VALIDASI PENETAPAN KADAR PARASETAMOL TERCAMPUR KUNYIT ASAM* DALAM PLASMA DENGAN METODE KOLORIMETRI MENGGUNAKAN SENYAWA PENGKOPLING VANILIN

SKRIPSI

Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Farmasi (S. Farm) Program Studi Ilmu Farmasi

Oleh :
Vani Dwi Vidiani Y
NIM: 018114143

FAKULTAS FARMASI
UNIVERSITAS SANATA DHARMA
YOGYAKARTA
2006
Penelitian Untuk Skripsi

VALIDASI PENETAPAN KADAR PARASETAMOL TERCAMPUR
KUNYIT ASAM* DALAM PLASMA DENGAN METODE KOLORIMETRI
MENGUNAKAN SENYAWA PENGKOPLING VANILIN

yang diajukan oleh:
Vani Dwi Vidiani Y
NIM: 018114143

telah disetujui oleh:

Pembimbing

(Christine Patramurti, M.Si., Apt.)
tanggal
Pengesahan Skripsi
Berjudul

VALIDASI PENETAPAN KADAR PARASETAMOL TERCAMPUR KUNYIT ASAM® DALAM PLASMA DENGAN METODE KOLORIMETRI MENGGUNAKAN SENYAWA PENGKOPLING VANILIN

Oleh
Vani Dwi Vidiani Y
NIM: 018114143

Dipertahankan di Hadapan Panitia Penguji Skripsi
Fakultas Farmasi
Universitas Sanata Dharma
pada tanggal :
23 Februari 2006

Mengetahui
Fakultas Farmasi
Universitas Sanata Dharma
Dekan

Pembimbing Utama:

Panitia Penguji :

Skripsi ini kupersembahkan untuk:
Papa dan Mama yang kusayangi dan kuhormati
Saudara-saudariku Kode, Vicky, Visa yang kusayangi
Sahabat-sahabatku
Serta almamaterku yang kuhormati
PERNYATAAN KEASLIAN KARYA

Saya menyatakan dengan sesungguhnya bahwa skripsi yang saya tulis ini tidak memuat karya atau bagian karya orang lain, kecuali yang telah disebutkan dalam kutipan dan daftar pustaka, sebagaimana layaknya karya ilmiah.

Yogyakarta, 13 November 2005

Penulis

Veni Dwi Vidiani Y
INTISARI

Telah dilakukan penetapan kadar parasetamol tercampur Kunyit Asam® dalam plasma dengan metode kolorimetri menggunakan senyawa pengkopling vanillin. Penelitian ini bertujuan untuk mengetahui spesifisitas, akurasi dan presisi dari metode yang digunakan.

Penelitian ini merupakan penelitian non eksperimental. Tabap pendahuluan dalam metode ini adalah dengan melihat gabungan spektrum serapan parasetamol dalam plasma (100 μg/ml) dan spektrum serapan Kunyit Asam® dalam plasma pada rentang panjang gelombang 350-480 nm sehingga dapat dilihat spesifisitas metode kolorimetri menggunakan senyawa pengkopling vanillin untuk penetapan kadar parasetamol tercampur Kunyit Asam® dalam plasma. Kemudian optimasi metode kolorimetri dilakukan dengan penentuan operating time, panjang gelombang maksimum, dan kurva baku. Perhitungan %recovery dan koefisien variasi dilakukan untuk mengetahui apakah metode yang digunakan memiliki akurasi dan presisi yang baik. Uji t dilakukan untuk melihat apakah terdapat perbedaan bermakna antara %recovery larutan parasetamol dan %recovery larutan parasetamol tercampur Kunyit Asam®.

Hasil penelitian dengan tujuh kali replikasi diperoleh rata-rata %recovery 101,151% dan koefisien variasi 1,642%. Dari hasil uji-t diketahui bahwa %recovery larutan parasetamol dan %recovery larutan parasetamol tercampur Kunyit Asam® berbeda tidak bermakna. Jadi, metode kolorimetri menggunakan senyawa pengkopling vanillin memiliki spesifisitas, akurasi dan presisi yang baik untuk menetapkan kadar parasetamol (kadar 100 μg/ml) tercampur Kunyit Asam® dalam plasma.

Kata kunci: parasetamol, kunyit asam®, kolorimetri, vanillin
ABSTRACT

Determination of paracetamol which mixed with Kunyit Asam® in plasma has been conducted with colorimetric method using vanillin. This research aims to know specificity, accuracy, and precision of the use method.

This research was non-experimental research. The preliminary stage in this method was observing the combination of spectrum paracetamol in plasma and spectrum Kunyit Asam® in plasma on wavelength 350-480 nm that was used for observe the selectivity of colorimetric method using vanillin on paracetamol measurement which mixed with Kunyit Asam® in plasma. Then optimizing of colorimetric method in plasma was done with determine operating time, maximum wavelength, and standard curve. Calculation of %recovery and coefficient of variation was used to see is this method has good accuracy and precision. t-test was done to see what is found a significant difference between %recovery of paracetamol and %recovery of paracetamol which mixed with Kunyit Asam®.

The result of this research with seven replication was acquired %recovery 101.151% and coefficient of variation 1.642%. It known from t-test that %recovery of paracetamol and %recovery of paracetamol which mixed with Kunyit Asam® has no significant difference. So, colorimetric method using vanillin has good specificity, accuracy, and precision to paracetamol measurement which mixed with Kunyit Asam® in plasma.

Key words: paracetamol, Kunyit Asam®, colorimetric, vanillin
PRAKATA

Puji syukur ke hadirat Tuhan Yang Maha Esa atas impahan berkat, rahmat, dan karunia ilahi sehingga penulis dapat menyelesaikan penelitian dan penyusunan skripsi yang berjudul “Validasi Penetapan Kadar Parasetamol Tercampur Kunyit Asam* dalam Plasma dengan Metode Kolorimetri Menggunakan Senyawa Pengkopling Vanilin”.

Selama pelaksanaan penelitian hingga selesainya penyusunan skripsi, penulis menerima banyak bantuan, dukungan dan kerjasama dari berbagai pihak. Oleh karena itu, penulis mengucapkan terimakasih yang setulus-tulusnya kepada:

1. Allah SWT yang memberikan berkat, rahmat dan perlakuan secara langsung atau tidak langsung dalam kehidupanku.

5. Bapak Yosef Wijoyo, M.Si., Apt selaku dosen penguji dan ketua panitia skripsi yang telah banyak memberikan saran, kritik, dan semangat sehingga skripsi ini selesai.

7. Seluruh staf Laboratorium Kimia Farmasi Fakultas Farmasi Universitas Sanata Dharma yaitu Pak Mukmin, Pak Prapto, Pak Parlan, Mas Kunto yang selalu membantu dan menemani selama penelitian.

8. Seluruh staf Laboratorium Biofarmasetika Fakultas Farmasi Universitas Sanata Dharma yaitu Mas Heru, Mas Parjiman, dan Mas Kayat untuk kerjasama dan bantuan mereka selama penelitian.

14. Semua pihak yang tidak dapat disebutkan satu persatu yang telah membantu penelitian maupun penulisan skripsi ini.

Semoga berkat dan rahmat kasih Tuhan selalu berlimpah dengan segala bantuan yang telah diberikan.

Penulis
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HALAMAN JUDUL</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>HALAMAN PERSETUJUAN PEMBIMBING</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>HALAMAN PENGESAHAN</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>HALAMAN PERSEMBAHAN</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>PERNYATAAN KEASLIAN KARYA</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>INTISARI</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>PRAKATA</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>DAFTAR ISI</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>DAFTAR TABEL</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>DAFTAR GAMBAR</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>DAFTAR LAMPIRAN</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>BAB I PENGANTAR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1. Permasalahan</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2. Keaslian Penelitian</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3. Manfaat Penelitian</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>B. Tujuan Penelitian</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BAB II PENELAHAAN PUSTAKA</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>A. Parasetamol</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1. Sifat Fisika dan Kimia</td>
<td>5</td>
</tr>
</tbody>
</table>

xi
2. Penetapan Kadar Parasetamol .. 6
3. Farmakodinamika dan Farmakokinetika Parasetamol 9

B. Jamu Kunyit Asam® .. 12
 1. Curcuma domesticae Rhizoma 12
 2. Tamarindi Pulpa .. 12
 3. Citric acid .. 13
 4. Sucrose ... 13
 5. Sodium chloride .. 13

C. Metode Kolorimetri .. 13
 1. Pengertian umum kolorimetri 13
 2. Analisis kuantitatif .. 16

D. Plasma .. 18

E. Parameter Kesahitian Metode Analisis 20

F. Hipotesis .. 25

BAB III METODOLOGI PENELITIAN 26

A. Jenis Penelitian ... 26

B. Definisi Operasional .. 26

C. Bahan Penelitian .. 26

D. Alat Penelitian .. 27

E. Tata cara Penelitian ... 27
 1. Pembuatan larutan parasetamol 27
 2. Pembuatan larutan Kunyit Asam® 27
 3. Pembuatan larutan parasetamol campur Kunyit Asam® 28
4. Percobaan Pendahuluan ... 28
5. Optimasi Metode ... 30
6. Penetapan Kadar ... 32
F. Analisis Hasil ... 33
 1. Spesifisitas .. 33
 2. Akurasi ... 34
 3. Presisi ... 34
BAB IV HASIL DAN PEMBAHASAN ... 35
A. Percobaan Pendahuluan .. 35
 1. Pengamatan spektrum serapan parasetamol dalam plasma dan
 spektrum serapan Kuniyit Asam\(^{16}\) dalam plasma pada panjang
 gelombang ultraviolet ... 35
 2. Pengamatan spektrum serapan parasetamol dalam plasma dan
 spektrum serapan Kuniyit Asam\(^{16}\) dalam plasma pada panjang
gelombang sinar tampak .. 39
B. Optimasi Metode Kolorimetri .. 42
 1. Penentuan operating time .. 42
 2. Penentuan panjang gelombang maksimum 43
 3. Pembuatan kurva baku .. 44
C. Analisis Hasil .. 46
 1. Spesifisitas .. 47
 2. Akurasi .. 50
 3. Presisi .. 51

xiii
BAB V KESIMPULAN DAN SARAN .. 52
 A. Kesimpulan .. 52
 B. Saran .. 52
DAFTAR PUSTAKA ... 53
LAMPIRAN .. 56
BIOGRAFI PENULIS ... 76
DAFTAR TABEL

Tabel I. Komposisi protein plasma .. 16
Tabel II. Parameter analitik .. 21
Tabel III. Data pengukuran serapan kurva baku 42
Tabel IV. Hasil uji- %recovery larutan parasetamol dan %recovery larutan parasetamol tercampur Kunyit Asam® .. 45
Tabel V. Data hasil perhitungan kadar sampel parasetamol tercampur Kunyit Asam® .. 46
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gambar 1</td>
<td>Struktur Parasetamol</td>
<td>5</td>
</tr>
<tr>
<td>Gambar 2</td>
<td>Skema metode penetapan kadar parasetamol</td>
<td>6</td>
</tr>
<tr>
<td>Gambar 3</td>
<td>Hidrolisis parasetamol menjadi p-aminofenol</td>
<td>8</td>
</tr>
<tr>
<td>Gambar 4</td>
<td>Reaksi p-aminofenol dengan vanillin menghasilkan senyawa berwarna kuning</td>
<td>8</td>
</tr>
<tr>
<td>Gambar 5</td>
<td>Dua tahap reaksi pembentukan imina</td>
<td>9</td>
</tr>
<tr>
<td>Gambar 6</td>
<td>Proses metabolisme parasetamol</td>
<td>11</td>
</tr>
<tr>
<td>Gambar 7</td>
<td>Struktur skematis denaturasi protein</td>
<td>20</td>
</tr>
<tr>
<td>Gambar 8</td>
<td>Spektrum serapan parasetamol dalam plasma pada panjang gelombang ultraviolet menggunakan spektrofotometer UV-Vis</td>
<td>35</td>
</tr>
<tr>
<td>Gambar 9</td>
<td>Spektrum serapan Kunyit Asam® dalam plasma pada panjang gelombang ultraviolet menggunakan spektrofotometer UV-Vis</td>
<td>36</td>
</tr>
<tr>
<td>Gambar 10</td>
<td>Struktur kurkumin, desmetoksikurkumin, bidesmetoksikurkumin dalam Curcuma domesticae Rhizoma</td>
<td>37</td>
</tr>
<tr>
<td>Gambar 11</td>
<td>Gabungan spektrum serapan parasetamol dalam plasma dan spektrum Kunyit Asam® dalam plasma pada panjang gelombang ultraviolet menggunakan spektrofotometer UV-Vis</td>
<td>38</td>
</tr>
<tr>
<td>Gambar 12</td>
<td>Spektrum serapan parasetamol dalam plasma pada panjang gelombang sinar tampak menggunakan spektrofotometer UV-Vis</td>
<td>39</td>
</tr>
<tr>
<td>Gambar 13</td>
<td>Spektrum serapan Kunyit Asam® dalam plasma pada panjang gelombang sinar tampak menggunakan spektrofotometer UV-Vis</td>
<td>40</td>
</tr>
</tbody>
</table>
Gambar 14. Gabungan spektrum serapan parasetamol dalam plasma dan spektrum serapan Kunyit Asam® dalam plasma pada panjang gelombang sinar tampak menggunakan spektrofotometer

