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Chapter 1

Introduction

In his book published in 1930, Dirac [14] employed intuitive concepts of integrals
to formulate the principles of Quantum Mechanics. He never defined the integrals,
but he postulated certain conditions that they had to satisfy so that one could
describe the evolution of dynamical systems in Quantum Mechanics.

In 1902, Lebesgue [22] discovered the modern Theory of Integration of real-
valued functions, based on the Measure Theory. Daniell [12][13], in 1917, intro-
duced the construction of the integrals using positive linear functionals defined on a
vector lattice. Later in 1948 Stone [31] clarified the relation between the Lebesgue
integral and the Daniell integral by proving that they are equivalent. Bochner [4]
generalized the Lebesgue Integration Theory to the case of Banach-space-valued
functions in 1933. At about the same time Kolmogorov [21] used the Lebesgue
Integration Theory to prove the Strong Law of Large Numbers and thus put the
Theory of Probability and Statistics on a precise mathematical footing.

In [5])[6] Bogdan generalized and simplified the development of the Lebesgt;e-
Bochner integral. In these papers the theory was constructed by means of exten-
sions of primitive structures to richer ones. In [7][8][9] Bogdan showed that one
could axiomatize the fheory of spaces, which include the classical Lebesgue. L,
spaces of real-valued functions, and develop the theory directly from the axioms.

In [10] Bogdan presented a new approach to the Theory of Probability via
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Algebraic Categories. In this paper he showed that Probability Theory involves five
isomorphic categories, namely the category of probability measures, the category
of expectation spaces, the category of distributions, the category of characteristic
functions, and the category of Baire expectation spaces.

Kolmogorov’s Strong Law of Large Numbers thus can be translated into the
language of any of the categories involved. The law provides the theoretical foun-
dations for statistical experiments. Since Quantum Mechanics involves statistical
experiments, it is clear that the underlying integrals should have the properties
of the Lebesgue integrals. In classical Probability Theory the domains of the
Lebesgue integrals consist of real-valued functions. In Quantum Mechanics, how-
ever, the domains of the underlying integrals should consist of complex-valued
functions.

To describe a state of a dynamical system in Quantum Mechanics, Dirac utilized
a vector which he called ket vector and denoted by |v>. He assumed that-the
set V of all ket vectors forms a vector space with respect to addition and scalar
multiplication. The set V* of all linear functionals from V into C is also a vector
space. The members of V* were called bra vectors. He introduced the notation
<@| to denote a bra vector and <@|v> the image of a ket vector |v> under a bra

vector <¢|, which is a complex number. Dirac assumed that

1. There exists a one-to-one correspondence between V and V*, i.e. there exists
a map 0:V — V™ which is one-one and onto. Let o(jv>) = <v| for every

|v>é V. He called <v| the bra vector corresponding to the ket vector jv>.

2. The map ¢ is conjugate linear, that is o(jv> + |w>) = <v| + <w| and
oA [v>) = X <] for any ket vectors |lv > and |w > and any complex

number A.
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The scalar product of the ket vector |v> by the ket vector |w> is defined as the
complex number <w|v>, where <w| is the bra vector corresponding to the ket

vector |w>. Dirac assumed that
1. <vjv>2> 0; <vjv>=0 & |v>=0.
2. <wl|v> = <vjw>.

He made further assumption that V is a Hilbert space, i.e. it is complete with

respect to the norm || - || defined by the formula

| o>t = /<vjv>

for all jv >€ V. Analogous properties of the bra vectors also led him to the
assumption that the space V* is complete.
Using the basic kets [ > where the ¢’s are discrete, he expressed the scalar

product of ket vectors as a summation:
<wlv> = ) <w|¢> <v|é>.
For continuous ¢ the scalar product can be written in the form of an integral:
<wp> = [ <wie> > de.

Dirac never gave an explicit characterization of his integral, but from his assump-
tion that both V and V* are complete we can conclude that it should have the
properties of the Lebesgue integral.

In this dissertation we develop a theory of such integrals which we call Dirac
integrals. From the above discussion it is obvious that the underlying space of
functions of a Dirac integral should be an algebra of complex-valued functions

which is closed under involution (conjugation). In addition we also stipulate that
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this algebra should be closed under pointwise convergence and should contain con-
stant functions. The theory is established from a set of axioms which we postulate
as the defining properties of the Dirac Integral Space. Then we prove that the
category of Dirac Integral Spaces (DIS) is isomorphic to the category of Lebesgue
Measure Spaces (LMS).

This study provides a precise mathematical framework for the axiomatic devel-
opment of Quantum Mechanics and allows us to prove many theorems which were
derived heuristically by Dirac. The possibility of such development is suggested
by the results of Bogdan [7][10]. A recent monograph of Kelley and Srinivasan
[20] developes an approach to the Lebesgue Integral Spaces from the axioms of the
integrals defined on real-valued functions.

The content of this dissertation is organized as follows. After the Introduction
in Chapter 1, we present some important results on the Baire algebra of complex-
valued functions in Chapter 2. We are especially interested in a certain kind of
such Baire algebra, namely the space of all compositors u: CT — C. We prove that
this space of compositors is precisely the Baire space B(CT,C). In this Chapter
we also introduce the notion of a Baire algebra morphism ¢ from a Baire algebra
4 into a Baire algebra 4’, and show that every such morphism commutes with any
compositor. |

In Chapter 3 we investigate the relation between rings of subsets of a space
X and algebras of complex-valued functions defined on X. We prove that if V is
a o-algebra of subsets of X, then the space M(V,C) of V-measurable complex-
valued functions defined on X forms a Baire algebra. Conversely, if L is a Baire
algebra of functions in C¥, then V = trace(L) is a o-algebra of subsets of X such
that L = M(V,C).

The Dirac Integral Space theory is developed in Chapter 4. Starting from
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the axioms of the Dirac Integral Space we develop the theory of such spaces. In
this Chapter we establish the convergence theorems and prove the topological
corﬁpleteness of the space of summable functions.

Chapter 5 is devoted to generating a Dirac Integral Space from a Lebesgue
Measure Space. We begin with a positive linear functional defined on the space
S(W, C) of simple functions, which we extend to a richer space of functions. We
" then further extend this functional to the space of summable functions and prove
that this extension is indeed a Dirac Integral.

