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Abstract. The gravity wave-model equations are simplifications of the Saint-Venant equations 

by neglecting the convective term. This neglectionis realistic as long as the gravity effect is 

much more significant than the convective effect in the system. In this paper, we present the 

performance (behaviour) of the standard Lax-Wendroff fin ite volume method used to solve the 

gravity wave-model equations. This is the first work in discussing the aforementioned method's 

performance in solving the gravity wave-model equations. We obtain that the standard Lax-

Wendroff method is suitable for solving problems without discontinuity in the solution. When 

there is a discontinuity, the standard Lax-Wendroff method produces artificial oscillation in the 

solution. 

1. Introduction 
One of mathematical models for free-surface flows is the gravity wave-model equations [1]. Gravity 
wave-model equations are simplifications of the Saint-Venant equations by neglecting the convective 
terms [1-5]. The Saint-Venant (shallow water) equations consist of two partial differential equations, 
namely the mass equation and momentum equation [6-8]. The Saint-Venant equationsinvolving 
horizontal topography are: 

∂

∂t
h +

∂

∂x
q = 0 (1) 

and 

∂

∂t
q +

∂

∂x
 

q2

h
 +

g ∂

2∂x
h2 = 0 (2) 

where h is fluid depth; q is unit-discharge; gis the gravitational acceleration; t is the time variable and 
x is the space variable. By neglecting the convective term of the Saint-Venant equations, we obtain the 
gravity wave-model equations, which can be written as 

∂

∂t
h +

∂

∂x
q = 0 (3) 

and 
∂

∂t
q + 

g

2

∂

∂x
h2 = 0. (4) 
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All quantities are assumed to be in SI units.  
Real-world problems that have been modeled mathematically needs to be solved. The difficulty in 

determining the analytical solutions to the mathematical model can be overcome by doing numerical 
calculations to get the approximate solution of the model. In this paper, we discuss about the 
numerical solution to the gravity wave-model equations using the Lax-Wendroff finite volume 
method. On the one hand, variants of the Lax-Wendroff method have been broadly applied in solving 
numerous problems of hyperbolic conservation laws [9-15]. On the other hand, the gravity wave-
model equations were attempted to be solved numerically by several authors, such as Apriani and 
Mungkasi [16] as well asMartins et al. [17]. However, an accurate and efficient solver for the gravity 
wave-model equations still needs to be sought. The aim of this paper is to find such solver. Therefore, 
we investigate the performance of the Lax-Wendroff finite volume method used to solve the gravity 
wave-model equations. 

The rest of this paper is organised as follows. We present the Lax-Wendroff finite volume method 
for solving the gravity wave-model equations in Section 2. Numerical results are provided in Section 3 
together with the discussion about them. We close the paper with concluding remarks in Section 4.  

2. Lax-Wendroff finite volume method 
The gravity wave-model equations (3) and (4) areconservation laws having the form 

𝑈 𝑡 + 𝑓  𝑈  𝑥 = 0  (5) 

where 

𝑈 𝑡 ≡
𝜕𝑈  𝑥,𝑡 

𝜕𝑡
and   𝑓  𝑈  𝑥 ≡

𝜕𝑓   𝑈  

𝜕𝑥
. (6) 

Here 

𝑈 =  
𝑕
𝑞
  (7) 

And  

𝑓  𝑈  =  
𝑞

𝑔

2
𝑕2 . 

 

(8) 

We can write the gravity wave-model equations as 

 
𝑕
𝑞
 
𝑡

+  
𝑞

𝑔

2
𝑕2 

𝑥

=  
0
0
 . 

 

(9) 

In another form, gravity wave-model equations are 

𝑕𝑡 + 𝑓1
′𝑞𝑥 = 0 (10) 

And  

𝑞𝑡 + 𝑓2
′𝑕𝑥 = 0 (11) 

wheref1
′ = 1 and f2

′ = gh. 
 

We can create a discrete form from (5) as follows [7, 8]: 

𝑄𝑖
𝑛+1 −𝑄𝑖

𝑛

∆𝑡
+

𝐹
𝑖+

1

2

𝑛 −𝐹
𝑖−

1

2

𝑛

∆𝑥
= 0 

(12) 

And  

𝑄𝑖
𝑛+1 = 𝑄𝑖

𝑛 −
∆𝑡

∆𝑥
 𝐹

𝑖+
1

2

𝑛 −𝐹
𝑖−

1

2

𝑛   (13) 
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where Qi
n ≈ U  xi , tn ; 𝐹

𝑖+
1

2

𝑛 ≈ 𝑓  𝑈  𝑥𝑖+
1

2
, 𝑡𝑛  ; ∆t is the time step; ∆xis the space step. 