UV-Vis ... 41

Gambar 15. Spektrogram Operating time menggunakan spektrofotometer

UV-Vis ... 42

Gambar 16. Spektrum panjang gelombang maksimum senyawa N(3metoksi 4-hidroksi)p-aminofenol menggunakan spektrofotometer

UV-Vis ... 43

Gambar 17. Kurva hubungan antara konsentrasi dengan absorbansi 46

Gambar 18. Gabungan spektrum serapan parasetamol, spektrum serapan Kunyit Asam® dan spektrum serapan parasetamol tercampur Kunyit Asam® dalam plasma pada panjang gelombang sinar tampak ... 48
DAFTAR LAMPIRAN

Lampiran 1. Data penimbangan.. 56
Lampiran 2. Perhitungan pembuatan larutan Kunyit Asam®................. 57
Lampiran 3. Spektrum serapan parasetamol pada panjang gelombang ultraviolet.. 59
Lampiran 4. Spektrum serapan Kunyit Asam® padapanjang gelombang ultraviolet.. 60
Lampiran 5. Gabungan spektrum serapan sarasetamol dan spektrum serapan Kunyit Asam® pada panjang gelombang ultraviolet......................... 61
Lampiran 6. Spektrum serapan parasetamol pada panjang gelombang sinar tampak.. 62
Lampiran 7. Spektrum serapan Kunyit Asam® pada panjang gelombang sinar tampak.. 63
Lampiran 8. Gabungan spektrum serapan parasetamol dan spektrum serapan Kunyit Asam® pada panjang gelombang sinar tampak......................... 64
Lampiran 9. Spektrum serapan Operating time.. 65
Lampiran 10. Spektrum serapan panjang gelombang maksimum parasetamol... 66
Lampiran 11. Gabungan spektrum serapan parasetamol, spektrum serapan Kunyit Asam®, dan spektra serapan parasetamol tercampur Kunyit Asam® dalam plasma pada panjang gelombang sinar tampak.. 67
Lampiran 12. Grafik Kurva Baku Parasetamol dalam Plasma dengan Metode Kolorimetri Menggunakan Vanilin......................... 68
Lampiran 13. Contoh Perhitungan Konsentrasi Kurva Baku.............................. 69
Lampiran 14. Contoh Perhitungan Konsentrasi Diketahui dan Terukur............. 70
Lampiran 15. Perhitungan % Recovery, Koefisien Variasi (KV) Parasetamol........ 71
Lampiran 16. Uji T.. 73
Lampiran 17. Tabel t.. 74
Lampiran 18. Sertifikat Analisis Parasetamol.. 75
BAB I
PENGANTAR

A. Latar Belakang

Jamu sebagai obat tradisional telah digunakan oleh masyarakat sejak dulu. Sekarang, jamu masih tetap digunakan dan telah mengalami kemajuan dalam bentuk sedaannya, praktis, dan mudah diminum karena tersedia dalam bentuk pil, tablet, kapsul, maupun serbuk yang dikemas dengan baik. Salah satu produk jamu yang banyak beredar dan sering dikonsumsi oleh masyarakat (khususnya wanita pada saat haid) adalah Kunyit Asam* produksi PT. Sido Muncul karena dipercaya berkhasiat untuk menghilangkan bau tidak sedap, melancarkan haid, serta menyegarkan tubuh.

Pada saat-saat itu, biasanya wanita juga mengalami rasa nyeri di perutnya. Untuk menghilangkan rasa nyeri tersebut mereka cenderung untuk mengkonsumsi suatu obat analgesik bebas. Salah satu obat analgesik bebas yang beredar di pasaran dan dapat dibeli dengan harga terjangkau serta relatif aman untuk dikonsumsi adalah parasetamol, sehingga ada kemungkinan penggunaan bersama antara parasetamol dan Kunyit Asam* pada sebagian masyarakat. Penggunaan jamu dan obat secara bersamaan kemungkinan dapat menimbulkan interaksi farmakologi maupun interaksi farmakokinetika. Interaksi farmakologi menyebabkan peningkatan atau penurunan efek, sedangkan interaksi farmakokinetik menyebabkan terjadinya perubahan absorpsi, distribusi, biotransformasi dan ekskresi.
Penelitian yang dilakukan Madyawari (1987) membuktikan bahwa pemberian seduhan rimpang kunyit dapat menurunkan efek analgesik dari parasetamol. Ada tidaknya interaksi farmakokinetik dapat dilihat dengan melakukan penelitian tentang pengaruh pra perlakuan Kunyit Asam® terhadap parameter-parameter farmakokinetika parasetamol. Parameter-parameter farmakokinetika parasetamol seperti volume distribusi (Vd), klirens (Cl), waktu paruh (t1/2) dapat ditetapkan dengan cara menetapkan kadar parasetamol dalam plasma. Untuk itu diperlukan metode yang selektif untuk menetapkan kadar parasetamol tersebut dalam plasma.

Dalam penelitian ini, senyawa berwarna dibentuk dari parasetamol yang dihidrolisis menjadi p-aminofenol kemudian direaksikan dengan vanillin. Namun keterbatasan dalam metode kolorimetri menggunakan senyawa pengkopling
vanilin ini jika terdapat senyawa dalam komponen penyusun Kunyit Asam⁶ yang dapat bereaksi dengan vanilin, maka dapat mengganggu penetapan kadar parasetamol di dalam plasma. Senyawa tersebut adalah senyawa dengan gugus amina primer. Adanya keterbatasan tersebut maka perlu dilakukan validasi metode kolorimetri menggunakan senyawa pengkopling vanilin untuk penetapan kadar parasetamol tercampur Kunyit Asam⁶ dalam plasma.

Validasi metode kolorimetri menggunakan senyawa pengkopling vanilin untuk penetapan kadar parasetamol tercampur Kunyit Asam⁶ dalam plasma dilakukan dengan melihat parameter kesahihan metode. Metode yang digunakan dalam penelitian ini termasuk dalam kategori pertama yaitu metode analitik yang digunakan untuk mengukur secara kuantitatif sejumlah besar komponen dari serbuk obat atau senyawa aktif (Anonim, 1995a), sehingga parameter kesahihan metode yang akan diamati adalah spesifisitas, akurasi dan presisi.

1. Permasalahan

Apakah metode kolorimetri menggunakan senyawa pengkopling vanilin mempunyai spesifisitas, akurasi dan presisi yang baik jika digunakan untuk penetapan kadar parasetamol tercampur Kunyit Asam⁶ dalam plasma?

2. Keaslian Penelitian

Sejauh pengetahuan penulis, penelitian tentang penetapan kadar parasetamol dalam sedapan kombinasi dengan metode kolorimetri menggunakan vanilin pernah dilakukan oleh Vaughan (1969), penelitian tentang optimasi metode penetapan kadar parasetamol dalam darah dengan metode kolorimetri
menggunakan vanillin pernah dilakukan oleh Patricia (2003), penelitian tentang pengaruh praperlakuan seduhan rimpang kunyit dosis tinggi terhadap daya analgetika parasetamol pada mencit betina pernah dilakukan oleh Madyawati (1987), sedangkan penelitian tentang validasi penetapan kadar parasetamol tercampur Kunyit Asam² dalam plasma dengan metode kolorimetri menggunakan senyawa pengkoping vanillin belum pernah dilakukan.

3. Manfaat Penelitian

Manfaat yang diharapkan dari penelitian ini adalah

a. Manfaat teoritis

Hasil penelitian ini diharapkan dapat menambah informasi dalam ilmu kefarmasian tentang metode kolorimetri menggunakan senyawa pengkoping vanillin untuk penetapan kadar parasetamol tercampur Kunyit Asam² dalam plasma.

b. Manfaat metodologis

Hasil penelitian ini diharapkan dapat memberikan informasi tentang spesifisitas, akurasi, dan presisi metode penetapan kadar parasetamol secara kolorimetri dengan senyawa pengkoping vanillin.

B. Tujuan Penelitian

Tujuan dari penelitian ini adalah untuk mengetahui apakah metode kolorimetri yang menggunakan vanillin sebagai pengkoping mempunyai spesifisitas, akurasi dan presisi yang baik jika digunakan untuk penetapan kadar parasetamol tercampur jamu Kunyit Asam² dalam plasma.
BAB II
PENELAAHAN PUSTAKA

A. Parasetamol

1. Sifat Fisika dan Kimia

Parasetamol memiliki beberapa sinonim yaitu: asetaminofen, p-hidrosiasetanilida, p-asetamidofenol, dan N-asetil-p-aminofenol, mempunyai rumus molekul \(\text{C}_8\text{H}_9\text{NO}_2 \) dengan berat molekul 151,16. Struktur parasetamol digambarkan:

\[\text{NHCOCH}_3 \]

\[\text{OH} \]

Gambar 1. Struktur Parasetamol (Anonim, 1995b)

Parasetamol merupakan serbuk hablur berwarna putih, tidak berbau dan rasa sedikit pahit. Parasetamol mudah larut dalam air mendidih dan dalam Natrium Hidroksida \(\text{N} \), serta mudah larut dalam etanol. Penentuan kadar parasetamol dapat dilakukan dengan metode spektrofotometri ultraviolet (Anonim, 1995b).
2. Penetapan Kadar Parasetamol

Parasetamol dapat ditentukan dengan metode sebagai berikut:

![Diagram penentuan kadar parasetamol]

Gambar 2. Skema metode penetapan kadar parasetamol (Ebel, 1992)

Berdasarkan gambar di atas, terdapat banyak metode analisis penetapan kadar parasetamol dalam berbagai sediaan dengan kadar yang bervariasi, yaitu:

1. Metode Gravimetri

Larutan parasetamol direaksikan dengan 1-fluoro 2,4-dinitrobenzena akan menghasilkan senyawa dinitrofenileter (endapan) yang kemudian dikeritingkan dan ditimbang bobot yang didapat (Ebel, 1992).
2. Metode Titrirmetri

Dasar dari metode ini adalah reaksi diazotasi, yaitu reaksi antara p-aminofenol (hasil hidrolisis parasetamol) yang memiliki amin aromatis primer dengan asam nitrat membentuk garam diazonium (Connors, 1982).

3. Metode Kolorimetri

a. Teknik asam nitrat

Warna kuning kemerahan dihasilkan ketika larutan asam nitrat ditambahkan ke dalam larutan berisi parasetamol yang sebelumnya dilerutkan dengan metanol.

b. Teknik hidrolisis menjadi p-aminofenol

Ada beberapa cara yang dapat dilakukan untuk pembentukan senyawa berwarna dari parasetamol umumnya didahului dengan hidrolisis parasetamol menjadi p-aminofenol. Senyawa hasil hidrolisis ini kemudian direaksikan dengan o-nitroanilin terdiazotasi, p-dimetilaminobenzaldehid, p-dimetilaminosinamaldehid, vanillin ataupun 2-naftol dalam suasana basa akan membentuk senyawa berwarna (Belal, Elsayed, El-Wallehy, dan Abdine, 1979).