The Category of Dirac Intergal Spaces (DIS) and the Category of Lebesgue
Measure Spaces (LMS) are investigated in Chapter 6. Using the Theorems which
have been proved in the previous chapters, we construct functors F: DIS — LMS
and G:LMS — DIS such that F oG and G o F' are both identity functors. In other

words, we prove that the two categories are isomorphic.



Chapter 2

Baire Algebras of Functions

Let X be an abstract set and C the field of complex numbers. Denote by C¥ £he
space of all functions from X into C. A subset A of the space CX is called an
algebra if A is closed under addition of functions, muliplication of functions and
scalar multiplication. An algebra A is said to be closed under pointwise convergence
if whenever f, is a sequence of functions in A such that f,(z) — f(z) for every
z € X, then we have f € A. As usual we denote the conjugate of a complex
number z by Z. We say that an algebra A is closed under involution if f € A
implies f € A, where f(z) = f(z) for every z € X. An algebra A in C¥ will be
called Baire Algebraifit is closed under pointwise convergence and under involution
and contains all constant functions. It is obvious that C* itself is a Baire algébra
and it is easy to verify that the intersection of any collection of Baire algebrfa.s is
also a Baire algebra.

If f is a function from X to Y and g is a function from Y to Z, then the
composition g o f of the two functions is a function from X to Z defined by the

formula
(90 f)(z) = g(f(=))

for every z € X.

Let Re and Im denote functions from C into the field of real numbers R such
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that
Re(z) = Z12 and Im(z)= 2.~
e Lz) = 2 an m = 27,

for every z € C. Then it is obvious that for every function f belonging to a Baire

algebra 4 in C¥ we have
(Reof)e A and (Imo f) € A. (2.1)

Proposition 2.1 If B is any nonempty subset of CX, then there exists the

smallest Baire algebra A in C¥X containing B.

Proof. Let A be the family of all Baire algebras in CX containing B. Then A is
non-empty, since C* € A. By the remark in the above paragraph, D = e Ais

a Baire algebra and therefore D is the smallest Baire algebra in C¥ containing-B. 1
2.1 The Space of Compositors

Let T be any nonempty set and CT denote the set of all elements of the form
z = (2¢)ter, where z; € C for every t € T. Let {fi: t € T} be a subset of CX. By

(ft)ier we mean a function f from X into CT such that for every z € X

f(z) = (fe(z))er-

The function f = (f;):er is said to be generated by the set {f;: t € T}.
Let Comp(T') denote the space of all functions u: CT — C such that for every
Baire algebra A and every function f = (fi)ter generated by a subset {f;: t € T}

of A, we have

(wof) € A.

The elements of the spvace Comp(T) are called compositors of order T.

If o € T, then a function p,: CT — C defined by the relation

Pa(2) = 2a
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for every z = (2, )ser € C7, is called the projection onto the a-th coordinate.

We recall that if E is a subset of X then the characteristic function cg of the

set E is defined by

@)= |1 ifz€E
B\T)=10 ifag B

for every z € X.

Lemma 2.2 Let T' be any nonempty set and f = (f;)icr be the function generated

by a subset {fi: t € T} of CX. Then for every functions u and v from C(°") and

any complez number A, the following statements hold:

1.

(v+v)of = (uof)+(vof)
(wv)o f = (uo f)(vof).
(M)of = Muo f).

If u, is a sequence of functions from CT into C converging pointwise to u,
then un o f is a sequence of functions from X into C converging pointwise to

the function uo f.
If cx 1s the characteristic function of the set X, then cicryo f = cx.

If pa:CT — C for some o € T is the projection onto the a-th coordinate,

then po o f = fa.

Proof. For every z € X we have

(wtv)of)e) = (utv)(f(=))
| = u(f(2)) +v(f())

(o f)(a) + (vo f)=)

= ((uof)+ (o H))(a)
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which proves (1). Statements (2) and (3) are proved in similar ways.

To prove (4), we observe that

(@o f)(=) = u(f(e))
= u(f(2))
= (uof)(=)
= (vof)(z)

for every z € X.

Let u, be a sequence of functions from C7T into C such that u,(z) — u(z) for
every 2 = (z)er € CT. Then (un 0 £)(2) = ua(f(2)) — u(f(2)) = (w0 f)() for
every z € X, which proves (5).

If ¢(¢ry is the characteristic function of the space CT, then c(cr)(z) = 1for every
z € CT. Thus for every z € X, we have (ccry 0 f)(2) = c(or)(f(2)) =1 = cx(=).
This proves (6).

Let p,:CT — C (a € T') be the projection onto the a-th coordinate. Then

(P o f)(=) = pa(f(z))
= pa((ft(m))teT)
fa()

for every ¢ € X. Hence po o f = fa. 1

Proposition 2.8 The space Comp(T') of compositors of order T' forms a Baire

algebra containing the set P = {p,: a € T'} of all the projections.

Proof. Let A be any Baire algebra contained in the space C* and {f;: t € T}
be any subset of A generating the function f = (fi)ier. For any two functions u

and v in Comp(T'), the functions (u o f) and (v o f) are both in the Baire algebra
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A. From Lemma 2.2 and the fact that A is an algebra, the functions (v + v)o f,
and (uv) o f, and (Mu) o f are all in the algebra A. This means that the functions
(v 4 v), (uv) and (Au) are in Comp(T"). Thus the space Comp(T) is an algebra.

Let u, be a sequence of functions in Comp(T') such that u,(z) — wu(z) for
every z = (2 )ier € CT. Then (un0f) — (uof). Since (un,0f) € A and 4 is closed
under pointwise convergence, we conclude that (u o f) € 4. Thus u € Comp(T),
which shows that the space Comp(T) is closed under pointwise convergence.

If v € Comp(T), then (v o f) € A and, since A is closed under involution,
(uof) € A. But uof = @of. So (To f) € A, hence @ € Comp(T). Thus
Comp(T) is closed under involution.

The function ¢¢ryo f = cx € A, since the algebra A contains all constant
functions. Thus ¢(¢cry € Comp(T'). Since the space Comp(T) is an algebra, we
conclude that it contains all constant functions. Thus we have proved that the
space Comp(T') of compositors of order T is a Baire algebra.

Now, let p,:CT — C (@ € T) be any projection. Then p, o f = f, € A. Hence
Pa € Comp(T') for every a € T. This shows that the space Comp(T') contains all

the projections. 1

Theorem 2.4 The space Comp(T') of compositors of order T is the smallest Baire

algebra in C(C™) containing the set P = {Pa: @ € T} of all the projections.

