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Abstract. Water hammer problems occur in pipe systems. The pressure in pipe flow can be very 

excessive that makes the system to be broken. One way to minimize the breaking is by conducting 

simulations so that we know the characteristics of the system. However, numerical simulations need 

a good numerical solver of the problem. In this paper, we propose a finite volume numerical method 

to solve water hammer problems. The method is very accurate, gives a sharp resolution at 

discontinuity, yet simple to implement in the computation.  

Introduction 

Water hammer problems occur in daily life, such as at water taps. Solutions to water hammer 

problems are useful, as they can be used to predict if pipe and/or valve breaks for a certain pressure 

hitting the valve. 

A number of authors have attempted to solve water hammer problems. Some of them are 

Markendahl [1] and Mungkasi, et al. [2]. They studied a particular water hammer problem using the 

linear acoustic equations. The theory of these acoustic equations is available in the work of 

LeVeque [3]. However shock waves in the solutions of Markendahl [1] and Mungkasi, et al. [2] 

might not be resolved sharply.  

In the present paper we propose a finite volume method with the central-upwind flux formulation 

to solve water hammer problems. The central-upwind flux was developed by Kurganov, et al. [4] 

for hyperbolic conservation laws and Hamilton-Jacobi equations. With a special choice of the time 

stepping, we are able to simulate the shock wave sharply, so accurate solution is obtained. 

Governing Equations 

Water hammer problems are governed by the acoustic equations [1] 

,02 =+ xt ucp ρ  (1) 
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Here x  is the space variable, t  is the time variable. The notation ),( txp  represents the pressure, 

),( txu  the velocity, ρ  the density, and c  the propagation speed of pressure wave. 

Let us review briefly the water hammer problem considered by Markendahl [1] and Mungkasi, et 

al. [2]. We are given a one-dimensional space ],0[ L . Suppose that water flows from a tank to a 

valve, as shown in Figure 1. The position 0=x  is the joint between the tank and the pipe. The 

position Lx =  is the location of the valve on the right end. The boundary condition at 0=x  is 

tank),0( ptp = , where tankp  is the tank pressure on the left end. The boundary condition at Lx =  

satisfies 
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where rightp  is the environment pressure on the right end. The variable α  is the opening coefficient 

of the valve and is defined as 
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The loss coefficient 
2

/1 α=K  satisfies 
2

2
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right uKpp ρ=− . The initial condition is a constant pipe 

pressure with a constant velocity. In this model, the effect of pipe bending is assumed to be 

negligible and frictions to the pipe wall is neglected. 

 

 
Figure 1: Illustration of a pipe system (see Markendahl [1] and Mungkasi, et al. [2]). 

 

Numerical Method 

A finite volume method is used to solve the acoustic equations (Eq. 1 and Eq. 2) in order to find the 

solution to the problem. Let us consider the following vectors 
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The acoustic equations can be written as 

,0)( =+ xt qfq  (6) 

which is a system of hyperbolic conservation laws [3]. 

We discretize Eq. 6 using the finite volume method with uniform space step x∆  and uniform 

time step t∆ . The space ],0[ L  is discretized into ],[ 2/12/1 +−= iii xxC , ,,,3,2,1 Ni K=  where N  is 

the total number of cells. The time is discretized as ,tnt
n ∆=  .,3,2,0 K=n  The finite volume 

scheme for Eq. 6 is 
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Here the numerical quantity n

iQ  is the averaged quantity over the i th cell at time n
t . The numerical 

flux n

i 2/1−F  is the averaged flux flowing through the interface 2/1−ix  during one time step. In this 

paper, we use the central-upwind formulation to compute the flux n

i 2/1−F . We refer to the work of 

Kurganov, et al. [4] for this flux formulation. Therefore, for non-boundary fluxes we obtain 
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The boundary condition is numerically treated as follows [1, 2]. At the left end ( 02/1 =x ), 
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for every time step. At the right end ( LxN =+ 2/1 ), 
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The velocity at the right end of the space is 
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The pressure at the right end of the space is 
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After the valve is completely closed, the velocity at the right end is zero. This means that for stoptt ≥  

we need to enforce 02/1 =+Nu . Therefore for stoptt ≥ , we take 

.
0

12/1 










+
=+

NN

N cup
ρ

F  (13) 

Numerical Results 

We present our results of the water hammer problem with the model shown in Figure 1. If units of 

quantities are omitted, they should be assumed to have SI units. The space domain is ]170,0[ , 

where the value 170 is the total of three segments 60, 10, 90 and 10 m. 

We take Pa105

tank =p  and 0right =p . The propagation speed of pressure wave is 

m/s105.1 3×=c . The water density is 33 kg/m10=ρ . The initial pressure in the pipe is 

tank)0,( pxp = . The initial velocity of water flowing in the pipe is m/s.8)0,( =xu  The valve closes 

with 1.0stop =t  s. The domain is discretized into 310=N  uniform cells. The pressure and velocity 

hitting the valve are illustrated in Figures 2-5. In these figures the computational domain is ]170,0[ , 

but we extend the plots to be ]180,0[  to make the figures clearer at around the valve. For any time 

stoptt <  it is important to take the time step to be cxt /∆=∆  in order to get an accurate solution, 

especially at around the shock position. 

 

  
Figure 2: The pressure and velocity at .01.0=t  Figure 3: The pressure and velocity at .04.0=t  



 

  
Figure 4: The pressure and velocity at .07.0=t  Figure 5: The pressure and velocity at .1.0=t  

  
     

 
Figure 6: The pressure and velocity at 04.0=t  

with a non-optimal time step; shock is not sharp. 

From Figure 5, we obtain that the pressure 

hitting the valve at time 1.0stop == tt  is 

7101.184×=p Pa, which is more than 100 

time the initial pressure. Note that the higher 

the initial velocity, the higher the pressure 

hits the valve.  

To confirm the accuracy of our proposed 

numerical strategy, we plot the results if we 

take the time step to be xt ∆⋅=∆ 0.0001 . This 

time step is not optimal in terms of accuracy. 

The results is plotted in Figure 6. In this 

figure we almost do not see any shock, as the 

shock is smeared out. This can be compared 

with Figure 3, which shows the results for the 

same time  04.0=t . 

Summary 

A finite volume method has been proposed for solving water hammer problems. The method uses 

the central-upwind flux formulation. Shock wave can be sharply simulated using the proposed 

method. Future research could be conducted for higher dimensional water hammer problems. 
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