Metode kolorimetri dengan senyawa pengkopling vanillin dilakukan dengan menghidrolisis parasetamol dengan asam klorida menghasilkan p-aminofenol yang merupakan senyawa turunan amin aromatis primer. Senyawa ini bila direaksikan lagi dengan vanillin menghasilkan senyawa kompleks berwarna kuning (Vaughan, 1969).
Reaksi-reaksi tersebut dapat dilihat di bawah:

\[
\begin{align*}
\text{NHCOCH}_3 & \quad \text{NH}_2 \\
\text{H}^+ / \text{H}_2\text{O} & \quad \rightarrow \\
\text{OH} & \quad \text{OCH}_3 \\
\text{Parasetamol} & \quad \text{p-aminofenol} \quad \text{asam asetat}
\end{align*}
\]

Gambar 3. Hidrolisis parasetamol menjadi p-aminofenol (Ebel, 1992).

\[
\begin{align*}
\text{HO} & \quad \text{NH}_2 \quad + \quad \text{OHC} \\
\text{p-aminofenol} & \quad \text{vanilin} \quad \text{(3-metoksi 4-hidroksi benzaldehid)} \\
\text{OCH}_3 & \quad \text{OH}
\end{align*}
\]

Gambar 4. Reaksi p-aminofenol dengan vanilin menghasilkan senyawa berwarna kuning (Vitagliano dan Deeb, 1995).

Hasil reaksi antara p-aminofenol dengan vanilin adalah suatu imina. Imina adalah suatu senyawa yang mengandung gugus C=N. Jika digunakan amina primer (RNH\(_2\)) akan terbentuk imina yang stabil. Mekanisme pembentukan imina pada hakekatnya merupakan proses dua tahap. Tahap pertama adalah adisi
amina nukleofilik pada C karbonil yang bermuatan positif parsial, yang diikuti
dengan lepasnya proton dari nitrogen dan diperolehnya proton oleh oksigen.
Tahap kedua adalah protonasi gugus –OH yang kemudian dapat lepas sebagai air
dalam suatu reaksi eliminasi. Dua tahap reaksi pembentukan imina dapat dilihat
sebagai berikut :

Tahap 1. Adisi :

\[
\begin{array}{c}
\text{RCH} + \text{NH}_2 \quad \xrightarrow{\text{cepat}} \quad \text{RCH}^+ + \text{NH}_2^- \\
\text{R'NH}_2 \quad \xrightarrow{\text{cepat}} \quad \text{R'}NH \\
\end{array}
\]

Tahap 2. eliminasi :

\[
\begin{array}{c}
\text{RCH}_2 \quad \xrightarrow{\text{cepat}} \quad \text{RCH}^+ + \text{H}_2O \\
\text{R'NH} \quad \xrightarrow{\text{lambat}} \quad \text{R'C}^+ + \text{H}^- \\
\text{NR'} \\
\end{array}
\]

Gambar 5. Tahap reaksi pembentukan imina (Fessenden dan Fessenden, 1982)

3. Farmakodinamika dan farmakokinetika parasetamol

Parasetamol merupakan derivat dari para-aminofenol yang berfungsi
sebagai analgesik-antipiretik. Parasetamol digunakan dalam pengobatan nyeri
ringan sampai sedang disaat tidak diperlukan efek antiinflamasi (Katzung, 2002).
Mekanisme kerja asetaminofen sebagai inhibitor biosintesis prostaglandin pada
enzim siklooksigenase menyebabkan konversi asam arakhidonat menjadi PGG₂
terganggu (Wilman, 1995).

Pemakaian parasetamol pada dosis terapeutik hampir tidak menunjukkan toksisitas, namun bila penggunaannya overdosis atau pada pasien dengan gangguan hati menyebabkan hepatotoksik. Pada penggunaan kronis 3-4 g sehari dapat terjadi kerusakan hati, pada dosis diatas 6 g mengakibatkan nekrosis hati yang irreversibel (Tjay dan Rahardja, 2002).

Parasetamol dimetabolisme oleh enzim mikrosom hati menjadi parasetamol sulfat dan parasetamol glukoronida (80%) yang tidak aktif secara farmakologi. Parasetamol diekskresi melalui ginjal, sebagian kecil sebagai parasetamol (3%) dan sebagian besar dalam bentuk terkonjugasi. Parasetamol dapat menghasilkan metabolit minor yang sangat aktif (N-asetil-p-benzokuinin), bersifat toksis terhadap hati dan ginjal (Katzung, 2002).
Gambar 6. Proses metabolisme parasetamol (Parkinson, 2001)

Pemakaian parasetamol pada dosis terapeutik hampir tidak menunjukkan toksisitas, jika dosis parasetamol melebihi normal, maka N-asetil-p-benzokuinon atau NABKI akan didetoksifikasi melalui konjugasi glutation menghasilkan konjugat merkapturin dan sistein. Labih lanjut jika terjadi overdose jaringan penyimpan glutation akan dikosongkan dan mengakibatkan NABKI terakumulasi serta terjadi kerusakan sel (Cadman, 2001). Pada penggunaan kronis 3-4 g sehari dapat terjadi kerusakan hati, pada dosis diatas 6 g mengakibatkan nekrosis hati yang irreversibel (Tjay dan Rahardja, 2002).
B. Jamu Kunyit Asam

Salah satu obat tradisional yang beredar di pasaran adalah Kunyit Asam produksi PT. Sido Muncul, Semarang-Indonesia, yang berkhasiat untuk menghilangkan bau tidak sedap, melancarkan haid, badan tetap ramping serta menyegarkan tubuh. Bentuk sediaan Kunyit Asam berupa ekstrak dalam bentuk serbuk berwarna kuning. Komposisi Kunyit Asam meliputi:

1. *Curcuma domesticae* Rhizoma Extract 20 %
2. *Tamarindi Pulpa* Extract 10 %
3. *Citric acid* 0,05 %
4. *Sucrose* 69,4 %
5. *Sodium Chloride* 0,1 %

1. *Curcuma domesticae* Rhizoma

2. *Tamarindi Pulpa*

3. *Citric acid*

Citric acid atau asam sitrat berbentuk hablur bening tidak berwarna, tidak berbau, rasa agak asam. Bentuk hidrat mekar dalam udara kering (Anonim, 1995b).

4. *Sucrose*

Sukrosa berupa hablur putih, atau berbentuk kubus, tidak berbau, rasa manis, stabil dalam udara, larutannya netral terhadap lakmus. Sangat mudah larut dalam air, lebih mudah larut dalam air mendidih, sukar larut dalam etanol, tidak larut dalam kloroform dan dalam eter (Anonim, 1995b).

5. *Sodium Chloride*

Sodium Chloride berbentuk hablur bentuk kubus, tidak berwarna atau serbuk hablur putih, rasa asin. Mudah larut dalam air, sedikit lebih mudah larut dalam air mendidih, sukar larut dalam etanol (Anonim, 1995b).

C. *Metode Kolorimetri*

1. *Pengertian umum kolorimetri*

Variasi warna suatu sistem akan berubah apabila ada perubahan dari suatu komponen. Hal ini merupakan bentuk dasar dari apa yang lazim disebut analisis kolorimetri. Warna itu biasanya disebabkan oleh suatu senyawa. Senyawa akan menjadi berwarna apabila ditambahkan perekasi yang tepat, atau senyawa itu berwarna disebabkan karena bentuk penyusun molekul itu sendiri. Kolorimetri adalah intensitas warna yang dikaitkan dengan penetapan kadar suatu zat atas
dasar pengukuran absorpsi relatif cahaya pada konsentrasi tertentu dari zat tersebut. Kriteria untuk analisis kolorimetri yang baik adalah:

a. Menghasilkan reaksi warna yang khusus

Warna yang dihasilkan hendaknya cukup stabil dan sama untuk mendapatkan hasil yang tepat. Waktu warna maksimum harus cukup lama untuk mendapatkan pengukuran yang tepat.

b. Reprodusibilitas

Prosedur kolorimetri harus memberikan hasil yang dapat diulang pada kondisi yang sama.

c. Kejernihan larutan

Larutan harus bebas dari endapan jika pembanding yang dipakai dibuat dengan standar yang jernih. Kekeruhan akan menghamburkan maupun menyerap cahaya.

d. Kepekaan yang tinggi

Hai ini baik bila waktunya sudah ditentukan, maka reaksi warnanya memiliki kepekaan yang tinggi. Hai ini juga akan menarik bila hasil reaksi menyerap secara kuat dalam visibel daripada dalam ultraviolet (Vogel, 1978).

Apabila suatu radiasi elektromagnetik dikenakan kepada suatu larutan dengan intensitas radiasi datang (I₀), maka sebagian radiasi tersebut akan diteruskan (Iₜ), dipantulkan (Iᵣ), dan diabsorpsi (Iₐ), sehingga:

\[I₀ = Iₜ + Iᵣ + Iₐ \]
Akan tetapi harga I_r adalah kecil sekali ($\pm 4\%$) dengan demikian dapat diabaikan karena pengerjaan dengan metode spektrofotometri menggunakan larutan pembanding sehingga:

$$ I_0 = I_t + I_a $$

......2

Intensitas serapan dapat digambarkan sebagai transmittan (T), yang dijabarkan sebagai berikut:

$$ T = \frac{I_t}{I_0} $$

......3

Dimana I_0 adalah intensitas dari pencaran energi yang menyerang sampel dan I_t adalah intensitas dari radiasi yang muncul setelah melalui sampel. (Vogel, 1978)

Pernyataan yang lebih sesuai tentang intensitas serapan diturunkan dari hukum Lambert-Beer, yang mencakupkan sebuah hubungan antara transmittan, kepekatan sampel, dan konstanta jenis absorpsi. Hubungan ini digambarkan sebagai:

$$ \log \frac{1}{T} = \log \frac{I_0}{I_t} = kbc = A $$

......4

Dimana: k = konstanta karakteristik solute
c = konsentrasi solute (mol/l)
b = tebal sampel (cm)
A = serapan

maka persamaan diatas menjadi:

$$ A = \varepsilon c b $$

......5

dimana ε diketahui sebagai daya serap molar yaitu serapan satu molar larutan pada kuvet setebal satu sentimeter. Jika konsentrasi dari larutan dinyatakan dalam g/liter, maka persamaan menjadi:
\[A = a.b.c \]

dimana a adalah kemampuan serap molar dan hubungannya dengan kemampuan serap molar adalah sebagai berikut:

\[\varepsilon = a.M \]

dimana M adalah berat molekul dari larutan.

Bila c dinyatakan dalam g/100 ml, dan b dinyatakan dalam sentimeter, persamaan menjadi:

\[E_{1cm}^{1\%} = \frac{A}{cb} \]

keterangan:

- \(E_{1cm}^{1\%} \) = serapan jenis
- c = konsentrasi (g/100ml)
- b = panjang sampel (cm)

(Silverstein, Bassler, dan Murril, 1986).

Pada pengukuran yang menghasilkan serapan yang rendah, intensitas sinar yang masuk dengan sinar yang diteruskan hampir sama sehingga kesalahan akan menjadi besar karena yang dideteksi adalah perbedaan dari kedua intensitas tersebut. Sedangkan pada serapan tinggi, energi yang diterima begitu kecil sehingga sukar diukur secara akurat. Oleh sebab itu, kesalahan dalam penentuan kadar secara spektrofotometri diharapkan akan minimal bila dilakukan pembacaan serapan pada rentang 0,2 – 0,8 atau pembacaan transmisan pada rentang 15%-65% (Mulja dan Suhaman, 1995).

2. Analisis kuantitatif

Analisis kuantitatif zat tunggal dilakukan pengukuran harga serapan pada panjang gelombang maksimum atau dilakukan pengukuran % T pada panjang
gelombang minimum. Alasan dilakukan pengukuran pada panjang gelombang tersebut adalah: perubahan serapan untuk setiap satuan konsentrasi adalah paling besar pada panjang gelombang maksimal, sehingga akan diperoleh kepekaan analisis yang maksimal. Di samping itu pita serapan di sekitar panjang gelombang maksimal datar dan pengukuran ulang dengan kesalahan yang kecil dengan demikian akan memenuhi hukum Lambert-Beer. Ada empat cara pelaksanaan analisis kuantitatif zat tunggal yaitu:

a. Membandingkan serapan atau % transmitan

Serapan atau % transmitan zat yang dianalisis dibandingkan dengan reference standart pada panjang gelombang maksimal. Persyaratannya pembacaan nilai absoban sampel dan reference standard tidak jauh berbeda.

\[A_{(S)} \cdot C_{(S)} = A_{(R.S)} \cdot C_{(RS)} \]

dimana

- \(A_{(S)} \) = absoban larutan sistem
- \(C_{(S)} \) = konsentra\(\text{si} \) larutan sistem
- \(A_{(R.S)} \) = absoban reference standard
- \(C_{(RS)} \) = konsentra\(\text{si} \) larutan reference standard

b. Kurva baku

Dengan memakai kurva baku dari larutan reference standard dengan pelarut tertentu pada panjang gelobang maksimum. Dibuat grafik System koordinat Cartesius dimana sebagai ordinat adalah absoban dan sebagai ab\(\text{si} \) adalah konsentrasi.

c. Menghitung harga serapan larutan sample

Harga serapan larutan sampel (\(E_{_{(S, \lambda_{maks}})} \)) pada pelarut tertentu dan dibandingkan dengan absorbansi zat yang dianalisis tertera pada buku resmi.
d. Menghitung ekstingsi molar.

