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Abstract. The gravity wave-model equations are considered. We solve these equations using 

the variational iteration method. The variational iterat ion solutions approximate the exact 

solution. The main advantage of using the variational iteration method is that we have an 

explicit function of the time and space variables as an approximate solution to the gravity 

wave-model problems. 

1. Introduction 
Shallow water waves occur in rivers and oceans. Water wave is considered shallow wave if the wave 
amplitude is smaller than the wave length. Shallow water waves can be governed by the shallow water 
wave equations. Furthermore, if the convective process is not significant, we can neglect the 
convective term in the shallow water wave equations and obtain the so called the gravity wave-model 
equations [1-3]. For a horizontal topography, the shallow water wave equations are 

𝜕

𝜕𝑡
ℎ(𝑥, 𝑡) +

𝜕

𝜕𝑥
(𝑢 𝑥, 𝑡 ℎ 𝑥, 𝑡 ) = 0, (1) 

and  

𝜕

𝜕𝑡
(𝑢 𝑥, 𝑡 ℎ 𝑥, 𝑡 ) +

𝜕

𝜕𝑥
 𝑢2 𝑥, 𝑡 ℎ 𝑥, 𝑡 +

1

2
𝑔ℎ2 𝑥, 𝑡  = 0. (2) 

Here h is the water depth;uh is the water discharge; gis the acceleration due to gravity; t is the time 
variable and x is the space variable. If we neglect the convective term u2h, we obtain the gravity 
wave-model equations [1-3] 

𝜕

𝜕𝑡
ℎ(𝑥, 𝑡) +

𝜕

𝜕𝑥
(𝑢 𝑥, 𝑡 ℎ(𝑥, 𝑡)) = 0, (3) 

and  
𝜕

𝜕𝑡
(𝑢 𝑥, 𝑡 ℎ(𝑥, 𝑡)) +

𝜕

𝜕𝑥
 

1

2
𝑔ℎ2(𝑥, 𝑡) = 0. (4) 

In this paper, we take the convention that all quantities have the SI units with the MKS system. In 
general, the exact solution to the gravity wave-model equations is not available until this paper is 
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written. Therefore, approximate solutions are usually desired. The aim of this study is to provide a 
way of approximating the exact solution to the gravity wave-model equations using the variational 
iteration method. The variational iteration method is chosen, because it is an analytical approach [4-7], 
so we do not need to discretise the time and space domains in order to solve the gravity wave-model 
problems.We note that some variants of variational iteration methods have been used to solve a 
number of different problems in physics [8-11], mathematics [12], computer science [13], and 
chemistry [14-15]. This paper is organised as follows. We provide the derivation of approximate 
solutions using the variational iteration method in Section 2. Results and discussion are given in 
Section 3. The paper is concluded in Section 4. 

2. Variational iteration method 
The variational iteration method works by first we construct the correction functionals for the gravity 
wave-model equations. Then we specify the value of the Lagrange multiplier of the correction 
functionals. Once we obtain the Lagrange multiplier, we substitute this Lagrange multiplier into the 
correction functionals to form the variational iteration formulas. The variational iteration formulas for 
the gravity wave-model equations are 

ℎ𝑛+1 𝑥, 𝑡 = ℎ𝑛 𝑥, 𝑡 −  
𝜕ℎ𝑛
𝜕𝜏

−
𝜕(𝑞𝑛)

𝜕𝑥
 𝑑𝜏

𝑡

0

, (5) 

and  

𝑞𝑛+1 𝑥, 𝑡 = 𝑞𝑛 𝑥, 𝑡 −  
𝜕(𝑞𝑛)

𝜕𝜏
−
𝜕(1

2
𝑔ℎ𝑛

2 )

𝜕𝑥
 𝑑𝜏

𝑡

0

. (6) 

Here qn = un hn is the approximate water discharge function at the nth iteration level. The 
initialisation is set by taking the initial condition, that is, ℎ0(𝑥, 𝑡) = ℎ(𝑥, 0) and u0(x, t) = u(x, 0) so 
𝑞0 𝑥, 𝑡 = 𝑞 𝑥, 0 = 𝑢 𝑥, 0 ℎ 𝑥, 0 . When the variational iterations converge, they converge to the 
exact solution to the problem.  