Proof. Let @ be the smallest Baire algebra in C(¢™) containing the set P of all the
projections. Such Baire algebra exists by Proposition 2.1. It is the intersection of
all Baire algebras in C(¢™) containing the set P. Since the space Comp(T) is a

Baire algebra in C°") containing the set P, we must have

Q@ C Comp(T). ’ (2.2)
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Conversely, given any function v € Comp(T') and any Baire algebra A in cn

containing the set P of pojections, we have (u o (p;)icr) € A. But

(wo(plier)(z) = u((pe)ier(z))
= u((2t)eer)

= u(z)

for every z = (2,)1er € CT, which implies that u € A. So u belongs to every Baire

algebra A containing P, which means that v € @). Thus we have the inclusion
Comp(T) C Q. (2.3)
Hence from (2.2) and (2.3) follows Comp(T') = @. 1

Corollary 2.5 If A is a Baire algebra in C(C") containing all the projections and
A C Comp(T), then A = Comp(T).

Proof. The above conclusion follows from the hypothesis and the fact that

Comp(T) C A, since Comp(T) is the smallest of all such Baire algebras. I
2.2 Baire Spaces of Functions

Let X and Y be topological Hausdorff spaces and C(X,Y) denote the space of
all continuous functions from X into Y. Consider the family F of all sets S of
functions in YX such that S contains C(X,Y) and § is closed under pointﬁse

convergence. Let

B(X,Y)= () S

SeF
This set B(X,Y) will be called Baire Space, and its members are called Baire

functions. It is easy to see that B(X,Y) contains C(X,Y) and is closed under

pointwise convergence. This means that the Baire space is the smallest class of
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functions in the space Y* containing all continuous functions and being closed
under pointwise convergence.
In this section we are going to show that Comp(T') is the Baire space of functions

in C(€7), For that we need several Lemmas.

Proposition 2.6 Let X, Y and Z be topological Hausdorff spaces. If f € B(X,Y)
and g € B(Y, Z), then (go f) € B(X, Z).

Proof. Let g be any continuous function in C(Y, Z), and
P,={feY*: (gof) € B(X,2Z)}.

If feC(X,Y), then (go f) € C(X,Z); therefore (g o f) € B(X,Z), which means
that f € P,. Thus C(X,Y) C P,. Take any sequence f, in P,, which converges
pointwise to some function f. Then g o f, is a sequence of functions in B(X, Z).
But by the continuity of g we get (g0 fa)(z) = g(fa(z)) — 9(f(z)) = (g 0 f)(=)
for every z € X. Hence (g o f) € B(X,Z), which means that f € P,. So P, is
a class éf functions in Y* which contains all continuous functions and is closed
under pointwise conv‘ergence. From this it follows that B(X,Y) C P,. So if we
take any function g € C(Y,Z) and f € B(X,Y) we have (g o f) € B(X, Z).

Now, take any function f € B(X,Y ), and consider the set

Qs={g€Z": (gof) € B(X,2)}.

Using similar arguments we can show that Q); is a set of functions in Z¥ containing
all continuous functions and being closed under pointwise convergence. Therefére
B(Y,Z) C Q4. So for every functions f € B(X,Y) and g € B(Y,Z) we have
(go f) e B(X,Z). 01

Let X,Y, Z and U be topological Hausdorff spaces,and W = Z xU. On W

we introduce the product (Tychonoff) topology, namely the smallest topology with
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respect to which all the projections are continuous. Then W is also a topological
Hausdorff space. |

If g € ZX and h € UX, then by (g,h) we mean a function from X into W
defined by

(g,h)(z) = (9(=), h(z))

for every z € X. Function (g,h) is continuous if g and h are. If g, and h,, are
sequences of functions in Z¥ and UX respectively, such that g,(z) — g(z) and
hn(z) — h(z) for every € X, then (gn, k) is a sequence in W¥ which converges

pointwise to the function (g,h). Now let us prove the following Proposition.

Proposition 2.7 If f € B(W,Y), g € B(X,Z), and h € B(X,U), then fo(g,h) €
B(X,Y).

Proof. Let f and h be any continuous functions in C(W,Y) and C(X,U) respec-

tively. Consider the set
__Pf,h = {g € zx . f o] (g,h) € B(X,Y)}

Using similar arguments as in the proof of Proposition 2.6, we get B(X,Z) C Pyp.
From this it follows that for every functions f € C(W,Y), h € C(X,U) and g €
B(X,Z), we have fo(g,h) € B(X,Y).

Now, for any functions f € C(W,Y) and g € B(X, Z) let

Qg ={heUX: fo(g,h) € B(X,Y)}.

Then B(X,U) C @y, Consequently, for every f € C(W,Y), g € B(X,Z) and
h € B(X,U) we have f o (g,h) € B(X,Y).

Finally, we let

Sen={f €Y": fo(g,h) € B(X,Y)}
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for any functions g € B(X,Z) and h € B(X,U), and get B(W,Y) C S, 4, which

completes the proof. B

Now let us introduce the product topology on the space C7 i.e. the smallest
topology in which all the projections p, (a € T) are continuous. Let C(CT,C)
denote the set of all continuous functions from CT into C. We shall prove that
C(CT,C) c Comp(T). To do so we need one of the Corollaries of the Stone-

Weierstrass Theorem and a Lemma. Let us first state the theorem.

Theorem 2.8 (Stone-Weierstrass) Let X be a compact Hausdorff space. If A
is a closed subalgebra of C(X, R) which separates points and contains a non-zero

constant function, then A = C(X, R).

If A is a subset of C(X, R), then the smallest complex algebra containing A is
the algebra of all polynomials of functions from A with complex coefficients. One

of the Corollaries of the Stone-Weierstrass Theorem says:

Corollary 2.9 If A is a subset of C(X,R) which separates points and B is the

smallest complez algebra containing A, then B = C(X,C).
Using these results we now prove the following Lemma.

Lemma 2.10 If f:C — C is a continuous function and pe:CT — C is the pro-

jection onto the a-th coordinate, then (f o po) € Comp(T).