Dengan memakai perhitungan nilai ekstingsi molar (absorbansi molar ε) sama dengan cara yang ketiga hanya saja pada perhitungan absorbansi molar lebih tepat karena melibatkan masa molekul relatif (M_R).

$$\varepsilon = E \cdot M_R \cdot 10^4$$

(Mulja dan suharman, 1995).

D. Plasma

Darah adalah bagian internal tubuh yang berfungsi sebagai alat transpor utama antar organ dan jaringan-jaringan. Volume darah total normal yang beredar kira-kira 8% berat badan, atau 5600ml pada orang 70 kg. Kira-kira 55% volume ini adalah plasma (Ganong, 1980).

Kurang lebih 40-45% darah terdiri dari eritrosit, leukosit, dan platelet. Dalam 1 mm3 darah terdapat 5 X 106 sel darah merah, 5-10 X 103 sel darah putih, dan 1-3 X 103 platelet. Bila sel-sel ini diendapkan dengan sentrifugasi tanpa proses pembekuan darah, larutan supernat ini disebut plasma. Bila darah telah membeku, bagian cair dari darah tersebut disebut serum (Frisell, 1982).

Plasma manusia mengandung 90-92% air. Air selain berfungsi sebagai pelarut senyawa organik dan inorganik juga penting untuk pengaturan suhu dan pertukaran osmotik antar komponen tubuh. Komposisi protein plasma yang merupakan salah satu senyawa organik dapat dilihat sebagai berikut:
Tabel I. Komposisi protein plasma

<table>
<thead>
<tr>
<th>Protein</th>
<th>Konsentrasi (mg%)</th>
<th>Fungsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin</td>
<td>3500-4500</td>
<td>Pengaturan osmotik; transport asam lemak, bilirubin</td>
</tr>
<tr>
<td>α_1-Globulin</td>
<td>300-800</td>
<td>Transport triasilgliserol, steroid, fosfolipid, cortisol, kortikosteron</td>
</tr>
<tr>
<td>α_2-Globulin</td>
<td>400-900</td>
<td>Transport triasilgliserol, hemoglobin; prekursor trombin</td>
</tr>
<tr>
<td>β-Globulin</td>
<td>600-1100</td>
<td>Transport besi, lipid; prekursor fibrinolisin</td>
</tr>
<tr>
<td>γ-Globulin</td>
<td>700-1500</td>
<td>Antibodi</td>
</tr>
</tbody>
</table>

(Frisell, 1982)

Pengikatan molekul kecil pada protein dapat dituliskan dengan persamaan umum sebagai berikut:

\[
[P] + [A] \rightarrow [PA]
\]

Beberapa metode yang digunakan untuk mendenaturasi protein adalah:

2. Reagen-reagen khusus seperti urea dan guanidin hidroklorida mendenaturasi protein dengan membentuk ikatan hidrogen yang lebih kuat dengan suatu protein dibandingkan dengan ikatan antar protein dalam kelompok tersebut sehingga protein terdenaturasi.
3. Detergen-detergen seperti sodium dodesil sulfat dan pelarut-pelarut organik mendenaturasi protein dengan berikatan dengan gugus non polar protein sehingga mengganggu ikatan hidrofobik organik.

E. Parameter Kesahihan Metode Analisis

Kesahihan metode analisis diartikan sebagai suatu prosedur yang digunakan untuk membuktikan bahwa metode analisis tersebut secara taat asas memberikan hasil seperti yang diharapkan dengan kecermatan dan ketelitian yang memadai (Mulja dan Suharman, 1995).
Parameter-parameter kesahihan metode analisis meliputi:

1. Akurasi

2. Presisi

Presisi adalah derajat kesamaan antar hasil kadar yang terukur dari pengambilan sampel yang berulang dari suatu sampel yang homogen dengan menggunakan suatu metode analisis (Anonim, 1995a). Presisi biasanya dinyatakan dengan Coefficient of Variation (CV) dan Relative Standard Deviation (RSD). Harga RSD<20 atau CV<2% dapat dikatakan metode tersebut memberikan presisi yang bagus, sedangkan untuk bioanalisis CV=15-20% masih diterima (Mulja dan Hanwar, 2003). Presisi dapat dibedakan menjadi tiga tipe, yaitu: Repeatability merupakan precision yang dihasilkan dari pengujian suatu metode analisis yang dilakukan oleh individu yang sama dengan menggunakan prosedur yang sama dan dikerjakan dalam periode waktu yang relatif singkat,
Intermediate precision merupakan precision yang dihasilkan dari pengujian suatu metode analisis tertentu yang dikerjakan oleh individu yang berbeda dengan menggunakan prosedur dan instrumen yang sama. Reproducibility merupakan precision yang dihasilkan dari pengujian suatu metode analisis tertentu yang dikerjakan pada beberapa laboratorium yang berbeda (Anonim, 1995a).

3. Spesifisitas

Spesifisitas merupakan kemampuan suatu metode untuk mengukur dengan akurat respon analit diantara seluruh komponen sampel potensial yang ada dalam matrik sampel (Anonim, 1995a).

4. Linieritas

Linieritas dari suatu prosedur analisis merupakan kemampuannya (pada rentang tertentu) untuk mendapatkan hasil uji yang secara langsung proporsional dengan konsentrasi (jumlah) analit dalam sampel. Persyaratan data linieritas yang bisa diterima jika memenuhi nilai koefisien korelasi \(r > 0,999 \) (Mulja dan Hanwar, 2003).

5. Limit Deteksi dan Limit Kuantitasi

Limit deteksi (Limit of Detection) merupakan kadar terkecil analit yang bisa memberikan tanggap detektor yang tingginya 2-3 kali tinggi simpangan maksimum dari derau garis dasar. Limit kuantitasi (Limit of Quantitation=LOQ) adalah kadar terkecil analit terkecil yang memberikan tinggi tanggap detektor 10-20 kali tinggi simpangan maksimum dari derau garis dasar (Anonim, 1995a).
6. Sensitifitas

Sensitifitas merupakan kemampuan metode untuk mengidentifikasi perbedaan yang kecil antar konsentrasi analit. Faktor yang mempengaruhi sensitivitas ini adalah kemiringan dari kurva baku dan presisi, misalkan terdapat dua metode analisis dengan tingkat presisi yang sama akan tetapi kemiringan kurva baku keduanya berbeda maka metode yang lebih sensitif adalah metode yang mempunyai kemiringan kurva baku yang lebih curam, begitu pula sebaliknya (Skoog, 1985).

7. Range

Range suatu metode analisis adalah interval kadar terendah sampai kadar tertinggi yang dapat diukur secara kuantitatif menggunakan metode analisis tertentu dan menghasilkan akurasi serta presisi yang baik. (Anonim, 1995a).

8. Ruggedness

Perbedaan uji metode analisis harus tidak bermakna (akurasi dan presisinya) terhadap penentuan analit dalam matrik sampel yang identik pada variasi kondisi analisis yang memadai dan normal (Anonim, 1995a).

Validasi metode analisis adalah proses yang dilakukan dengan studi laboratorium yang menunjukkan karakteristik metode pada penetapan analitik. Karakteristik-karakteristik tersebut diexpressikan dalam bentuk parameter-parameter analitik. Parameter-parameter yang harus dipertimbangkan dalam validasi uji antara lain adalah: akurasi, presisi, spesifisitas, LOD, LOQ, linieritas, dan range. Dalam bidang farmasi ada tiga macam kategori analisis yang digunakan:
a. Kategori I

Metode-metode analitik yang digunakan untuk mengukur secara kuantitatif sejumlah besar komponen dari serbuk obat atau senyawa aktif (termasuk preservative) dalam sediaan obat jadi termasuk dalam kategori I.

b. Kategori II

Metode-metode analitik yang digunakan untuk penentuan kemurnian dalam serbuk obat atau penentuan senyawa degradasi dalam sediaan obat jadi termasuk dalam kategori II.

c. Kategori III

Metode-metode analitik yang digunakan untuk penentuan sifat-sifat khusus seperti kecepatan disolusi dan pelepasan obat termasuk dalam kategori III.

Berikut ini adalah parameter-parameter yang harus dipenuhi pada masing-masing kategori:

<table>
<thead>
<tr>
<th>Parameter analitik</th>
<th>Kategori I</th>
<th>Kategori II</th>
<th>Kategori III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akurasi</td>
<td>Ya</td>
<td>Ya</td>
<td>*</td>
</tr>
<tr>
<td>Presisi</td>
<td>Ya</td>
<td>Ya</td>
<td>Tidak</td>
</tr>
<tr>
<td>Spesifisitas</td>
<td>Ya</td>
<td>Ya</td>
<td>Ya</td>
</tr>
<tr>
<td>LOD</td>
<td>Tidak</td>
<td>Tidak</td>
<td>Ya</td>
</tr>
<tr>
<td>LOQ</td>
<td>Tidak</td>
<td>Ya</td>
<td>Tidak</td>
</tr>
<tr>
<td>Linieritas</td>
<td>Ya</td>
<td>Ya</td>
<td>Tidak</td>
</tr>
<tr>
<td>Range</td>
<td>Ya</td>
<td>Ya</td>
<td>*</td>
</tr>
<tr>
<td>Ruggedness</td>
<td>Ya</td>
<td>Ya</td>
<td>Ya</td>
</tr>
</tbody>
</table>

* Mungkin diperlukan, tergantung sifat uji spesifik yang dilakukan

(Anonim, 1995a)
F. Hipotesis

Penetapan kadar parasetamol yang tercampur Kunyit Asam® dalam plasma dengan metode kolorimetri menggunakan senyawa pengkopling vanilin memiliki spesifisitas, akurasi, dan presisi yang baik.
BAB III
METODOLOGI PENELITIAN

A. Jenis Penelitian

Penelitian ini merupakan penelitian non eksperimental karena tidak ada perlakuan pada subjek uji.

B. Definisi Operasional

1. Campuran parasetamol dan Kunyit Asam® dalam darah adalah campuran antara larutan parasetamol dan larutan Kunyit Asam® dalam plasma darah.

2. Spesifisitas merupakan kemampuan suatu metode untuk mengukur dengan akurat keberadaan analit diantara seluruh komponen sampel yang mungkin ada dalam sampel.

4. Coefficient of Variation (CV) merupakan parameter presisi (ketelitian) dari suatu metode analisis.

C. Bahan Penelitian

Bahan-bahan yang digunakan dalam penelitian ini adalah parasetamol farmasetis dengan sertifikat nomer POR04236 (Brataco), Kunyit Asam® (PT. Sido Muncul), asam klorida p.a 37% (E. Merck), asam trikloroasetat p.a (E. Merck).
vanilin farmasetis, etanol p.a 95%, plasma darah manusia (Palang Merah Indonesia), dan aquadest.

D. Alat Penelitian

Alat-alat penelitian yang digunakan adalah *Perkin-Elmer* Spetrofotometer UV-Vis Lambda 20, timbangan analitik *Saclec, Hettich* Sentrifuge EBA 8S, penangas air, serta alat-alat gelas.

E. Tata Cara Penelitian

1. Pembuatan larutan parasetamol

Lebih kurang 1 g parasetamol yang ditimbang seksama dilarutkan dalam 5 ml etanol 95% kemudian diencerkan dengan aquadest sampai 100,0 ml. Larutan ini disebut larutan stok parasetamol. Sebanyak 1,0; 1,5; 2,0; 2,5; 3,0; 3,5; dan 4,0 ml larutan parasetamol dimasukkan ke dalam labu ukur 10,0 ml dan diencerkan dengan aquadest sampai tanda sehingga didapatkan konsentrasi larutan parasetamol sebesar 1000; 1500; 2000; 2500; 3000; 3500; dan 4000 µg/ml.