3. Results and discussion 
In this section we provide our computational results and discussions. 

3.1 Surface wave simulation 
Surface wave is simulated using the initial water depth 

ℎ 𝑥, 0 = 0.1  +  0.25𝑠𝑒𝑐ℎ(𝑥)  +  𝑒𝑥𝑝(−𝑥2)/(1 + 𝑒𝑥𝑝(−𝑥2)) (7) 

for all x, as shown in Figure 1. We take the gravitational constant g = 1. The simulation is supposed to 
find the solution at any timet. The initial fluid velocity is u x, 0 = 0, for all x. Using the MAPLE 
software, the variational solutions are computed for ℎ0 𝑥, 𝑡 , 𝑞0 𝑥, 𝑡  and ℎ1 𝑥, 𝑡 , 𝑞1 𝑥, 𝑡 , as well 
as ℎ2 𝑥, 𝑡 , 𝑞2 𝑥, 𝑡 . Our results are as follows. Note that the star " * " sign is the multiplication 
operator in the MAPLE software. For the initialisation, we have 

ℎ0 𝑥, 𝑡 = 0.1 + 0.25 ∗ 𝑠𝑒𝑐ℎ 𝑥 +
𝑒𝑥𝑝 −𝑥2 

1 + 𝑒𝑥𝑝 −𝑥2 
 

and 

𝑞0 𝑥, 𝑡 = 0 . 

The first levels of variationaliteration solutions are  
ℎ1 𝑥, 𝑡 = ℎ0 𝑥,𝑡  

and 
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𝑞1 𝑥, 𝑡 =  0.1 + 0.25 ∗ 𝑠𝑒𝑐ℎ 𝑥 +
𝑒𝑥𝑝  −𝑥2 

1+𝑒𝑥𝑝  −𝑥2 
 ∗  −0.25 ∗ 𝑠𝑒𝑐ℎ 𝑥 ∗ 𝑡𝑎𝑛ℎ 𝑥 − 2 ∗ 𝑥 ∗

𝑒𝑥𝑝  −𝑥2 

1+𝑒𝑥𝑝  −𝑥2 
+ 2 ∗

𝑒𝑥𝑝  −𝑥2 
2

 1+𝑒𝑥𝑝  −𝑥2  
2 ∗ 𝑥 ∗ 𝑡 . 