Proof. Let f:C — C be continuous and D, = {z € C: |z| < n}. Then D, is a
compact subset of C, and the function f is continuous on D, for every n € N.
Let S = {Re,Im}. Then S C C(D,, R) and S separates points of D,. Hence, by
the Corollary of the Stone-Weierstrass Theorem, the function f can be uniformly

approximated on D, by a sequence of polynomials of members of S with complex
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coefficients. So for every n € N there exists a polynomial g, of members of § such
that

1f(2) — aa(2)| < 1/n
for all z € D,,. Thus, as n — oo, the sequence g,(z) converges to f(z) for every
z € C. Consequently, if p,:CT — C is the projection onto the a-th coordin.a,te,

then g,(ps(2)) — f(pa(2)) for every z € C7, i.e.

(gn 0 Pa)(2) — (f 0 pa)(2)

for every z € CT. Notice that g, o p, is a polynomial of Re o p, and Im o p,,
which belong to Comp(T'). So (¢n 0ps) € Comp(T) for every n € N, and therefore
(f o pa) € Comp(T). K

Proposition 2.11 The space Comp(T') contains all continuous functions from cT

into C.

Proof. Let u: CT — C be a continuous function. The disk D,, = {z € C: |z| < m}
is compact in C, and' so the set DI is compact in CT for every positive integer m.
Thus the function u is continuous on the compact set DX.

We observe that the projections p, (a € T') are continuous on CT and separate
points of C’T.. Let B = {Re o pa, Imop,: a € T}. Then B C C(C*,R) and B
separates points of CT. So, by the Corollary of the Stone- Weierstrass Theorem, the
function u can be uniformly approximated on DZ by a sequence of polynomials
of members of B with complex coefficients. This means that for every positive

integer m there exists such polynomial g, satisfying the inequality
lu(2) — gm(2)| < 1/m (2.4)

for all z € DT.
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Now, for each positive integer n consider function g, defined by
z if|z]<n
9n(2) = { Mo |z] >n
for every z € C. Then g, is a continuous function from C into D,,, and g,(z) — z
for every z € C when n tends to infinity. By Lemma 2.10, we get (g, 0 pa) €
Comp(T) for every n € N and a € T.

Let fa = (gn © Pa)acr- Then f, is a continuous function from C7 into DT. If

m > n, then f,(z) € DI, for every z € CT. So, by (2.4), we get

[u(fn(2)) — gm(fa(2))] < 1/m

forall m > n and z € C7T, i.e.
l(wo fn)(2) ~ (gm o fu)(2)] < 1/m

for all m > n and z € C”. This means that, for any fixed n, the sequence (g, 0 f,)
converges to (v o f,) as m — oo. But ¢,, 0 f, is a polynomial of Reo p, 0 f,, =
Re o(gnop,) and Imopa o fn = Im.o (gn © pa), which belong to Comp(T') for every
n € N and a € T. Hence (¢, 0 fn) € Comp(T) for every positive integer m and n,
and consequently (u o f,) € Comp(T) for every n € N.

Notice that for every z = (2,)ier € CT we have

fa(z) = (gn 0 Pa)aer(2)
= (9a(Pa()aer
= (9n(2a))acr-
Since gn(za) — 2z, when n tends to infinity, it follows that f.(2) — (2a)acr = 2
for every z € CT. Thus, by the continuity of u, we get u(f,(z)) — u(z) for every
z € CT, which means that (uo f,) — u. But Comp(T) is closed under pointwise

convergence. Hence v € Comp(T). K
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Corollary 2.12 Every Baire algebra A of functions in the space CX is closed
under composition with any continuous function u:CT — C, in the sense that
(uo f) € A for every function f = (fi)ier generated by a subset {fi: t € T} of the

algebra A.

Proof. Let A be a Baire algebra in the space C*, and v:CT — C a continuous
function. By Proposition 2.11, the function u is contained in the space Comp(T").
Hence, by the definition of the space of compositors, we have (v o f) € A for every

function f = (f;)icr generated by a subset {f;: ¢t € T'} of the algebra 4. 1

Theorem 2.13 The space Comp(T) is the Baire space of functions in cen,
which means that the space of compositors of order T is the smallest class of
functions in CC") which contains all continuous functions from CT into C and is

closed under pointwise convergence.

Proof. We need to prove that Comp(T') = B(C”,C). By Proposition 2.11 and
the fact that Cornp(T») is closed under pointwise convergence we immediately get
B(CT,C) c Comp(T).

Our next step is proving that B(CT,C) is a Baire algebra containing all the
projections. Take any function f € B(CT,C) and any complex number ). Notice
that function-g,\, defined by gi(z) = Az for every z € C, is continuous, and
therefore g € B(C,C). So, by Proposition 2.6, we get (g o f) € B(CT,C). But
(920 f)(2) = gA(f(2)) = Af(z) = (Af)(2) for every z € CT. Hence Af € B(CT,C),
which proves that B(CT,C) is closed under scalar multiplication. Similarly, by
taking function g:C — C defined by g(2) = Z for every 2 € C, we prove that
B(C7T,C) is closed under involution. |

Now take any two functions g and h in B(CT,C). We observe that function

f:C? — C, defined by f(21,22) = 21 + 2, for every (21,22) € C?, is continuous,
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and therefore f € B(C?,C). So, by Proposition 2.7, we get f o (g,h) € B(CT,C).
But (£ o (g,R)(2) = £(9(2),h(2)) = (2) + h(z) = (g + h)(2) for every z € OT.
Hence (g+h) € B(CT,C), which shows that B(CT,C) is closed under addition. To
show that B(C7,C) is closed under multiplication, we use the function f:C? — C
defined by f(z1,2;) = 2 - 23 for every (z1,2;) € C2

Constant functions are continuous, so they are Baire functions. By definition
a Baire space is closed under pointwise convergence. So B(C7T,C) is a Baire
algebra. Since B(CT,C) contains all continuous functions from CT into C and the
projections p, (a € T) are continuous, we conclude that B(C7T,C) contains all

the projections. Thus, by Corollary 2.5, we get B(CT,C) = Comp(T). §
2.3 Baire Algebra Spanned by a Set of Functions

If F is a non-empty subset of C*X, then Proposition 2.1 guarantees the existence
of the smallest Baire algebra in C¥ containing F. Such Baire algebra is said to
be spanned by the set F. In this section we shall characterize the Baire algebra

spanned by a set of functions using the compositors.

Proposition 2.14 Let u, be a sequence of real-valued functions in Comp(T). If
u(z) = sup {un(2): n € N} < oo for every z € CT, then u € Comp(T). Similarly,

if u(z) = inf {u,(2z): n € N} < oo for every z € CT, then u € Comp(T).