2. Pembuatan larutan Kunyit Asam*®

Lebih kurang 1660 mg Kunyit Asam*® yang ditimbang seksama dilarutkan kedalam 10,0 ml aquadest sehingga didapat konsentrasi larutan Kunyit Asam*® sebesar 166000 µg/ml. Sebanyak 1,5 ml larutan Kunyit Asam*® dimasukkan ke dalam labu ukur 10,0 ml kemudian diencerkan dengan aquadest sampai tanda.
3. Pembuatan larutan parasetamol tercampur Kunyit Asam

Ke dalam labu ukur 10.0 ml dimasukkan 2.5 ml larutan stok parasetamol dan 1.5 ml larutan Kunyit Asam 166000 µg/ml. kemudian diencerkan dengan aquadest sampai tanda.

4. Percobaan pendahuluan

a. Pengamatan spektrum serapan parasetamol dalam plasma pada panjang gelombang ultraviolet

Sebanyak 2.0 ml larutan parasetamol 2000 µg/ml dimasukkan ke dalam tabung sentrifuge yang berisi 1.0 ml plasma. Kemudian kedalam larutan ditambahkan 2 ml larutan trikloroasetat 20%, campur dan disentrifugasi dengan kecepatan 3000 rpm selama 15 menit. Semua supernatan bening dipindahkan ke dalam labu ukur 25.0 ml kemudian diencerkan dengan aquadest sampai tanda. Larutan diukur serapannya pada panjang gelombang 230-350 nm.

b. Pengamatan spektrum serapan Kunyit Asam dalam plasma pada panjang gelombang ultraviolet

Sebanyak 2.0 ml larutan Kunyit Asam dimasukkan ke dalam tabung sentrifuge yang berisi 1.0 ml plasma. Kemudian kedalam larutan ditambahkan 2 ml larutan trikloroasetat 20%, campur dan disentrifugasi dengan kecepatan 3000 rpm selama 15 menit. Semua supernatan bening dipindahkan ke dalam labu ukur 25.0 ml kemudian diencerkan dengan aquadest sampai tanda. Larutan diukur serapannya pada panjang gelombang 230-350 nm.
c. Pengamatan spektrum serapan parasetamol dalam plasma pada panjang gelombang sinar tampak

Sebanyak 1,0 ml larutan parasetamol 2500 μg/ml dimasukkan ke dalam tabung sentrifuge yang berisi 1,0 ml plasma. Kemudian kedalam larutan ditambahkan 2 ml larutan trikloroasetat 20%, campur dan disentrifugasi dengan kecepatan 3000 rpm selama 15 menit. Semua supernatan bening diambil, dihidrolisis dengan menambahkan 0,5 ml larutan HCl 6N, larutan dipanaskan di atas penangas air selama 1 jam. Setelah dingin, larutan dipindahkan ke dalam labu ukur 25,0 ml dan ditambah 1 ml larutan vanilin 10% kemudian diencerkan dengan aquadest sampai tanda. Larutan diukur serapannya pada panjang gelombang 350-480 nm.

d. Pengamatan spektrum serapan Kunyit Asam* dalam plasma pada panjang gelombang sinar tampak

Sebanyak 1,0 ml larutan Kunyit Asam* dimasukkan ke dalam tabung sentrifuge yang berisi 1,0 ml plasma. Kemudian kedalam larutan ditambahkan 2 ml larutan trikloroasetat 20%, campur dan disentrifugasi dengan kecepatan 3000 rpm selama 15 menit. Semua supernatan bening diambil, dihidrolisis dengan menambahkan 0,5 ml larutan HCl 6N, larutan dipanaskan di atas penangas air selama 1 jam. Setelah dingin, larutan dipindahkan ke dalam labu ukur 25,0 ml dan ditambah 1 ml larutan vanilin 10% kemudian diencerkan dengan aquadest sampai tanda. Larutan diukur serapannya pada panjang gelombang 350-480 nm.

e. Pengamatan spektrum serapan parasetamol tercampur Kunyit Asam* dalam plasma pada panjang gelombang sinar tampak

Sebanyak 1,0 ml larutan parasetamol tercampur Kunyit Asam* dimasukkan ke dalam tabung sentrifuge yang berisi 1,0 ml plasma. Kemudian
kedalam larutan ditambahkan 2 ml larutan trikloroasetat 20%. campur dan
disentrifugasi dengan kecepatan 3000 rpm selama 15 menit. Semua supernatant
bening diambil, dihidrolisis dengan menambahkan 0.5 ml larutan HCl 6N, larutan
dipanaskan di atas penangas air selama 1 jam. Setelah dingin, larutan dipindahkan
ke dalam labu ukur 25.0 ml dan ditambah 1 ml larutan vanillin 10% kemudian
diencerkan dengan aquadest sampai tanda. Larutan diukur serapannya pada
panjang gelombang 350-480 nm.

5. **Optimasi metode**

a. **Penetapan operating time**

Sebanyak 1,0 ml larutan parasetamol 2500 µg/ml dimasukkan ke dalam
tabung sentrifuge yang berisi 1.0 ml plasma. Kemudian kedalam larutan
ditambahkan 2 ml laruten trikloroasetat 20%. campur dan disentrifugasi dengan
kecepatan 3000 rpm selama 15 menit. Semua supernatant bening diambil,
dihidrolisis dengan menambahkan 0,5 ml larutan HCl 6N, larutan dipanaskan di
atas penangas air selama 1 jam. Setelah dingin, larutan dipindahkan ke dalam labu
ukur 25.0 ml dan ditambah 1 ml larutan vanillin 10% kemudian diencerkan dengan
aquadest sampai tanda. Serapan larutan segera diukur pada panjang gelombang
395 nm selama satu jam. **operating time** ditandai dengan serapan yang mulai
stabil.

b. **Penetapan panjang gelombang maksimum**

Sebanyak 1,0 ml larutan parasetamol 1000, 2500, dan 4000 µg/ml
dimasukkan ke dalam tabung sentrifuge yang masing-masing berisi 1,0 ml
plasma. Pada masing-masing tabung sentrifuge tersebut ditambahkan 2 ml larutan
trikloroasetat 20% kemudian dicampur dan disentrifugasi dengan kecepatan 3000 rpm selama 15 menit. Semua supernatan bening diambil, dihidrolisis dengan menambahkan 0.5 ml larutan HCl 6N, larutan dipanaskan di atas penangas air selama 1 jam. Setelah dingin, masing-masing larutan dipindahkan ke dalam labu ukur 25,0 ml dan ditambah 1 ml larutan vanilin 10% kemudian diencerkan dengan aquadest sampai tanda. Larutan diukur serapannya setelah mencapai *operating time* pada panjang gelombang 350-480 nm. Panjang gelombang dimana terdapat serapan yang terbesar disebut sebagai panjang gelombang maksimal.

c. Penetapan kurva baku

Sebanyak 1,0 ml larutan parasetamol 1000, 1500, 2000, 2500, 3000, 3500, dan 4000 μg/ml dimasukkan ke dalam tabung sentrifuge yang masing-masing berisi 1,0 ml plasma. Pada masing-masing tabung sentrifuge tersebut ditambahkan 2 ml larutan trikloroasetat 20% kemudian dicampur dan disentrifugasi dengan kecepatan 3000 rpm selama 15 menit. Semua supernatan bening diambil, dihidrolisis dengan menambahkan 0,5 ml larutan HCl 6N, larutan dipanaskan di atas penangas air selama 1 jam. Setelah dingin, masing-masing larutan dipindahkan ke dalam labu ukur 25,0 ml dan ditambah 1 ml larutan vanilin 10% kemudian diencerkan dengan aquadest sampai tanda. Pengukuran serapan larutan dilakukan pada *operating time* yang sudah diperoleh dan pada panjang gelombang maksimal. Kemudian dibuat kurva baku antara absorbsansi terhadap seri konsentrasi larutan parasetamol.
6. Penetapan kadar

a. Penetapan kadar larutan parasetamol

Sebanyak 1.0 ml larutan parasetamol 2500 μg/ml disusukkan ke dalam tabung sentrifuge yang berisi 1.0 ml plasma. Kemudian kedalam larutan ditambahkan 2 ml larutan trikloroasetat 20%. campur dan disentrifugasi dengan kecepatan 3000 rpm selama 15 menit. Semua supernatan bening diambil, dihidrolisis dengan menambahkan 0.5 ml larutan HCl 6N, larutan dipanaskan di atas penangas air selama 1 jam. Setelah dingin, larutan dipindahkan ke dalam labu ukur 25.0 ml dan ditambah 1 ml larutan vanilin 10% kemudian diencerkan dengan aquadest sampai tanda. Larutan diukur serapannya setelah operating time dan pada panjang gelombang maksimal, kemudian dilakukan penetapan kadar dengan memasukkan absorbansi sampel ke persamaan kurva baku. Dari data penetapan kadar yang diperoleh kemudian digunakan untuk menghitung Recovery.

b. Penetapan kadar larutan parasetamol tercampur Kunyit Asam®

Sebanyak 1.0 ml larutan parasetamol tercampur Kunyit Asam® dimasukkan ke dalam tabung sentrifuge yang berisi 1.0 ml plasma. Kemudian kedalam larutan ditambahkan 2 ml larutan trikloroasetat 20%, campur dan disentrifugasi dengan kecepatan 3000 rpm selama 15 menit. Semua supernatan bening diambil, dihidrolisis dengan menambahkan 0.5 ml larutan HCl 6N, larutan dipanaskan di atas penangas air selama 1 jam. Setelah dingin, larutan dipindahkan ke dalam labu ukur 25.0 ml dan ditambah 1 ml larutan vanilin 10% kemudian diencerkan dengan aquadest sampai tanda. Larutan diukur serapannya setelah operating time dan pada panjang gelombang maksimal, kemudian dilakukan

F. Analisis Hasil

Dari data penetapan kadar yang diperoleh digunakan untuk mengetahui spesifisitas, akurasi, dan presisi metode yang digunakan dalam penetapan kadar parasetamol tercampur Kunyit Asam⁷⁻⁷ dalam plasma dengan metode kolorimetri menggunakan senyawa pengkopling vanilin. dapat ditentukan sebagai berikut:

1. Spesifisitas

Spesifisitas adalah kemampuan suatu metode untuk mengukur dengan tepat respon analit terhadap metabolit atau campurannya. Spesifisitas dalam penelitian ini ditentukan dengan membandingkan gabungan spektrum parasetamol dalam plasma dan spektra Kunyit Asam⁷⁻⁷ dalam plasma pada panjang gelombang ultraviolet dengan gabungan spektrum Kunyit Asam⁷⁻⁷ dalam plasma, spektrum parasetamol dalam plasma dan spektrum parasetamol tercampur Kunyit Asam⁷⁻⁷ dalam plasma pada panjang gelombang sinar tampak.

Sebagai pendukung dilakukan uji-t terhadap %recovery larutan parasetamol dan %recovery larutan parasetamol tercampur Kunyit Asam⁷⁻⁷. Data yang digunakan dalam uji-t ini adalah %recovery larutan parasetamol dan %recovery larutan parasetamol tercampur Kunyit Asam⁷⁻⁷. Uji-t digunakan untuk menentukan apakah kedua populasi data tersebut sama atau berbeda bermakna. Nilai t hitung yang diperoleh dari perhitungan dibandingkan dengan nilai t tabel.
2. Akurasi

Akurasi metode analisis dinyatakan dengan recovery yang dihitung dari kadar terukur pada kurva baku dibandingkan dengan kadar yang diketahui dikalikan 100%.

\[\text{Recovery} = \frac{\text{Kadar terukur}}{\text{Kadar diketahui}} \times 100\% \]

Syarat metode analisis yang baik yaitu jika memberikan harga recovery berada pada rentang 98% - 102%.

3. Presisi

Presisi metode analisis dinyatakan dengan Coefficient of Variation (CV) yang dihitung dengan cara berikut:

\[\text{CV} = \frac{SE}{x} \times 100\% \]

Metode analisis dinilai mempunyai presisi yang baik jika harga CV kurang dari 2%.
BAB IV
HASIL DAN PEMBAHASAN

A. Percobaan Pendahuluan

1. Pengamatan spektrum serapan parasetamol dalam plasma dan spektrum serapan Kuniyit Asam* dalam plasma pada panjang gelombang ultraviolet

Parasetamol dapat diamati pada panjang gelombang ultraviolet karena parasetamol dapat menyerap sinar elektromagnetik pada panjang gelombang ultraviolet, hal ini dikarenakan parasetamol mempunyai gugus kromofor dan gugus auksokrom. Spektrum serapan pada panjang gelombang ultraviolet diamati dengan melakukan pembacaan absorbansi larutan parasetamol 800 μg/ml pada panjang gelombang 230-350 nm, yang dapat dilihat sebagai berikut

![Gambar 8. Spektrum serapan parasetamol dalam plasma pada panjang gelombang ultraviolet menggunakan spektrofotometer UV-Vis](image-url)
Gambar 8 menunjukkan bahwa serapan maksimal parasetamol berada pada panjang gelombang 243,6 nm.

