homogeneous, that is, they do not have
source terms. We extend the work of Kurganov et al. [4, 5] to formulations
of the weak local residuals of balanced laws. Balanced laws are conservation
laws with additional nonzero source terms.

Consider the scalar balance law{
qt + f(q)x = s , −∞ < x <∞ ,
q(x, t) = q0(x) , t = 0 .

(1)

Here x is a one-dimensional space variable, t is the time variable, q is the
concentration of a quantity of interest, f is the flux of q, s is a source function
and q0 is an arbitrary function which defines the initial condition of q. Here
q and s are both functions of x and t. The weak form of the initial value
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problem (1) is∫∞
0

∫∞
−∞[q(x, t)Tt(x, t) + f(q(x, t))Tx(x, t) + s(x, t)T(x, t)]dxdt

+

∫∞
−∞ q0(x)T(x, 0)dx = 0 , (2)

where T(x, t) is an arbitrary test function. A mathematical derivation of this
weak form was derived by Knobel [6] and Smoller [12].

Given a fixed spatial step ∆x and temporal step ∆t, we form a uniform spatial/
temporal grid made up of discrete spatial points xj := j∆x for j = 0, 1, . . . ,M
and temporal points tn := n∆t for n = 0, 1, . . . ,N . We denote qnj as the
approximate value of q(xj, tn) computed by a conservative method. Like
Karni and Kurganov [4], we denote the corresponding piecewise constant
approximation as

q∆(x, t) := qnj if (x, t) ∈ [xj−1/2, xj+1/2]× [tn−1/2, tn+1/2] , (3)

where xj±1/2 := xj ± ∆x/2 and tn±1/2 := tn ± ∆t/2 . We construct a test
function Tnj (x, t) := Bj(x)B

n(t) , where Bj(x) and Bn(t) are quadratic B-
splines centered at x = xj and t = tn with supports of size 3∆x and 3∆t.
That is,

Bj(x) =



1
2

(
x−xj−3/2

∆x

)2
if xj−3/2 6 x 6 xj−1/2 ,

3
4
−
(x−xj
∆x

)2
if xj−1/2 6 x 6 xj+1/2 ,

1
2

(
x−xj+3/2

∆x

)2
if xj+1/2 6 x 6 xj+3/2 ,

0 otherwise,

(4)

and

Bn(t) =



1
2

(
t−tn−3/2

∆t

)2
if tn−3/2 6 t 6 tn−1/2 ,

3
4
−
(
t−tn

∆t

)2 if tn−1/2 6 t 6 tn+1/2 ,
1
2

(
t−tn+3/2

∆t

)2
if tn+1/2 6 t 6 tn+3/2 ,

0 otherwise.

(5)
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Then substituting the test function Tnj (x, t) into (2) leads to a weak form of
the local residual [4, 5] for the balance law

Enj = −

∫ tn+3/2

tn−3/2

∫ xj+3/2

xj−3/2

{
q∆(x, t)

[
Tnj (x, t)

]
t

+ f(q∆(x, t))
[
Tnj (x, t)

]
x
+ s∆(x, t)Tnj (x, t)

}
dxdt. (6)

The weak local residual (6) is then

Enj =
∆x

12

[
qn+1j+1 − qn−1j+1 + 4

(
qn+1j − qn−1j

)
+ qn+1j−1 − qn−1j−1

]
+
∆t

12

[
f(qn+1j+1 ) − f(q

n+1
j−1 ) + 4

(
f(qnj+1) − f(q

n
j−1)
)

+ f(qn−1j+1 ) − f(q
n−1
j−1 )

]
−
∆x∆t

36

[(
sn−1j−1 + 4snj−1 + s

n+1
j−1

)
+ 4

(
sn−1j + 4snj + s

n+1
j

)
+
(
sn−1j+1 + 4snj+1 + s

n+1
j+1

)]
. (7)

Using quadratic B-splines in constructing the test function is an adaption of
the work of Karni, Kurganov, and Petrova [5] on conservation laws. So we
refer to the weak local residual (7) as kkp (Karni–Kurganov–Petrova).