Proof. Let vn(2) = sup {u;(2): 7 =1,2,...,n} = max {u;(z): j =1,2,...,n} for
every z € CT. Then | |

Vp = Wp O (U1, Uzye ey Un)

where w, is a function from R" into R defined by

Wn(T1, 22y, 2p) = max {z1,22,...,2n}
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for every ,,2s,...,2, € R, and (u;,us,...,u,) is a function from CT into R"
such that (u1,uz,...,u4,)(2) = (w1(2),u2(2),-..,ua(2)) for every z € CT. Notice
that the function w, is continuous for every n € N, since w, is continuous and
Wn(21, 22, .+, Tn) = Wo(Wnoq (1, o s Tnsy)y Tn).

Let 7, be a function from C™ into C such that
Tn(21 22, - - - 1 2n) = wn(Re(z1), Re(22),. .., Re(z4))

for every 2;,22,...,2n € C. The function 7, is continuous, since the functions w,

and Re are. Therefore 7, is a compositor of order n. So 7, o (u1,u2,...,%,) €

Comp(T), since the functions u;,us,...,u, belong to the Baire algebra Comp(T').
But

(7w © (w1, U2y e yun)) (2) = 7T (w1(2), 22(2), - . ., un(2))
= wa(Re(uy(2)), Re(ta(2)), - . . , Re(un(2)))
= wp (w1(2),u2(2), ... , un(2))
= (w0 (uy, g, .., un)) (2)

= v,,(z)

for every z € CT. Thus v, € Comp(T). Since v,(z) — u(z) for every z € C7, it
follows that v € Comp(T).

The second part of the Proposition can be proved in a similar way. I

Let A, be a subset of the space X for every n € N, and let
V ca,(z) = sup {ca.(z): n€ N}
neN

and

N ca.(z) = inf {ca,(z): n € N}

neN
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for every z € X. If A = Upen An and B =, cn An, then
CpA = V Ca, and Cp = /\ CA,-

neN neN

We also notice that for every function f: X — Y and every subset AinY we

have
cs-i(4) = caof
since
(@) =1 = ze f(A)
— f(z)e A
= ca(f(z)) =1
> (caof)(z) =1

for every z € X.

Lemma 2.15 Let L be the set of all elements z = (zn)neny € CN such that the
sequence z, of complex numbers converges. Then the characteristic function of the

set L is a compositor of order N, i.e. ¢, € Comp(N).

Proof. Since every convergent sequence is a Cauchy sequence, we have

D = {2 = (oluen | (Vo) Gmen)(zm)(Vizm) I — 2l < - }

= N U 0N fe=en]| 1 i< 7]

n€EN meN k>m I>m

= N U N N {z=Ger|Inx) -ma) < 3}

neN meN k>m I>m

= N U NN o= Goner| fuls) € (-0, 7))

neEN meN k>m I>m

- N U NN (er)

neEN meN k>m I>m
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where fu(z) = |pr(z) — mi(z)| for every z € CV. Notice that fy is a continuous
function for every k and [ in N. The characteristic function of the set L is

e = ANV A A Ctal(=o00,1/n)

neN meN k>m I>m

= AV A A (qwamo fur). (2.5)

neEN meN k>m I>m

Let a be any fixed real number. For each n € N consider function g, : R — R

defined by
1 if z<(a—1)
g(z) =4 nla—z) if (e—-i)<z<a
0 if £>a

for every z € R. It is easy to see that the function g, is continuous for each
n € N, and that gn(z) — ¢(_coa)(z) for every ¢ € R as n — oco. So the composite
- function g, o fi; is continuous for every r,k,l € N and therefore it belongs to
the space Comp(N). But g,(fu(2)) — ¢(-oo,1/n)(fui(2)) for every z € C¥, which
means that (g, o fu) — (¢(—co1/n) © fut) as 7 — co. Thus we conclude that
(€(=c0,1/n) © frt) € Comp(N). And consequently, by equation (2.5) and Proposition
2.14, we get ¢f, € Comp(N). 1

Lemma 2.16 If v:CN — C is a function defined by

0 ((2n)men ) = lim, .00 2n  if zn converges
nmeNI =0 0 if z, does not converge

then v € Comp(N).

Proof. Let L be the set of all elements z = (2, )nen in CV such that the sequence
zn of complex numbers converges. By Lemma 2.15, the characteristic function
c;, € Comp(N). Let u, = ¢, - pn, where p, : C¥ — C is the projection onto the
n-th coordinate. It is easy to see that u, € Comp(N) for every n € N and that

un(z) — v(z) for every z = (2, )nen € CV. Hence v € Comp(N). I
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Theorem 2.17 If F = {fi: t € T} is a subset of CX and f = (fi)ier s the

function generated by F, then the smallest Baire algebra in C¥ containing the set

F is “
B(F) = {g: g=uof, u€ Comp(T)}.

Proof. Let A be the family of all Baire algebras in C* containing the set F' and
let G =Nges A. We want to show that B(F) = G.

For every g € B(F), we have g = u o f for some u € Comp(T). Thus, by
definiton of the space Comp(T'), we get g € A for every A € A. Hence g € G and

SO

B(F) C G. (2.6)

From Lemma 2.2 and the fact that the space Comp(T') is a Baire algebra, it is
_easy to show that B(F') is an algebra, closed under involution and containing all
constant functions.

Let g be a sequence of functions in B(F') such that g.(z) — g(z) for every
z € X. Then g, = u,.0 f for some sequence u,, in Comp(7T'). Let © = (¢n)nen and
v be the function defined in Lemma 2.16. Since v € Comp(N) and u,, belongs to

the Baire algebra Comp(T') for every n € N, we get
w =vou € Comp(T).

By the definition of function v and the pointwise convergence of the sequence g,

we have v((gn(z))nen) = limn— o gn(z) for every ¢ € X, i.e.

lim gn(2) = v ((un(f(2)))nen)

n— o0
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So we must have g = w o f, where w' € Comp(T). Hence g € B(F), which shows
that B(F) is closed under pointwise convergence.