Spektrum serapan Kunyit Asam® juga dapat diamati pada panjang gelombang ultraviolet karena senyawa-senyawa dalam komponen penyusunnya memiliki gugus kromofor dan auskrom. Senyawa-senyawa tersebut antara lain kurkumin, desmetoksikurkumin, dan bidesmetoksikurkumin. Spektrum serapan Kunyit Asam® dapat dilihat sebagai berikut.

Gambar 9. Spektrum serapan Kunyit Asam® dalam plasma pada panjang gelombang ultraviolet menggunakan spektrofotometer UV-Vis

Gambar 9 menunjukkan bahwa Kunyit Asam® menyerap cahaya pada panjang gelombang 241,7 nm.
Gambar 10. Struktur kurkumin, desmetoksikurkumin, bidesmetoksikurkumin dalam *Curcuma domesticae* Rhizoma (Bisset and Witchl. 2001)

Senyawa-senyawa pada gambar 10 memiliki gugus kromofor dan gugus aksokrom di dalam strukturnya. Gugus kromofor ini dapat menyerap cahaya pada panjang gelombang ultraviolet, sedangkan gugus aksokrom merupakan gugus jenuh yang bila terikat pada gugus kromofor akan mengubah panjang gelombang dan intensitas serapan.

Jika spektrum serapan parasetamol dalam plasma dan spektrum serapan Kunyit Asam* dalam plasma pada panjang gelombang ultraviolet digabung menjadi satu, maka terlihat adanya spektrum serapan yang tumpang tindih yang dapat dilihat pada gambar 11.
Gambar 11. Gabungan spektrum serapan parasetamol dalam plasma dan spektrum Kunyit Asama dalam plasma pada panjang gelombang ultraviolet menggunakan spektrofotometer UV-Vis

Keterangan: A : spektrum serapan parasetamol
B : spektrum serapan Kunyit Asama

Pada penetapan kadar parasetamol tercampur Kunyit Asama dalam plasma dengan metode spektrofotometri ultraviolet menjadi tidak spesifik karena serapan parasetamol terganggu dengan adanya serapan Kunyit Asama, dibuktikan dengan spektrum serapan yang saling tumpang tindih antara parasetamol dan Kunyit Asama.
2. Pengamatan spektrum serapan parasetamol dalam plasma dan spektrum serapan Kuniyit asam¹ dalam plasma pada panjang gelombang sinar tampak

Pengamatan ini bertujuan untuk melihat apakah spektrum parasetamol dalam plasma dan spektrum Kuniyit Asam¹ dalam plasma mengalami tumpang tindih pada panjang gelombang sinar tampak. Metode kolorimetri menggunakan senyawa pengkopling vanilin akan mengubah parasetamol menjadi senyawa kompleks berwarna kuning yang kemudian diukur pada panjang gelombang sinar tampak. Spektrum serapan parasetamol diamati dengan melakukan pembacaan absorbansi larutan parasetamol 100 µg/ml pada rentang panjang gelombang 340-490 nm, yang dapat dilihat sebagai berikut

Gambar 12. Spektrum serapan parasetamol dalam plasma pada panjang gelombang sinar tampak menggunakan spektrofotometer UV-Vis
Gambar 12 menunjukkan bahwa larutan parasetamol dalam plasma yang telah direaksikan dengan vanilin menyerap cahaya pada panjang gelombang sinar tampak, yaitu pada panjang gelombang 392,8 nm.

Larutan Kunyit Asam* dalam plasma yang telah diberi perlakuan sama dengan larutan parasetamol juga menyerap cahaya pada daerah panjang gelombang sinar tampak, yang dapat dilihat sebagai berikut.

Gambar 13. Spektrum serapan kunyit Asam* dalam plasma pada panjang gelombang sinar tampak menggunakan spektrofotometer UV-Vis.

Gambar 13 menunjukkan bahwa larutan Kunyit Asam* dalam plasma yang telah direaksikan dengan vanilin memberikan serapan ± 0,04 nm. Serapan yang muncul tersebut bukan berasal dari reaksi warna antara senyawa-senyawa dalam komponen penyusun larutan Kunyit Asam* dengan senyawa pengkpling vanilin karena senyawa-senyawa dalam komponen penyusun Kunyit Asam* tidak
mengandung senyawa amin aromatis primer yang dapat bereaksi dengan vanilin. Serapan yang muncul tersebut kemungkinan disebabkan oleh adanya zat warna dari Kunyit Asam\(^*\) sendiri.

Jika spektrum parasetamol dalam plasma dan spektrum Kunyit Asam\(^*\) dalam plasma digabungkan menjadi satu maka spektrum gabungan yang terjadi dapat dilihat sebagai berikut

Gambar 14. Gabungan spektrum serapan parasetamol dan spektrum serapan Kunyit Asam\(^*\) dalam plasma pada panjang gelombang sinar tampak menggunakan spektrofotometer UV-Vs

Keterangan:

- : spektrum serapan parasetamol
- : spektrum serapan Kunyit Asam\(^*\)

Gambar 14 menunjukkan bahwa terjadi tumpang tindih antara spektrum serapan parasetamol dan spektrum serapan Kunyit Asam\(^*\). Tetapi, serapan yang dihasilkan larutan Kunyit Asam\(^*\) sangat kecil (± 0.04), serapan larutan Kunyit
Asam tersebut tidak memenuhi syarat serapan yang bisa diterima pada metode spektrofotometri UV-Vis (di luar rentang serapan 0,2 - 0,8).

B. Optimasi Metode Kolorimetri

1. Penentuan Operating Time

Penentuan operating time untuk mengetahui pada jangka waktu mana suatu larutan memberikan serapan yang stabil. Serapan yang stabil ini menunjukkan bahwa reaksi pembentukan warna antara p-aminofenol dengan vanillin telah sempurna sehingga serapan yang terbaca pada panjang gelombang maksimal adalah serapan semua p-aminofenol yang telah bereaksi dengan vanillin. Pada percobaan ini penentuan operating time dilakukan pada panjang gelombang 392,0 nm selama 1 jam. Hasil pengukuran dapat dilihat sebagai berikut:

![Gambar 15. Spektrogram Operating Time menggunakan spektrofotometer UV-Vis](image-url)
Gambar 15 menunjukkan bahwa serapan senyawa kompleks berwarna kuning stabil sejak awal reaksi (menit ke 0) sampai menit ke 60. Hal ini berarti bahwa pengukuran serapan dari larutan berwarna kuning hasil reaksi p-aminofenol dengan vanilin dapat dilakukan sejak awal reaksi (menit ke 0) sampai menit ke 60.

2. Penentuan panjang gelombang maksimum

Panjang gelombang maksimum adalah panjang gelombang di mana suatu larutan mempunyai serapan yang maksimal. Pada penelitian ini panjang gelombang diukur mulai 350-490 nm. Adapun hasil pengukuran panjang gelombang maksimal adalah sebagai berikut

Gambar 16. Spektrum panjang gelombang maksimum senyawa N (3- metoksi 4-hidroksi benaldehid) p-aminofenol menggunakan spektrofotometer UV-Vis

Menurut Farmakope Indonesia IV, panjang gelombang yang diperbolehkan adalah berada dalam batas 2 nm dari panjang gelombang teoritis. Panjang gelombang yang diperoleh dalam penelitian berbeda 2,2 nm dari panjang gelombang teoritis yaitu 392,8 nm. Hal ini masih dapat ditoleransi karena terdapat perbedaan pelarut, pereaksi, kondisi dan instrument. Maka untuk pengukuran selanjutnya digunakan panjang gelombang 392,8 nm sebagai panjang gelombang maksimum.

3. Pembuatan kurva baku

Kurva baku dibuat untuk menghitung kadar parasetamol dalam sampel. Kurva ini merupakan hubungan antara konsentrasi dan serapan, sehingga jika serapan dari larutan sampel diketahui maka dapat dihitung berapa kadar parasetamol dalam sampel tersebut dengan memasukkan serapan sampel dalam persamaan kurva baku yang diperoleh.

Dalam pembuatan kurva baku menggunakan tujuh seri konsentrasi yaitu 40, 60, 80, 100, 120, 140, dan 160 μg/ml dengan tiga kali replikasi dan diukur pada
panjang gelombang maksimal yaitu 392,8 nm. Hasil pengukuran serapan kurva baku sebagai berikut

Tabel III. Data pengukuran serapan kurva baku

<table>
<thead>
<tr>
<th>Konsentrasi (µg/ml)</th>
<th>Replikasi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>40</td>
<td>0,227</td>
</tr>
<tr>
<td>60</td>
<td>0,338</td>
</tr>
<tr>
<td>80</td>
<td>0,443</td>
</tr>
<tr>
<td>100</td>
<td>0,543</td>
</tr>
<tr>
<td>120</td>
<td>0,661</td>
</tr>
<tr>
<td>140</td>
<td>0,771</td>
</tr>
<tr>
<td>160</td>
<td>0,875</td>
</tr>
</tbody>
</table>

I. \[Y = 1,0429 \times 10^{-2} + 7,4976 \times 10^{-3} X; \ r = 0,99986; \ SE = 0,000002 \]

II. \[Y = -1,4893 \times 10^{-2} + 7,6499 \times 10^{-3} X; \ r = 0,99972; \ SE = 0,000003 \]

III. \[Y = -1,0999 \times 10^{-3} + 7,4399 \times 10^{-3} X; \ r = 0,99959; \ SE = 0,000002 \]

Dari tiga kali pengukuran didapatkan persamaan garis regresi dengan koefisien korelasi \((r)\geq 0,999\). Hasil ini menunjukkan bahwa korelasi antara konsentrasi parasetamol dalam plasma dan serapan baik. Persamaan garis regresi yang paling baik adalah persamaan garis \(Y = 1,0429 \times 10^{-2} + 7,4976 \times 10^{-3} X \) karena harga koefisien korelasi \((r)\geq 0,999\) dan juga memiliki harga SE yang paling kecil yaitu 0,000002.
Gambar 17. Kurva hubungan antara konsentrasi dengan absorbansi

Kurva hubungan antara kadar N (3-metoksı 4-hidroksi benzaldehidı) p-aminofenol dengan serapan menunjukkan bahwa dengan peningkatan konsentrasi akan menyebabkan peningkatan serapan. Hasil ini menunjukkan bahwa korelasi antara konsentrasi p-aminofenol dan serapan memang baik sehingga persamaan garis $Y = 1.0429.10^{-2} + 7.4976.10^{-3} X$ kemudian digunakan untuk menghitung konsentrasi terukur parasetamol.

C. Analisis Hasil

Validasi penetapan kadar parasetamol tercampur Kunyit Asam⁶ dalam plasna dengan metode kolorimetri menggunakan senyawa pengkopling vanillin ini termasuk kategori analisis yang pertama. Pada kategori ini parameter yang harus diamati adalah akurasi, presisi, spesifisitas, linearitas, range, dan ruggedness. Range dan ruggedness diperoleh dengan melakukan penelitian pada kondisi yang berbeda (laboratorium, instrumen, bahan, dan lain-lain), sehingga
range dan ruggedness tidak dapat ditetapkan dalam penelitian ini. Sedangkan linearitas telah dicapai melalui pembuatan kurva baku dengan nilai $r > 0,999$.

Penetapan kadar parasetamol dilakukan pada dua jenis sampel yaitu sampel larutan parasetamol dalam plasma dan sampel larutan parasetamol tercampur Kunyit asam* dalam plasma. Konsentrasi parasetamol yang digunakan adalah 100 μg/ml karena konsentrasi ini berada dalam rentang kurva baku yang digunakan. Konsentrasi Kunyit Asam* yang digunakan menyesuaikan dengan kondisi tubuh dimana terjadi pengenceran oleh air di dalam plasma pada sistem sirkulasi darah.

Dalam pengukuran kadar parasetamol dalam sampel dilakukan tujuh kai replikasi yang kemudian diukur setelah mencapai operating time yaitu pada menit ke 20 dan pada panjang gelombang 392,8 nm. Data yang diperoleh digunakan untuk mengetahui spesifisitas, akurasi, dan presisi metode kolorimetri menggunakan senyawa pengkopling vanilin pada sampel.