 
The general standard Lax-Wendroff fluxes are 

𝐹
𝑖+

1

2

𝑛 =
1

2
 𝑓 𝑄𝑖+1

𝑛  + 𝑓 𝑄𝑖
𝑛  −

𝑎
𝑖+

1

2

𝑛 ∆𝑡

2∆𝑥
 𝑓 𝑄𝑖+1

𝑛  − 𝑓 𝑄𝑖
𝑛   (14) 

And  

𝐹
𝑖−

1

2

𝑛 =
1

2
 𝑓 𝑄𝑖

𝑛 + 𝑓 𝑄𝑖−1
𝑛   −

𝑎
𝑖−

1

2

𝑛 ∆𝑡

2∆𝑥
 𝑓 𝑄𝑖

𝑛 − 𝑓 𝑄𝑖−1
𝑛    (15) 

where 𝑎
𝑖+

1

2

𝑛 = 𝑓′  
𝑄𝑖

𝑛+𝑄𝑖+1
𝑛

2
 and 𝑎

𝑖−
1

2

𝑛 = 𝑓′  
𝑄𝑖+1

𝑛 +𝑄𝑖
𝑛

2
 . 

The discrete form for the law of massconservation is 

𝑕𝑖
𝑛+1 = 𝑕𝑖

𝑛 −
∆𝑡

∆𝑥
 𝐹

𝑖+
1

2

𝑛𝑕 − 𝐹
𝑖−

1

2

𝑛𝑕  . (16) 

The Lax-Wendrofffluxes for the law of mass conservation are 

𝐹
𝑖+

1

2

𝑛𝑕 =
1

2
 𝑞𝑖+1

𝑛 + 𝑞𝑖
𝑛 −

𝑎
𝑖+

1

2

𝑛𝑕 ∆𝑡

2∆𝑥
 𝑞𝑖+1

𝑛 −𝑞𝑖
𝑛  (17) 

And  

𝐹
𝑖−

1

2

𝑛𝑕 =
1

2
 𝑞𝑖

𝑛 + 𝑞𝑖−1
𝑛  −

𝑎
𝑖−

1

2

𝑛𝑕 ∆𝑡

2∆𝑥
 𝑞𝑖

𝑛 −𝑞𝑖+1
𝑛  . (18) 

 

Here, Fi
nh  is the flux for the mass conservation. In addition, 

𝑎
𝑖+

1

2

𝑛𝑕 = 𝑓1
′ = 1      and      𝑎

𝑖−
1

2

𝑛𝑕 ∆𝑡 = 𝑓1
′ = 1. 

The discrete form for the law of momentum conservation is  

𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 −
∆𝑡

∆𝑥
 𝐹

𝑖+
1

2

𝑛𝑞
− 𝐹

𝑖−
1

2

𝑛𝑞  . (19) 

The Lax-Wendroff fluxes for the momentum conservationare 

𝐹
𝑖+

1

2

𝑛𝑞
=

1

2
  

𝑔

2
𝑕2 

𝑖+1

𝑛

+  
𝑔

2
𝑕2 

𝑖

𝑛

 −

𝑎
𝑖+

1

2

𝑛𝑞
∆𝑡

2∆𝑥
  

𝑔

2
𝑕2 

𝑖+1

𝑛

−  
𝑔

2
𝑕2 

𝑖

𝑛

  (20) 

And  
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𝐹
𝑖−

1

2

𝑛𝑞
=

1

2
  

𝑔

2
𝑕2 

𝑖

𝑛

+  
𝑔

2
𝑕2 

𝑖−1

𝑛

 −

𝑎
𝑖−

1

2

𝑛𝑞
∆𝑡

2∆𝑥
  

𝑔

2
𝑕2 

𝑖
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Here, Fi
nq
 is the flux for the momentum conservation. In addition, 

𝑎
𝑖+

1

2

𝑛𝑞
=  𝑓2

′  
𝑖+

1

2

𝑛 =  𝑔𝑕 
𝑖+

1

2

𝑛 =
 𝑔𝑕 𝑖+1

𝑛 +  𝑔𝑕 𝑖
𝑛

2
 

and 

𝑎
𝑖−

1

2

𝑛𝑞
=  𝑓2

′  
𝑖−

1

2

𝑛 =  𝑔𝑕 
𝑖−

1

2

𝑛 =
 𝑔𝑕 𝑖

𝑛 +  𝑔𝑕 𝑖−1
𝑛

2
 . 