' Now, take any function f, € F (o € T). The projection p, € Comp(T) and
§0 Pa © f = fo € B(F). Hence F C B(F). So we conclude that B(F) € A, and

therefore

G C B(F). (2.7)

Thus from (2.6) and (2.7) we conclude that B(F') = G, i.e. B(F') is the smallest

Baire algebra in C¥ containing the set F. Il

2.4 Baire Algebra Morphisms

Let A and A’ be Baire algebras in CX and CX' respectively. A map p: 4 — A’
is called Baire algebra morphism if it preserves the Baire algebra structure, i.e.
for every functions f and g from A and any complex number A, the following

conditions are satisfied:
L o(f +9)=o(f) +»l9)
2. p(Af) = p(f).

3. o(f9) = v(felg).

4. If f, is a sequence of functions in 4 converging pointwise to function f, then

©(f.) is a sequence of functions in A’ converging pointwise to function ¢(f).
5. o(f) = o(f).
6. o(cx) = cx.

Theorem 2.18 Let A and A’ be Baire algebras in CX and CX' respectively and

w: A — A’ be a Baire algebra morphism. Then for every function v € Comp(T)
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and every function f = (f,)ier generated by a subset {fi: t € T} of A, we have
puof) = uof
where f' = (p(fe))er-

Proof. Let U = {u € Comp(T): ¢(uo f) = uo f'}. To prove the proposition, it

is sufficient to show that U = Comp(T'). We do this by showing that U is a Baire

algebra in C(C") containing all the projections. .
Take any two elements v and v in U. Then (u + v) € Comp(T) and

p(uof)=uof and p(vo f) =vo f, and so

e((ut+v)of) = p((uof)+(vof))
= pwof)+e@of)
= (wof'y+(vof')

.= (v +v)o f.

Thus (v + v) € U. Similarly, we can prove that (uv) € U and (Au) € U for every
complex number A. Hence U is an algebra.

If wu € U, then @ € Comp(T') and

p(@of) = p(@od)
= ¢(uof)
= uof!
= d@of.
Thus @ € U, i.e. U is closed under involution.

The characteristic function ¢(cry € U, since it belongs to Comp(T’) and

p(cemyo f) = plex)
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pmemng cX[

= C(C’I‘) e} f’.

Since U is an algebra, it must contain all constant functions.

Let u, be a sequence in U such that u,(g) — u(g) for every g € C(¢7), Since
the sequence u, is in Comp(T) and the space Comp(T') is closed under pointwise
convergence, we have v € Comp(T'). By Lemma 2.2, the sequence (u,0f) converges
pointwise to (uo f), and therefore ¢(u,o f) is a sequence in 4’ converging pointwise
to ¢(uo f). In other word, since u,, € U, the sequence (u,0 f') converges to p(uo f).
But, using Lemma 2.2 again, the sequence (u, o f) must converge to (vo f’). Thus
¢(uo f) = uo f, which means that u € U. So U is closed under pointwise
convergence.

Finally, U also contains all of the projections p,:CT — C (a € T), since

Pa € Comp(T') and

p(Paof) = o(fa)
= Pa 0 (p(fe))er
= Pa?© f,
for every a € T.

Since U C Comp(T) and U is a Baire algebra in C(¢") containing all the

projections, by Corollary 2.5, we get U = Comp(T). I



Chapter 3

Rings of Sets and Algebras of Functions

Let V be a family of subsets of an abstract set X, and S(V) Be the collection of
those subsets A of X with the property that there exist disjoint sets 4;, 4,,..., 4,
in V such that
A= LnJ 4;.
i=1 .

The members of S(V) are called simple sets and we say that S(V) is the collection
of simple sets generated by the family V. It is obvious that every set in V is simple,
in other words V C S(V).

A family V of subsets of X is called a prering if for every two sets 4 and B
in V we have the setls A\ B and AN B are both in §(V). If V is closed under
difference and union of sets, i.e. (A\B) € V and (AUB) € V for every 4 and B in
V, then V is called a ring. If V is a ring, then it is also closed under intersection,
since AN B = A\ (A\ B) € V for every 4 and B in V. Hence every ring of sets

is a prering.

Proposition 3.1 Let V be a prering. If A € V and By, B,,..., B, are disjoint

sets in V, then A\ (B U B, U ---UB,) € S(V) for every positive integer n.

Proof. We prove by induction. If n = 1, it is clear that (4\ B;) € S(V) since V is

a prering. Assume that the statement is true for n = k. Let By, By,..., Bk, Bry1

26
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be disjoint sets in V. Notice that
D=A\(B1U:--UBgUBg41) =(A\ (B1U-+UBg)) \ Biy1-

By our assumption, 4 \ (B; U---U By) € S(V), which means that there exist
disjoint sets Ey,...,E, in V such that A\ (B;U:--U By) = U2, E;. Thus D =
(U, E)\ Bry1r = Ul (E;\ Beyy) = U, F;, where F;, = E;\ Byy; € S(V) for every
1€ {1,2,...,m}, since V is a prering. So we get disjoint sets F; (since sets E; are
disjoint), each of which is a finite union of disjoint sets in V. Thus D is a finite

union of disjoint sets in V. So D € S(V). 1
3.1 Simple Functions

Let Y be any non-empty set and 0 be a fixed element in Y (called the scaling
element). A function s: X — Y is called simple with respect to a family V of
subsets of X if there exist disjoint sets A;, Az,..., A, in V and y;,%2,...,yn in Y

such that

Sy ifze 4
“’(””)"{0 if o ¢ Un, 4;

for all z € X. Let S(V,Y) denote the set of all simple functions s € Y¥ generated
by the family V.
If 81,82,...,8, are simple functions from S(V,Y’), then by (s;,32,...,8,) we

mean a function s: X — Y™ defined by

s(z) = (s1(z), 32(2), ..., 3a(z))

for all z € X. The function s = (s1,82,...,5,) is said to be generated by simple
functions s1,83,...,3,. We say that the set S(V,Y) of simple functions is closed
under composition with a function u: Y™ — Y if (uos) € S(V,Y) for every function

8 = (81,82,...,85,) generated by simple functions s1,3,,...,3, € S(V,Y).
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A family V of subsets of X is said to have finite refinement property if for every
finite subfamily V; of V there exists a finite subfamily V; of pairwise disjoint sets
from V such that every member of Vj is a union of members of V,. The family; Va

is called a finite refinement of V;.

Proposition 3.2 For a fized family V of subsets of a space X the following state-

ments are equivalent:

1. For every set Y with a scaling element 0, the set S(V,Y) of simple functions
i8 closed under composition with every function u:Y™ — Y vanishing at zero
(i.e. ©(0,0,...,0) =0).