Rather than quadratic B-splines, we can also choose localized linear B-splines
as the test functions Tn−1/2j+1/2 (x, t) := Bj+1/2(x)B

n−1/2(t) , where Bj+1/2(x)
and Bn−1/2(t) are centered at x = xj+1/2 and t = tn−1/2 with supports
of size 2∆x and 2∆t. That is,

Bj+1/2(x) =


x−xj−1/2

∆x
if xj−1/2 6 x 6 xj+1/2 ,

xj+3/2−x

∆x
if xj+1/2 6 x 6 xj+3/2 ,

0 otherwise,
(8)

and

Bn−1/2(t) =


t−tn−3/2

∆t
if tn−3/2 6 t 6 tn−1/2 ,

tn+1/2−t
∆t

if tn−1/2 6 t 6 tn+1/2 ,
0 otherwise.

(9)
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This results in a less expensive computation of the weak local residual

E
n−1/2
j+1/2 = −

∫ tn+1/2

tn−3/2

∫ xj+3/2

xj−1/2

{
q∆(x, t)

[
T
n−1/2
j+1/2

]
t
+ f(q∆(x, t))

[
T
n−1/2
j+1/2

]
x

+ s∆(x, t)Tn−1/2j+1/2

}
dxdt , (10)

which after a straightforward computation becomes

E
n−1/2
j+1/2 =

∆x

2

[
qnj − q

n−1
j + qnj+1 − q

n−1
j+1

]
+
∆t

2

[
f
(
qn−1j+1

)
− f
(
qn−1j

)
+ f
(
qnj+1

)
− f
(
qnj
)]

−
∆x∆t

4

[
sn−1j + snj + s

n−1
j+1 + snj+1

]
. (11)

Using linear B-splines to construct the test function is an adaption of the
work of Constantin and Kurganov [3] on conservation laws. So we refer to
the weak local residual (11) as ck (Constantin–Kurganov).

3 Shallow water equations

The shallow water equations are

ht + (hu)x = 0 , (12)
(hu)t +

(
hu2 + 1

2
gh2
)
x
= −ghzx . (13)

Here, x is the coordinate in one-dimensional space, t is time, u(x, t) denotes
the water velocity, h(x, t) denotes the water height, z(x) is the topography,
and g is the acceleration due to gravity. Another quantity of interest is the
stage w = w(x, t) which is the water surface elevation given by w = h+ z .

The non-homogeneous shallow water equations (12)–(13) are a system of
balance laws. Implementing kkp (7) and/or ck (11) naïvely as smoothness



3 Shallow water equations C134

indicators for balance laws may lead to spurious oscillations of the indicator
values. We show an example of this problem in Section 4. The problem is
caused by source terms in the balance laws. To make the indicators work
properly, we need to make the computation of the indicators well-balanced.

Mungkasi and Roberts [9] presented weak local residuals of the mass equation
(equation of mass conservation) as smoothness indicators. No well-balanced
technique was needed in that case since the mass equation does not have a
source term. In the next two subsections we focus on well-balancing the weak
local residual of the non-homogeneous momentum equation. We limit our
discussion on the well-balanced technique to the steady state of a lake at rest.

3.1 Well-balancing the weak local residual

We propose a well-balanced technique for computing weak local residuals of
the non-homogeneous momentum equation (13) in wet regions.

Consider the non-homogeneous momentum equation (13) and the weak local
residual (7). For the steady state of a lake at rest, the weak local residual (7)
simplifies to

Enj =
∆t

12

[
f(qn+1j+1 ) − f(q

n+1
j−1 )

]
−
∆x∆t

36

[
sn+1j+1 + 4sn+1j + sn+1j−1

]
+
∆t

3

[
f(qnj+1) − f(q

n
j−1)
]
−
∆x∆t

9

[
snj+1 + 4s

n
j + s

n
j−1

]
+
∆t

12

[
f(qn−1j+1 ) − f(q

n−1
j−1 )

]
−
∆x∆t

36

[
sn−1j+1 + 4sn−1j + sn−1j−1

]
. (14)

In the case of a still lake f(qba) = 1
2
g(hba)