By using (14) and (15), for the thegravity wave-model where Qi
n ≈  

hi
n

qi
n  ,Fi

n ≈  
qi

n

g

2
 hi

n 2 ,∆t is the 

time step,∆x is the space step,𝑎
𝑖+

1

2

𝑛 = 𝑓′  
𝑄𝑖

𝑛 +𝑄𝑖+1
𝑛

2
 and 𝑎

𝑖−
1

2

𝑛 = 𝑓′  
𝑄𝑖+1

𝑛 +𝑄𝑖
𝑛

2
 we obtain 

 

𝐹
𝑖+

1

2

𝑛 =
1

2
 

𝑞𝑖+1
𝑛 + 𝑞𝑖

𝑛

𝑔

2
  𝑕𝑖+1

𝑛  2 +  𝑕𝑖
𝑛 2 

 −

𝑎
𝑖+

1 

2

𝑛 ∆𝑡

2∆𝑥
 

𝑞𝑖+1
𝑛 −𝑞𝑖

𝑛

𝑔

2
  𝑕𝑖+1

𝑛  2 −  𝑕𝑖
𝑛 2 

  (22) 

And  

𝐹
𝑖−

1

2

𝑛 =
1

2
 

𝑞𝑖
𝑛 + 𝑞𝑖−1

𝑛

𝑔

2
  𝑕𝑖

𝑛 2 +  𝑕𝑖−1
𝑛  2 

 −

𝑎
𝑖−

1 

2

𝑛 ∆𝑡

2∆𝑥
 

𝑞𝑖
𝑛 −𝑞𝑖−1

𝑛

𝑔

2
  𝑕𝑖

𝑛 2 −  𝑕𝑖−1
𝑛  2 

  (23) 

as the Lax-Wendroff numerical fluxes in the vector form including the mass and momentum fluxes. 

3. Numerical results and discussion 
In this section we provide our numerical results and some discussions.  

3.1. Surface wave simulation 

Surface wave is simulated by using the initial water depth function h = 2 + 0.25 cos x if -π ≤ x ≤ π 
and 1.75 otherwise. We denoteu = u x, t  for the fluid velocity. Note that water discharge is q = uh. 

In this simulations we use the number of cellsN = 500, space step∆x = 0.1, time step∆t = 0.001∆x, 
and gravitational constant g = 9.81. The simulation is stopped at t = 5. The initial condition for fluid 
velocity is u x, 0 = 0 for all x. We set L = 25. Boundary conditions at x = −L are 

h −L, t = 1.75, u −L, t = 0 

and those at x = L are 

h L, t = 1.75,           u L, t = 0. 

The initial water surface is shown in Figure 1. After we solve the problem using the Lax-Wendroff 

method, the water surface at t = 5 is shown in Figure 2. These results are realistic as initially we have 
one bump of water in the middle of domain, as there is gravity effect, we then have two waves. One 
goes to the left and another one propagates to the right direction.  
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Figure 1. Illustrationof the initial water surface.The horizontal axis is for x variable. 

 

Figure 2. Simulated water surfaceat t = 5. The horizontal axis is for x variable. 

3.2. Dam-break simulation 

In this simulation we use the number of cells𝑁 = 200, space step ∆𝑥 = 0.1, time step ∆𝑡 = 0.005∆𝑥, 
gravitational constant 𝑔 = 1.  The simulation is stopped at 𝑡 = 1. We assume the initial for fluid depth 
is 𝑕1 = 10 for all negative values of 𝑥and  𝑕0 = 5 for all positive values of 𝑥. The initial condition for 
fluid velocity is 𝑢 𝑥, 0 = 0, for all 𝑥. We set 𝐿 = 10. Boundary conditions at 𝑥 = −𝐿 are 

𝑕 −𝐿, 𝑡 = 10, 𝑢 −𝐿, 𝑡 = 0 

and those at 𝑥 = 𝐿 are 

𝑕 𝐿, 𝑡 = 5,             𝑢 𝐿, 𝑡 = 0. 

 

𝑕 

𝑕 
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Figure 3. Initial water surface for the dam break problem. 

 

Figure 4. Analytical (exact) and numerical solutions for the dam break problem.  

The initial condition of water surface for the dam break problem is given in Figure 3. There is 

discontinuity in the water depth. At time 𝑡 = 0, we assume that the dam wall is completely removed. 
The simulation is conducted to observe how the Lax-Wendroff finite volume solution behaves for this 
discontinuous problem. 

This test problem has been solved analytically by Martins et al [1]. We use the analytical (exact) 
solution to investigate the performance of the Lax-Wendroff finite volume method. We find that in 
comparison with the analytical solution, for this discontinuous problem, the Lax-Wendroff finite 
volume method produces artificial oscillat ion (see Figure 4), no matter how small we take the time 
step value. This is due to the order of accuracy of the method, which is larger than one. We do not 
implement any flux or slope limiter in the numerical method.  

4. Conclusion 
The Lax-Wendroff finite volume method has been used to solve the gravity wave-model equations. 
The method is a standard method without any flux or slope limiter. We obtain that the method can be 
solved successfully for a smooth problem, but produces artificial oscillations in solving a 

Dam 

Fluid surface 

Fluid surface 
𝑕1 

𝑕0 
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discontinuous problem. Future research direction is to seek a way to alleviate artificial oscillations in 
solving discontinuous problems. 
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