2. The collection S(V') of simple sets is a ring.

J. The family V of subsets of X 1is a prering.

4. The family V has finite refinement property.

Proof. 1 =>2: LetY = {0,1} where 0 is the scaling element. Then A € S(V) <:=>
ca € S(V,Y). Take any two sets A and B in S(V). Then their characteristic
functions c4 and cp are both in S(V,Y). Consider function u: Y2 — Y defined by
u(z,y) = max {z,y} for all z,y € Y. It is clear that u(0,0) = 0. Thus, by our
hypothesis, u o (ca,cg) € S(V,Y). But (u o (ca,cp))(z) = max {ca(z),cp(z)} =
c4up(z) for e;/ery z € X. Hence cayp € S(V,Y), and so (AU B) € S(V).

Next we consider function u:Y? — Y defined by u(z,y) = z(1 — y) for every
z,y € Y. From our hypothesis it follows that u o (c4,¢ep) € S(V,Y). But for
every ¢ € X we have (u o (cq,cp))(z) = ca(z)(1 — cp(z)) = ca\p(z). Hence
ca\B € S(V,Y), and thus (A \ B) € §(V). So §(V) is a ring.

2 = 3: Assume that S(V) is a ring. Take any two sets A and B in V. Then
A and B are both in §(V'). Since S(V) is a ring, both A\ B and AN B belong to
S(V). So V is a prering. |
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3 = 4: Let V be a prering. We shall prove (4) by induction. Every subfamily
of V consisting of only one set has itself as a finite refinement. Assume fhat
subfamily H, = {41,...,A4,} of V has a finite refinement, say Wy = {By,..., B,,,}
where B; € V and B;NB; =0ifi#j (i, = 1,2,...,m). Consider subfamily
H,i1 ={A1,...,An, Ant1} of V. We observe that

Anyr = [Ang1 \ (UL, B;)] U [Anya N (UL, B))

=D U FE

where D = A,y \ (UZ,B;) and E = 4,4, N (UR, B;). By Proposition 3.1, we get
D € S(V), which means that D is a union of members of some finite collection
W, of disjoint sets in V. And E = A,y N (UL, B;) = UL, (Anp N B;) = URL E;
where E; = A1 NB; E.S(V) for every 1 € {1,2,...,m} since V is a prering. Thus
each F; is a union of members of some finite collection V; of disjoint sets in V.
Let Wy = U2, V;. Then W = Wy, U W, UW, is a finite refinement of the collection
Hopo |

4 = 1: We now assume that V has finite refinement property. Take any func-
tion u: Y™ — Y such that u(0,0,...,0) = 0 and any simple functions sy, 382,...,5n
from the space S(V,Y). We need to prove that (u o s) € S(V,Y), where s =
(81,82y...,8n). For each ¢ € {1,2,...,n} there exist a finite index set I'; =
{1,2,...,m;}, and disjoint sets 4;; (5 € I;) in V, and elements y;; (7 € I})

in Y such that

) _ Yi; if z € A,'j
si®) = { 0 if z & Ujer, Aij-

Let H = {A;;: 1 =1,2,...,n;j € I';}. Then H is a finite subfamily of V. By our
assumption, H has a finite refinement, say B = {B,,...,B,}. Each 4;; € His a

union of disjoint sets from the collection B. Let z; = y;; if By C A;; and B, 7é 0,
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otherwise let 2;; = 0. Notice that

(z) = zu fee B,
#¥I=10 ifzgU-, B,

Hence

u(zmzzt,- .- ,Znt) =, if ¢z € B,

(uos)(z) = u(si(z),...,s.(z)) = { 4(0,0,...,0) =0 if z ¢ Uy, B

which shows that (v os) € S(V,Y). I

A partially ordered set is called a lattice if every pair of elements in it has a least
upper bound and a greatest lower bound. Let f and g be real-valued functions

defined on X. By f Ag and f V g we mean functions defined as follows
(f A g)(z) = min {f(z),g(=)}

(fV g)(z) = max {f(z),g(z)}
for every z € X. It is clear that a set S of real-valued functions defined on X is a

lattice if (f Ag) € S and (f V g) € S for every pair of furnictions f and g in S.

Theorem 3.3 If V is a prering of subsets of X, and C is the field of complez
numbers, then the set S(V,C) of simple functions generated by the family V is an
algebra of functions closed under involution. Moreover, the set S(V,R) of real-

valued stmple functions is a lattice.

Proof. Consider function u: C? — C defined by u(21,2;) = z;+2, for every comf;lex
numbers 2; and z,. By Proposition 3.2, we get u o (s1,s3) € S(V,C) for every
81,82 € S(V,C). But (uo(s1,s2))(z) = u(s1(z),s2(z)) = s1(z)+s2(z) = (51+52) ()
for every =z € X. Hence (s; + s;) € S(V,C), i.e. S(V,C) is closed under addition.
Similarly, by considering function u: C? — C defined by u(z1, 23) = 21 - 2; for every

21,29 € C, we prove that §(V,C) is closed under multiplication. To show that it
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is closed under scalar multiplication and involution, we use functions u:C — C
defined by u(z) = Az and u(z) = z for all z € C, respectively.

For every pair of functions s; and s; from S(V, R), the functions uy = 81 A s
and u, = 8, V 8, from R? into R vanish at zero. From this it follows that the set

S(V, R) is a lattice. I
3.2 Measurable Functions

A ring V of subsets of a space X is called an algebraif X € V. If a ring V is closed

under countable union, i.e.

UAdneV

n=1

for every countable collection {A4,} of sets from V, then V is called a o-ring. A
ring V is called a §-ring if it is closed under countable intersection, i.e.

ﬁ A eV

n=1
for every countable collection {A4,} of sets from V. A o-ring V is called a o-algebra
fXeV. IVis a.. o-ring and {A,} a countable collection of sets in V, then

© A=A\ (A \N2, A4,) = 4, \ U2, (41 \ 4,) € V. Hence every o-ring is a

6-ring. | ' '

Every 6-ring V is closed under dominated countable union, in the sense that
if {A,} is a countable collection of sets from V, and the set B € V is such that
A, C B for every n € N, then U2, A, € V. This is true since Upe, A4n =
B\ (B\UZ, 4.) = B\NZ,(B\ 4,).

If V is a family of subsets of X, then by V? we mean the collection of all
countable unions of seté in V, that is ..