1. Spesifisitas

Spesifisitas dalam penelitian ini ditentukan dengan membandingkan gabungan spektrum parasetamol dalam plasma dan spektrum Kunyit Asam* dalam plasma pada panjang gelombang ultraviolet dengan gabungan spektrum parasetamol dalam plasma, spectrum Kunyit Asam* dalam plasma, dan spektrum parasetamol tercampur Kunyit Asam* dalam plasma pada panjang gelombang sinar tampak sebagai berikut:

Keterangan:
- : spektrum serapan larutan parasetamol dalam plasma
- : spektrum serapan Kunyit Asam* dalam plasma
- : spektrum serapan parasetamol tercampur Kunyit Asam*

Gambar 18. (a) menunjukkan terjadi tumpang tindih antara spektrum parasetamol dalam plasma dan spektrum Kunyit Asam* dalam plasma pada panjang gelombang ultraviolet. Parasetamol memiliki serapan maksimum sebesar 0.478 pada panjang gelombang 243.6 nm dan Kunyit Asam* memiliki puncak serapan maksimum sebesar 0.337 pada panjang gelombang 241.7 nm. Hal ini menunjukkan bahwa metode spektrofotometri ultraviolet tidak spesifik karena serapan parasetamol akan terganggu oleh serapan Kunyit Asam*.
Pada gambar 18. (b) menunjukkan bahwa dengan adanya serapan Kunyit Asam\(^\circ\) pada panjang gelombang sinar tampak maka dapat meningkatkan serapan parasetamol terlihat pada spektrum serapan parasetamol tercampur Kunyit Asam\(^\circ\), tetapi besarnya peningkatan yang ditimbulkan Kunyit Asam\(^\circ\) sangat kecil (memberikan perbedaan tidak bermakna) sehingga dapat dikatakan bahwa metode kolorimetri dengan senyawa pengkopling vanillin ini lebih spesifik dibanding metode spektrofotometri ultraviolet.

Untuk membantu menegaskan apakah peningkatan serapan parasetamol yang ditimbulkan serapan Kunyit Asam\(^\circ\) memberikan perbedaan bermakna atau tidak dengan melakukan uji \%recovery larutan parasetamol dan \%recovery larutan parasetamol tercampur Kunyit Asam\(^\circ\).

Tabel IV. Hasil uji \%recovery larutan parasetamol dan \%recovery larutan parasetamol tercampur Kunyit Asam\(^\circ\)

<table>
<thead>
<tr>
<th>%Recovery larutan parasetamol</th>
<th>%Recovery larutan parasetamol tercampur Kunyit Asam(^\circ)</th>
<th>t-hitung</th>
<th>t-tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,1537</td>
<td>103,6870</td>
<td>-0,531</td>
<td>2,446</td>
</tr>
<tr>
<td>95,3050</td>
<td>96,0473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97,2890</td>
<td>97,4752</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99,3144</td>
<td>100,9927</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107,8051</td>
<td>105,5730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107,7813</td>
<td>107,0400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97,7435</td>
<td>97,1876</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nilai t hitung adalah -0,531 sedangkan nilai t tabel adalah 2,446. Karena nilai |t| hitung lebih kecil daripada t tabel maka dapat dikatakan bahwa \%recovery larutan parasetamol tercampur Kunyit Asam\(^\circ\) berbeda tidak bermakna. Hal ini berarti
metode kolorimetri yang digunakan merupakan metode yang spesifik untuk penetapan kadar parasetamol tercampur Kunyit Asam® dalam plasma.

2. Akurasi

Akurasi metode analisis dinyatakan dengan %recovery. Hasil pengukuran dan perhitungan kadar parasetamol dalam sampel parasetamol Kunyit Asam® dapat dilihat sebagai berikut

Tabel V. Data hasil perhitungan kadar sampel parasetamol tercampur Kunyit Asam®

<table>
<thead>
<tr>
<th>Repiikasi</th>
<th>Kadar Diketahui (µg/ml)</th>
<th>Kadar Terukur (µg/ml)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100,236</td>
<td>103,941</td>
<td>103,696</td>
</tr>
<tr>
<td>2</td>
<td>100,446</td>
<td>96,485</td>
<td>96,057</td>
</tr>
<tr>
<td>3</td>
<td>100,122</td>
<td>97,603</td>
<td>97,484</td>
</tr>
<tr>
<td>4</td>
<td>99,957</td>
<td>100,959</td>
<td>101,002</td>
</tr>
<tr>
<td>5</td>
<td>100,221</td>
<td>105,806</td>
<td>105,573</td>
</tr>
<tr>
<td>6</td>
<td>100,579</td>
<td>107,669</td>
<td>107,049</td>
</tr>
<tr>
<td>7</td>
<td>100,610</td>
<td>97,790</td>
<td>97,197</td>
</tr>
<tr>
<td>Rerata Recovery ± SE % CV</td>
<td>101,151 ± 1,623</td>
<td>1,642</td>
<td></td>
</tr>
</tbody>
</table>

Hasil perhitungan data sampel menunjukkan nilai rata-rata Recovery adalah 101,151%. Hasil ini masih berada dalam rentang recovery yaitu antara 98%-102%. Recovery ini digunakan sebagai penentu akurasi metode analisis. Hasil ini menunjukkan bahwa penetapan kadar parasetamol tercampur Kunyit Asam® dalam plasma dengan metode kolorimetri menggunakan senyawa pengkoping vanillin memiliki akurasi yang baik.

3. Presisi

Parameter untuk menentukan kesahihan metode analisis selain akurasi adalah presisi. Penelitian ini menggunakan presisi bertipe *repeatability* karena
pengujian metode dilakukan oleh individu yang sama dengan menggunakan prosedur yang sama dan dikerjakan dalam periode waktu yang relatif singkat. Presisi dinyatakan dengan *Coefficient of Variation* (CV) kadar terukur. Presisi dikatakan baik jika nilai CV kurang dari 2%. Dari data dan perhitungan yang telah dilakukan diperoleh nilai CV sebesar 1,642%. Hasil ini menunjukkan bahwa penetapan kadar parasetamol tercampur Kunyit Asam® dalam plasma dengan metode kolorimetri menggunakan senyawa pengkoping vanillin memiliki presisi yang baik.

Hasil dan perhitungan yang diperoleh menunjukkan bahwa penetapan kadar parasetamol tercampur Kunyit Asam® dalam plasma dengan metode kolorimetri menggunakan senyawa pengkoping vanillin mempunyai spesifisitas, akurasi dan presisi yang baik.
BAB V
KESIMPULAN DAN SARAN

A. Kesimpulan
Penetapan kadar parasetamol tercampur Kunyit Asam® dalam plasma dengan metode kolorimetri menggunakan senyawa pengkopling vanillin mempunyai spesifisitas, akurasi dan presisi yang baik.

B. Saran
Dapat dilakukan aplikasi penetapan kadar parasetamol tercampur Kunyit Asam® dalam plasma dengan metode kolorimetri menggunakan senyawa pengkopling vanillin secara invivo.
DAFTAR PUSTAKA

Anonim, 1995b, *Farmakope Indonesia*, Edisi IV, Departemen Kesehatan Republik Indonesia, Jakarta

LAMPIRAN
Lampiran 1

Data Penimbangan

A. Penimbangan parasetamol untuk kurva baku

<table>
<thead>
<tr>
<th>No</th>
<th>Kertas kosong</th>
<th>Kertas + Zat</th>
<th>Kertas + Sisa</th>
<th>Zat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.4483</td>
<td>1.45697</td>
<td>0.44898</td>
<td>1.00799</td>
</tr>
<tr>
<td>2.</td>
<td>0.4473</td>
<td>1.46856</td>
<td>0.44766</td>
<td>1.02090</td>
</tr>
<tr>
<td>3.</td>
<td>0.4571</td>
<td>1.45631</td>
<td>0.45795</td>
<td>0.99836</td>
</tr>
</tbody>
</table>

B. Sampel

1. Parasetamol

<table>
<thead>
<tr>
<th>No</th>
<th>Kertas kosong</th>
<th>Kertas + Zat</th>
<th>Kertas + sisa</th>
<th>Zat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.6472</td>
<td>1.65038</td>
<td>0.64802</td>
<td>1.00236</td>
</tr>
<tr>
<td>2.</td>
<td>0.6479</td>
<td>1.65051</td>
<td>0.64859</td>
<td>1.00192</td>
</tr>
<tr>
<td>3.</td>
<td>0.6478</td>
<td>1.65331</td>
<td>0.64885</td>
<td>1.00446</td>
</tr>
<tr>
<td>4.</td>
<td>0.4502</td>
<td>1.45714</td>
<td>0.45097</td>
<td>1.00617</td>
</tr>
<tr>
<td>5.</td>
<td>0.4620</td>
<td>1.46163</td>
<td>0.46206</td>
<td>0.99957</td>
</tr>
<tr>
<td>6.</td>
<td>0.6420</td>
<td>1.64472</td>
<td>0.64261</td>
<td>1.00211</td>
</tr>
<tr>
<td>7.</td>
<td>0.6437</td>
<td>1.65133</td>
<td>0.64523</td>
<td>1.00610</td>
</tr>
</tbody>
</table>

2. Kanyit Asam®

<table>
<thead>
<tr>
<th>No</th>
<th>Kertas kosong</th>
<th>Kertas + Zat</th>
<th>Kertas + sisa</th>
<th>Zat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.6306</td>
<td>0.98119</td>
<td>0.63246</td>
<td>0.34864</td>
</tr>
<tr>
<td>2.</td>
<td>0.6319</td>
<td>0.98508</td>
<td>0.63539</td>
<td>0.34969</td>
</tr>
<tr>
<td>3.</td>
<td>0.6340</td>
<td>0.98517</td>
<td>0.62519</td>
<td>0.34998</td>
</tr>
<tr>
<td>4.</td>
<td>0.5830</td>
<td>0.93535</td>
<td>0.58965</td>
<td>0.34570</td>
</tr>
<tr>
<td>5.</td>
<td>0.5891</td>
<td>0.93843</td>
<td>0.59123</td>
<td>0.34720</td>
</tr>
<tr>
<td>6.</td>
<td>0.6261</td>
<td>0.98396</td>
<td>0.62700</td>
<td>0.35696</td>
</tr>
<tr>
<td>7.</td>
<td>0.6320</td>
<td>0.98331</td>
<td>0.63278</td>
<td>0.35053</td>
</tr>
</tbody>
</table>
Lampiran 2
Cara Perhitungan Pembuatan Larutan Kunyit Asam®

* Larutan Persediaan Kunyit Asam®

\[C = \frac{\text{bobot (mg)}}{\text{volume (ml)}} \times 100\% \]

\[C = \frac{1660 \text{mg}}{10 \text{ml}} \times 100\% = 16600 \text{ mg\%} = 166000 \mu\text{g/ml} \]

* Volume air dalam plasma orang normal dengan BB 50 kg

Diketahui : Larutan Stock Vegeta® = 166000 μg/ml

Berat badan (BB) = 50 kg

Volume darah (Vdarah) = 8%, BB

Volume plasma (Vplasma) = 55%, Vdarah

Volume air (Vair) = 90%. Vplasma

\[V\text{air} = \frac{90 \times 55 \times 8 \times \text{BB}}{100 \times 100 \times 100} = 0,0396 \times \text{BB} \]

\[V\text{air} = 0,0396 \times 50 \]

= 1,98 liter = 1980 ml

* Kadar larutan Kunyit Asam® dalam plasma

166000 μg/ml . 150 ml = Cplasma . 1980 ml

\[C\text{plasma} = \frac{166000 \mu\text{g/ml} \times 150 \text{ ml}}{1980 \text{ ml}} \]

= 12121 μg/ml
* Kadar larutan intermediet Kunyit Asam*

\[
C_{\text{intermediet}} = C_{\text{plasma}} \times 2 \\
= 12121 \, \mu g/ml \times 2 \\
= 24242 \, \mu g/ml
\]

* Volume larutan stock Kunyit Asam* yang diambil untuk membuat larutan intermediet Kunyit Asam*

\[
V_{\text{stok}} \cdot C_{\text{stok}} = V_{\text{intermediet}} \cdot C_{\text{intermediet}}
\]

\[
V_{\text{stok}} \cdot 166000 \, \mu g/ml = 10 \, ml \cdot 24242 \, \mu g/ml
\]

\[
V_{\text{stok}} = 1.5 \, ml \pm 10\%
\]

Jadi, larutan stok Kunyit Asam* yang diambil untuk membuat 10 ml larutan intermediet Kunyit Asam* adalah 1.5 ml \pm 10\% atau (1.4 - 1.6 ml).
Lampiran 3
Spektrum serapan parasetamol pada panjang gelombang ultraviolet
Lampiran 4