2 . For our indicator to be well-
balanced for the still lake case we need

[f(qj+1) − f(qj−1)] =
∆x

3
[sj+1 + 4sj + sj−1] , (15)

for each timestep n− 1, n and n+ 1 (we drop the timestep super-scripts).
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Table 1: Discrete values for the source terms in kkp and ck.
kkp terms Discrete values ck terms Discrete values

sj−1 −ghj−1
zj+1 − zj−1
2∆x

sj −ghj
zj+1 − zj
∆x

sj −g
hj+1 + hj−1

2

zj+1 − zj−1
2∆x

sj+1 −ghj+1
zj+1 − zj
∆x

sj+1 −ghj+1
zj+1 − zj−1
2∆x

Since the fluxes in (15) are defined at the (j − 1)th and (j + 1)th cells, we
need to enforce that the source term discretisations involve only the (j− 1)th
and (j + 1)th cells. That is, we take sj = 1

2
(sj+1 + sj−1) . Equation (15) is

then rewritten as
g

2

[
(hj+1)

2 − (hj−1)
2
]
= ∆x [sj+1 + sj−1] . (16)

Next, we use the same value for the topography gradient zx in the formulations
of sj+1 and sj−1, so that hj+1 − hj−1 = zj−1 − zj+1 for the lake at rest. This is
achieved by discretising

(zx)j+1 = (zx)j−1 := (zj+1 − zj−1)/(2∆x) . (17)

This last enforcement guarantees the well-balanced computation of the weak
local residual (7). This source term discretisation technique is adapted
from numerical schemes originally proposed by Bermudez and Vazquez [2].
This technique was also used by Audusse et al. [1] and Noelle et al. [10] to
develop well-balanced numerical schemes. Each source term in kkp (7) and
its discretisation using the above technique is given in the first and second
column of Table 1, respectively.

Using a similar technique as described above, each source term in ck (11)
and its discretisation are given in the third and fourth column of Table 1,
respectively.



3 Shallow water equations C136

3.2 Wet/dry interface treatment for the weak local
residual

The well-balanced technique describe in Section 3.1 is valid for all-wet regions,
that is, the (j−1)th, jth, and (j+1)th cells are wet. A numerical treatment at
a wet/dry interface is needed and we describe it here. We omit the description
of a dry/wet treatment, as it is similar to the treatment of a wet/dry interface.

We solve the shallow water equations using the finite volume method described
by Mungkasi and Roberts [8]. We implement the discretisation proposed by
Audusse et al. [1]. Quantities are reconstructed based on height h, stage w :=
h+ z , and velocity u. We implement the wet/dry interface reconstruction,
proposed by Audusse et al. [1]. The wet/dry interface reconstruction adjusts
the bed topography z if negative water height occurs, so that the water
height h remains nonnegative [1, 8, for more details]. A second order method
with a minmod limiter is used [11].

Since the kkp indicator of the jth cell involves three cells, namely the (j−1)th,
jth, and (j+ 1)th cells, there are two cases of the wet/dry interface for the
kkp indicator: (a) wet-dry-dry, that is, wet for the (j− 1)th cell, dry for the
jth cell, dry for the (j + 1)th cell; and (b) wet-wet-dry, that is, wet for the
(j− 1)th cell, wet for the jth cell, dry for the (j+ 1)th cell. These two cases
are illustrated in Figure 1. In the computation of the kkp indicator for these
cases, zj+1 is replaced by wj−1. This ensures that the indicator computation
at the wet/dry interface remains well-balanced. The two remaining special
cases, namely wet-dry-wet and dry-wet-dry, are assumed to have indicator
values of zero.

The treatment of a wet/dry interface computation of the ck indicator is
analogous to the kkp computation. Since the ck indicator considers only two
cells, namely the jth and (j+1)th cells, for computing the weak local residual,
there is only one case of wet/dry interface. That is, the jth cell is wet but
the (j+ 1)th cell is dry. In this case zj+1 is replaced by wj, so that that the
indicator computation at the wet/dry interface remains well-balanced.
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Figure 1: Two cases of the wet/dry interface for the kkp indicator: (a) the wet-
dry-dry case; (b) the wet-wet-dry case. The dashed horizontal line indicates
the water level.

(a) (b)

4 Numerical tests

We test the performance of weak local residuals. We use the second order
well-balanced finite volume method [8]. Quantities are measured in si units.

4.1 Well-balanced test

Consider a lake at rest with a discontinuous island in the middle of the lake,
illustrated in Figure 2. This test is an adaptation of the test of Mungkasi
and Roberts [8]. In the computation, the spatial domain is discretised into
800 cells.