The second levels of variationaliteration solutions are 

ℎ2 𝑥, 𝑡 = 0.1 + 0.25 ∗ 𝑠𝑒𝑐ℎ 𝑥 +
𝑒𝑥𝑝 −𝑥2 

1 + 𝑒𝑥𝑝 −𝑥2 
− 0.5

∗  −1

∗  −0.25 ∗ 𝑠𝑒𝑐ℎ 𝑥 ∗ 𝑡𝑎𝑛ℎ 𝑥 − 2 ∗ 𝑥 ∗
𝑒𝑥𝑝 −𝑥2 

1 + 𝑒𝑥𝑝 −𝑥2 
+ 2 ∗

𝑒𝑥𝑝 −𝑥2 2

 1 + 𝑒𝑥𝑝 −𝑥2  
2

∗ 𝑥 

2

−1 ∗  0.1 + 0.25 ∗ 𝑠𝑒𝑐ℎ 𝑥 +
𝑒𝑥𝑝 −𝑥2 

1 + 𝑒𝑥𝑝 −𝑥2 
 

∗  0.25 ∗ 𝑠𝑒𝑐ℎ 𝑥 ∗ 𝑡𝑎𝑛ℎ 𝑥 2−0.25 ∗ 𝑠𝑒𝑐ℎ 𝑥 ∗  1− 1 ∗ 𝑡𝑎𝑛ℎ 𝑥 2 − 2

∗
𝑒𝑥𝑝 −𝑥2 

1 + 𝑒𝑥𝑝 −𝑥2 
+ 4 ∗ 𝑥2 ∗

𝑒𝑥𝑝 −𝑥2 

1 + 𝑒𝑥𝑝 −𝑥2 
− 12 ∗ 𝑥2 ∗

𝑒𝑥𝑝 −𝑥2 2

 1 + 𝑒𝑥𝑝 −𝑥2  
2 + 8

∗
𝑒𝑥𝑝 −𝑥2 3

 1 + 𝑒𝑥𝑝 −𝑥2  
3 ∗ 𝑥

2 + 2 ∗
𝑒𝑥𝑝 −𝑥2 2

 1 + 𝑒𝑥𝑝 −𝑥2  
2  ∗ 𝑡

2 

and 

𝑞2 𝑥, 𝑡 =  0.1 + 0.25 ∗ 𝑠𝑒𝑐ℎ 𝑥 +
𝑒𝑥𝑝  −𝑥2 

1+𝑒𝑥𝑝  −𝑥2 
 ∗  −0.25 ∗ 𝑠𝑒𝑐ℎ 𝑥 ∗ 𝑡𝑎𝑛ℎ 𝑥 − 2 ∗ 𝑥 ∗

𝑒𝑥𝑝  −𝑥2 

1+𝑒𝑥𝑝  −𝑥2 
+ 2 ∗

𝑒𝑥𝑝  −𝑥2 
2

 1+𝑒𝑥𝑝  −𝑥2  
2 ∗ 𝑥 ∗ 𝑡 . 

 

Figure 1. The initial water surface with the horizontal axis is for x variable. 
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3.2 Dam-break-like simulation 
In this simulationwe solve a dam-break-like problem.The initial water depth is 

ℎ 𝑥, 0 = 2 −  1/(1 + 𝑒𝑥𝑝(−1000𝑥) ) (8) 

for all 𝑥, as shown in figure 2. Again we take the gravitational constant𝑔 = 1. We want to find the 
solution at any time𝑡. The initial fluid velocity is again set to be𝑢 𝑥, 0 = 0, for all𝑥. 

 

Figure 2. The initial water surface of the dam-break-like problem.  The surface is actually smooth, 
but looks discontinuous at position x = 0. 

Again using the aid of the MAPLE software, the variationaliterationsolutions are computed up to the 
second levelsh2(x, t) and q2(x, t). The zeroth levels of variationaliterationsolutions are 

ℎ0 𝑥, 𝑡 = 2 −
1

1 + 𝑒𝑥𝑝 −1000 ∗ 𝑥 
 

and 

𝑞0 𝑥, 𝑡 = 0 . 
The first levels of variational iteration solutions are 

ℎ1 𝑥, 𝑡 = ℎ0 𝑥,𝑡  
and 

𝑞1 𝑥, 𝑡 = −1000 ∗
2 −

1

1+𝑒𝑥𝑝  −1000∗𝑥 

 1 + 𝑒𝑥𝑝 −1000 ∗ 𝑥  
2 ∗ 𝑒𝑥𝑝 −1000 ∗ 𝑥 ∗ 𝑡 . 

The second levels of variationaliterationsolutions are 
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ℎ2 𝑥,𝑡 = 2−
1

1 + 𝑒𝑥𝑝 −1000 ∗ 𝑥 
− 0.5

∗  
−1000000

 1 + 𝑒𝑥𝑝 −1000 ∗ 𝑥  
4 ∗ 𝑒𝑥𝑝 −1000 ∗ 𝑥 2 + 2000000

∗
2 −

1

1+𝑒𝑥𝑝  −1000∗𝑥 

 1 + 𝑒𝑥𝑝 −1000 ∗ 𝑥  
3 ∗ 𝑒𝑥𝑝 −1000 ∗ 𝑥 2−1000000

∗
2 −

1

1+𝑒𝑥𝑝  −1000∗𝑥 

 1 + 𝑒𝑥𝑝 −1000 ∗ 𝑥  
2 ∗ 𝑒𝑥𝑝 −1000 ∗ 𝑥  ∗ 𝑡2 

and 

𝑞2 𝑥, 𝑡 = −1000 ∗
2 −

1

1+𝑒𝑥𝑝  −1000∗𝑥 

 1 + 𝑒𝑥𝑝 −1000 ∗ 𝑥  
2 ∗ 𝑒𝑥𝑝 −1000 ∗ 𝑥 ∗ 𝑡 . 

Obviously we can continue our calculation to any level of iteration. More number of iterations makes 
the approximate solutions too long to write in this paper. Therefore, we stop our iterations at the 
second level. We consider it enough to demonstrate how the variational iteration method works for the 
gravity wave-model equations. 

4. Conclusion 
We have demonstrated how to solve the gravity wave-model equations using the variational iteration 
method.Variational iteration solutions are successfully found as approximate solutions to the exact 
solution. The variational iteration solutions may need enhancement for approximating very large 
domain of time and space which could be a future direction to research. 
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