Spektrum serapan Kunyit Asam pada panjang gelombang ultraviolet

[Diagram showing absorbance against wavelength (nm)]
Lampiran 5

Gabungan spektrum serapan parasetamol dan spektrum serapan Kunyit asam pada panjang gelombang ultraviolet
Lampiran 6

Spektrum serapan parasetamol pada panjang gelombang sinar tampak
Lampiran 7
Spektrum serapan Kuniit Asam pada panjang gelombang sinar tampak
Lampiran 8

Gabungan spektrum serapan parasetamol dan spektrum serapan Kunyit Asam pada panjang gelombang sinar tampak
Lampiran 9

Spektrum serapan Operating Time

BATCH: 001

SAMPLE TIME WAVELENGTH DATA
Lampiran 10

Spektrum serapan panjang gelombang maksimum parasetamol
Lampiran 11

Gabungan spektrum serapan parasetamol, spektrum serapan Kunyit asam8, spektrum serapan parasetamol tercampur Kunyit Asam8 pada panjang gelombang sinar tampak
Lampiran 12
Grafik Kurva Baku Parasetamol dalam Plasma dengan Metode Kolorimetri Menggunakan Vanilin

Kurva baku

serapan

0 0.2 0.4 0.6 0.8 1

konsentrasi p-aminofenol (µg/ml)

0 20 40 60 80 100 120 140
Lampiran 13

Contoh Perhitungan Konsentrasi Kurva Baku

\[
\begin{align*}
\text{Parasetamol} & \quad \text{p-aminofenol} \\
\text{BM} = 151,16 & \quad \text{BM} = 108,15
\end{align*}
\]

Bobot kertas = 6,44831 g
Bobot kertas + zat = 1,45697 g
Bobot kertas + sisa = 0,44898 g
Bobot zat = 1,00799 g

Parasetamol diimbang 1,00799 g ditambah 5 ml etanol dilarutkan dengan aquadest sampai 100,0 ml. Konsentrasi parasetamol baku = 1,00799 g/100 ml = 1007,99 mg/100 ml = 10,0799 mg/ml

Kemudian larutan baku diambil dengan volume masing-masing 1,0 ml; 1,5 ml; 2,0 ml; 2,5 ml; 3,0 ml; 3,5 ml dan 4,0 ml diencerkan hingga 10,0 ml

Dari reaksi tersebut di atas diketahui jika 1 mol parasetamol setara dengan 1 mol p-aminofenol.

\[
\begin{align*}
\text{Mmol parasetamol} & = 1,00799 \text{ mg/ml} : 151,16 = 6,66837 \times 10^{-3} \\
\text{Mmol p-aminofenol} & = 6,66837 \times 10^{-3} \\
\text{Bobot p-aminofenol} & = 6,66837 \times 10^{-3} \times 108,15 = 0,721184 \text{ mg}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Volume pengambilan lar. Baku</th>
<th>Konsentrasi parasetamol setelah diencerkan ad 10 ml</th>
<th>Jumlah p-aminofenol dlm 1 ml larutan</th>
<th>Kadar p-aminofenol setelah diencerkan ad 25 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0 ml</td>
<td>1,00799 mg/ml</td>
<td>721,184 μg</td>
<td>28,847 μg/ml</td>
</tr>
<tr>
<td>1,5 ml</td>
<td>1,51199 mg/ml</td>
<td>1081,775 μg</td>
<td>43,271 μg/ml</td>
</tr>
<tr>
<td>2,0 ml</td>
<td>2,01598 mg/ml</td>
<td>1442,367 μg</td>
<td>57,695 μg/ml</td>
</tr>
<tr>
<td>2,5 ml</td>
<td>2,51998 mg/ml</td>
<td>1802,959 μg</td>
<td>72,118 μg/ml</td>
</tr>
<tr>
<td>3,0 ml</td>
<td>3,02397 mg/ml</td>
<td>2163,551 μg</td>
<td>86,543 μg/ml</td>
</tr>
<tr>
<td>3,5 ml</td>
<td>3,52797 mg/ml</td>
<td>2524,143 μg</td>
<td>100,966 μg/ml</td>
</tr>
<tr>
<td>4,0 ml</td>
<td>4,03198 mg/ml</td>
<td>2884,735 μg</td>
<td>115,389 μg/ml</td>
</tr>
</tbody>
</table>
Lampiran 14

Contoh Perhitungan Konsentrasi Diketahui dan Terukur

Dari larutan baku diambil dengan volume masing-masing 1,0 ml; 1,5 ml; 2,0 ml; 2,5 ml; 3,0 ml; 3,5 ml dan 4,0 ml diencerkan hingga 10,0 ml. Dari setiap pengenceran diambil 1 ml dan dibagi perlakuan sama dengan sampel.

- Bebeto parasetamol = 10079,9 mg → ad 100 ml
 Kadar diketahui = \(\frac{10079,9 \text{ mg}}{100 \text{ ml}} \times \frac{1 \text{ ml}}{10,0 \text{ ml}} = 40,329 \text{ mg/ml} \)

- Persamaan garis regresi \(Y = 1,0429 \times 10^{-2} + 7,4976 \times 10^{-3} X \)

Untuk pengukuran 1 memberikan ansorbansi 0,227

\(Y = 1,0429 \times 10^{-2} + 7,4976 \times 10^{-3} X \)

0,227 = 1,0429 \times 10^{-2} + 7,4976 \times 10^{-3} X

\(X = 28,885 \text{ mg/ml (p-aminofenol)} \)

- Dari persamaan muka diketahui 1 mol p-aminofenol setara dengan 1 mol parasetamol.

Kadar parasetamol terukur = \(\frac{10079,9 \text{ mg/ml}}{151,16} = 40,373 \text{ mg/ml} \)

108,15
Lampiran 15

Perhitungan % Recovery, Koefisien Variasi (KV) Parasetamol

<table>
<thead>
<tr>
<th>Replikasi</th>
<th>Kadar Diketahui (µg/ml)</th>
<th>Kadar Terukur (µg/ml)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100,236</td>
<td>103,941</td>
<td>103,696</td>
</tr>
<tr>
<td>2</td>
<td>100,446</td>
<td>96,485</td>
<td>96,057</td>
</tr>
<tr>
<td>3</td>
<td>100,122</td>
<td>97,603</td>
<td>97,484</td>
</tr>
<tr>
<td>4</td>
<td>99,957</td>
<td>100,959</td>
<td>101,002</td>
</tr>
<tr>
<td>5</td>
<td>106,221</td>
<td>105,806</td>
<td>105,573</td>
</tr>
<tr>
<td>6</td>
<td>100,579</td>
<td>107,669</td>
<td>107,049</td>
</tr>
<tr>
<td>7</td>
<td>100,610</td>
<td>97,790</td>
<td>97,197</td>
</tr>
<tr>
<td>Rerata Recovery ± SE</td>
<td>101,151 ± 1,661</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% CV</td>
<td></td>
<td>1,642</td>
<td></td>
</tr>
</tbody>
</table>

Contoh perhitungan recovery:

Data 1.

- Kadar terhitung parasetamol dalam sampel = 100,236 µg/ml
- Kadar terukur parasetamol dalam sampel = 103,941 µg/ml

\[Recovery = \frac{\text{Kadar terukur}}{\text{Kadar diketahui}} \times 100\% \]

\[= \frac{103,941 \, \text{µg/ml}}{100,236 \, \text{µg/ml}} \times 100\% \]

\[= 103,696 \, \text{µg/ml} \]
Contoh perhitungan KV

\[SE = \frac{SD}{\sqrt{n}} \]

\[KV = \frac{SE}{\bar{x}} \times 100\% \]

Keterangan:
- SE = standart error
- SD = simpangan baku
- n = jumlah replikasi
- \(\bar{x} \) = kadar rata-rata
- KV = Koefisien Variasi

\[SE = \frac{4.39}{\sqrt{7}} \]

\[= 1.66i \]

\[KV = \frac{1.623}{101.151} \times 100\% \]

\[= 1.642\% \]
Lampiran 16

Uji T

T-Test

Paired Samples Statistics

<table>
<thead>
<tr>
<th>Pair</th>
<th>Mean</th>
<th>N</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCT</td>
<td>100.7703</td>
<td>7</td>
<td>5.0380891</td>
<td>1.9042112</td>
</tr>
<tr>
<td>PCTKA</td>
<td>101.1433</td>
<td>7</td>
<td>4.39618</td>
<td>1.68100</td>
</tr>
</tbody>
</table>

Paired Samples Correlations

<table>
<thead>
<tr>
<th>N</th>
<th>Correlation</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0.931</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Paired Samples Test

<table>
<thead>
<tr>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>95% Confidence Interval of the Difference</th>
<th>t</th>
<th>df</th>
<th>Sig (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCT</td>
<td>PCTKA</td>
<td></td>
<td></td>
<td>-3.72971</td>
<td>1.9598228</td>
<td>7.82970</td>
</tr>
</tbody>
</table>
Lampiran 17

Tabel t

<table>
<thead>
<tr>
<th>df</th>
<th>t 10</th>
<th>t 5</th>
<th>t 2,5</th>
<th>T 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0777</td>
<td>6.3138</td>
<td>12.7062</td>
<td>31.8205</td>
</tr>
<tr>
<td>2</td>
<td>1.8856</td>
<td>2.9200</td>
<td>4.3027</td>
<td>6.9646</td>
</tr>
<tr>
<td>3</td>
<td>1.6377</td>
<td>2.3534</td>
<td>3.1824</td>
<td>4.5407</td>
</tr>
<tr>
<td>4</td>
<td>1.5332</td>
<td>2.1318</td>
<td>2.7764</td>
<td>3.7469</td>
</tr>
<tr>
<td>5</td>
<td>1.4759</td>
<td>2.0150</td>
<td>2.5706</td>
<td>3.3649</td>
</tr>
<tr>
<td>6</td>
<td>1.4398</td>
<td>1.9432</td>
<td>2.4469</td>
<td>3.1427</td>
</tr>
<tr>
<td>7</td>
<td>1.4149</td>
<td>1.8946</td>
<td>2.3646</td>
<td>2.9980</td>
</tr>
<tr>
<td>8</td>
<td>1.3968</td>
<td>1.8595</td>
<td>2.3060</td>
<td>2.8965</td>
</tr>
<tr>
<td>9</td>
<td>1.3830</td>
<td>1.8331</td>
<td>2.2622</td>
<td>2.8214</td>
</tr>
<tr>
<td>10</td>
<td>1.3722</td>
<td>1.8125</td>
<td>2.2281</td>
<td>2.7638</td>
</tr>
</tbody>
</table>

Sumber: SPSS
Lampiran 18

Sertifikat Analisis Parasetamol

Wenzhou Pharmaceutical Factory

Certificate of Analysis

<table>
<thead>
<tr>
<th>Property</th>
<th>Result</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Conforms</td>
<td>A white, crystalline powder, sparingly soluble in water, freely soluble in alcohol, very slightly soluble in ether, and is miscible with chloroform</td>
</tr>
<tr>
<td>Identification</td>
<td>Conforms</td>
<td>Melting point: 168-172°C</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>Specification</td>
</tr>
<tr>
<td></td>
<td>Conforms</td>
<td>5.5</td>
</tr>
<tr>
<td>Uptake</td>
<td>Conforms</td>
<td>≤0.07%</td>
</tr>
<tr>
<td>Solubility</td>
<td>Conforms</td>
<td>≤0.08%</td>
</tr>
<tr>
<td>Refractive index</td>
<td>Conforms</td>
<td>Complex with USP26 test</td>
</tr>
<tr>
<td>Heavy Metals</td>
<td>Conforms</td>
<td>≤10ppm</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Conforms</td>
<td>≤10ppm</td>
</tr>
<tr>
<td>Residual Solvents</td>
<td>Conforms</td>
<td>(a) ≤10ppm (b) 0.25% (c) ≤0.01%</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>Conforms</td>
<td>0.01%</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>Conforms</td>
<td>(100.1%) 96% - 101.0% on the drug sub.</td>
</tr>
<tr>
<td>Organic volatile impurities</td>
<td>Conforms</td>
<td></td>
</tr>
</tbody>
</table>

Conforms to comply with the requirements of EP/USP26

Signature

Analysis: [Signature]

Approver: [Signature]

FO NUMBER: P0041236. Wenzhou 123046.
BIOGRAFI PENULIS