At time t = 2 , four indicators, namely ck_h, ck_uh, kkp_hand kkp_uh,
are depicted in Figure 3. Indicators ck_h and ck_uh are the weak local



4 Numerical tests C138

Figure 2: A cross-section of a lake at rest with a discontinuous island in the
middle [8].
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residuals of the mass and momentum equations based on (11), while kkp_h
and kkp_uh are the weak local residuals of the mass and momentum
equations based on (7). All indicators are the correct weak local residuals
of the steady state of a lake at rest, correct to the order of 10−15 (machine
precision).

In contrast, non-well-balanced computations of weak local residuals could
lead to incorrect behaviour of the residuals, as unphysical oscillations may
occur. Figure 4 shows this incorrect behaviour of weak local residuals. In this
Figure 4, ck_uh and kkp_uh are shown without scaling and computed
naïvely using local cell quantity values found from finite volume quantity
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Figure 3: The weak local residuals at time t = 2 . The four vertical axis
scales are 1016×ck_h , 1015×ck_uh , 1016×kkp_h and 1015×kkp_uh ,
respectively.
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Figure 4: Unphysical weak local residuals at time t = 2 . Here ck_uh and
kkp_uh are computed naïvely using local cell quantity values based on
finite volume quantity reconstructions. Both ck_uh and kkp_uh are shown
without scaling.
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reconstructions. In this case, ck_uh and kkp_uh have large indicator
values at some points, although these values should actually be zero.

4.2 Dam break test involving a dry area and moving
shock

Consider the collapse of a reservoir on a horizontal topography [9]

z(x) = 0 , 0 < x < 2000 , (18)

with initial velocity and stage

u(x, 0) = 0 , w(x, 0) =


0 if 0 < x < 500 ,
10 if 500 < x < 1500 ,
5 if 1500 < x < 2000 .

(19)

The simulation illustrates the motion of the water at any point x in the
domain and at any time t > 0 with respect to the initial condition (19).
Condition (19) describes two dam walls (at x = 500 and x = 1500). In the
computation, the spatial domain is discretised into 800 cells.

The simulation results at time t = 20 are shown in Figures 5 and 6. Figure 5
shows the stage and the corresponding momentum value. The weak local
residuals ck_h, ck_uh, kkp_h, and kkp_uh are shown in Figure 6. The
ck_h indicator is best at identifying the shock.

4.3 Flow involving a stationary shock on an
obstruction

Consider a channel of length 25 with a parabolic bump topography [9]

z(x) =

{
0.2− 0.05 (x− 10)2 if 8 6 x 6 12 ,
0 otherwise,

(20)
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Figure 5: The dam break stage and momentum at time t = 20 .

0 500 1000 1500 2000
0

5

10

S
ta
g
e

0 500 1000 1500 2000
Position

−30

−20

−10

0

10

20

30

M
o
m
e
n
tu
m

and an initial condition

u(x, 0) = 0 , w(x, 0) = 0.33 , (21)

together with the Dirichlet boundary conditions

[w,hu, z,h,u] = [0.42, 0.18, 0.0, 0.42, 0.18/0.42] at x = 0−, (22)
[w,hu, z,h,u] = [0.33, 0.18, 0.0, 0.33, 0.18/0.33] at x = 25+. (23)

In the computation, the spatial domain is discretised into 400 cells.

The simulation results at time t = 100 are shown in Figures 7 and 8. Figure 7
shows the stage and the corresponding momentum. The weak local residuals



5 Conclusions C143

Figure 6: The dam break weak local residuals at time t = 20 .
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ck_h, ck_uh, kkp_h, and kkp_uh are shown in Figure 8. More details
of these results are given by Mungkasi [7].

5 Conclusions

Weak local residuals were implemented to measure the smoothness of solutions
of the shallow water equations. Even though the theory of weak local residuals
as smoothness indicators is, so far, only available for the scalar conservation
law, weak local residuals can also be used as smoothness indicators for the
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Figure 7: The stage and momentum of steady flow over a parabolic obstruction
at time t = 100 .
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shallow water equations, which are a system of balance laws. This suggests
that weak local residuals may also be used as smoothness indicators for a
system of balance laws in general, as long as an appropriate well-balanced
treatment is used.
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Figure 8: The weak local residuals of steady flow over a parabolic obstruction
at time t = 100 . The four vertical axis scales are 105×ck_h , 105×ck_uh ,
105 × kkp_h and 105 × kkp_uh , respectively.
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