V"={A: A= An, AneV}.,

neN
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Proposition 3.4 If V is a 6-ring of subsets of X, then V° is the smallest o-ring

containing V.

Proof. From the definition of V7 it is clear that the family V is contained in V7.
Take any two sets A and B from the family V°. Then A = U,, 4,, and B = U,, B,

where A,, € V and B,, € V for every n and m in N. Therefore

A\B = (UAn) \ (UBm)
= U (An \ UBm)
= U ﬂ (An \ Bm)
Since V is a é-ring, the set N,,(An \ Bm) € V for everyn € N. So (A\ B) e V°.
Let A, be a countable collection of sets from V7. Then for every n € N
A An = UAnm

where A,,, € V for every n,m € N. Thus

Udn =UUdm € V°

since it is a countable union of sets from V. Thus V7 is a o-ring.

Suppose that W is another o-ring containing V. If A € V7, then A = U, :4,,
where 4, € V for every n € N. Since V C W, we must have A, € W for every
n € N. So A =U, A, € W, because W is a o-ring. Hence V7 C W, which proves

that V7 is the smallest o-ring containing V. I
In the following Proposition, by G we mean the closure of the set G.

Proposition 3.5 Let V be §-ring of subsets of a space X and f be a complez-

valued function defined on X. Then the following statements are equivalent:
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1. For every open set G in C such that 0 &€ G, the inverse image f~1(G) of the

set G isinV.

2. For every closed set F' in C such that 0 ¢ F, the inverse image f~'(F) of

the set F' isin V.

Proof. 1 = 2 : Assume that f~!(G) € V for every open set G in C such that
0 ¢ G. Let F be any closed set in C such that 0 ¢ F. Consider the distance
function d: C — R* defined by d(z) = inf {|z — w|: w € F} for all z € C. Then

the function d is continuous on C. Notice that

Il

F {z € C: d(z) =0}

= {z € C: (Vnen) d(z) < 1/n}
= () d*(-o0,1/n)

néN

= ) Gn

néeN

where G, = d~'(—00,1/n). Since d is continuous, the set G,, is open in C for every
n € N. We also notice that G,11 C Gnt1 C G, for every n € N. Since 0 g F,
there exists no € N such that 0 € G,,,. Thus 0 ¢ G,,, and therefore 0 € G,.1,
for all n > no. So we have F = ,5,,41Gn and 0 € G, for all n > no + 1. And

consequently

FUF) = f"l( N G,,)

n>no+1

= n f_l(Gn) ev,

n>ng+1

since by our assumption f~1(G,) € V for all n > ng + 1 and V is a §-ring.
2 = 1: Now let us assume that f~'(F) € V for every closed set F in C with

0 ¢ F. Take any open set G in C such that 0 ¢ G. Let F = G° and d be the

corresponding distance function as defined above. Then

G = {z€C|z¢F}
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= {z€C|d(z) > 0}
= {z € Cl (am,neN)

= U dn)

mneN

= U an

mneN

< d(z) < n}

1
m

where Fp., = d~'[1,n]. Since function d is continuous on C, the set F,,, is closed
for every m and n in N. Also F,, C G C G, which implies that 0 ¢ F,,,, and
F Y (Fmn) C f(G), for every m and n in N. By our assumption f~(F,,) € V
for every m,n € N, and also f~*(G) € V. Since V is a é-ring (which is closed
under dominated countable union), we get U new ™ {(Fmn) = F (U nen Fnn) =

[ (@G)ev. i

Let M(V,C) denote the set of all functions f € C¥ such that f~!(G) € V for
every open set G in C with 0 ¢ G. The members of M(V,C) are called measurable
functions with respect to the family V. If V is a ring of subsets of X, then it is

easy to verify that every simple function s € S(V,C) is measurable with respect

to V.

Proposition 3.8 If V is a o-ring of subsets of X, then the set M(V,C) of mea-

surable functions is closed under pointwise convergence on X.

Proof. Let f, be a sequence of functions in M(V,C) converging pointwise to a
function f, and G be an open set in C such that 0 ¢ G. Let F = G° and d be the
distance function defined by d(z) = inf {]z —~ w|: w € F} for every z € C. Since

z € F <= d(z) =0, we get

G = {ze€C|z ¢ F}

= {z€eC|d(z) >0}
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= {2€C|(3k e N) d(z) > %}
- : d‘l(ilc—,oo)
- Ue

k=1

where G = d™!(}, 00) is an open set for every k € N, since d is continuous. Notice

that Gk = {2z € C: d(2) > 1} C G for every positive integer k. We claim that

FHG) ={z € X| (Gren)(Fmen)(Vnzm) fa(z) € Gi}- (3.1)

Take any z € f~}(G). Then f(z) € G, which means that f(z) € G for some
positive integer k. Since G is open, there exists some positive number r such
that the ball B(f(z);r) is contained in G¢. But f.(z) — f(z) for every z € X.
So there exists a positive integer m such that f,.(z) € B(f(z);r) for all n > m.
Thus (Jken)(Imen)(Vasm) fa(z) € Gi. Conversely, take any z € X such that
fa(z) € Gi, for some k and m in N and all n > m. Since f.(z) — f(z), we must
have f(z) € Gy C G. Thus z € f~1(G). This completes the proof of (3.1), and so

e=U U N £,
keN meN n>m
where Gy is open and 0 ¢ G}, for every k € N. Since f, € M(V,C), we must have
f71(Gx) € V foreveryn € N. But V is a o-ring. So we conclude that f=}(G) € V,
which means that f € M(V,C). §

If W is a lattice of subsets of a space X, then
V={A\B: Ae W, Be W}

is a prering closed under intersection. The collection of all open sets G in the

complex plane C whose closures do not contain the origin is obviously a lattice.

Let K be the family of all subsets in C which are of the form G\ H where G and H
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are open sets in C such that 0 ¢ G and 0 ¢ H. Then K is a prering closed under
intersection. Denote by S(K,C) the set of all complex-valued simple functions

with respect to the family K.

Lemma 3.7 If e:C — C is the identity map, i.e. e(z) = z for every z € C, then
there exists a sequence u, of simple functions in S(K,C) such that u,(z) — e(z)

and |u,(2)| /" |e(z)| for every z € C.

Proof. For each n € N let S, = {z € C: 51— < |z| € n}. Then S, is compact, and

n —

so there exist z1,23,..., 2, € S, such that
kn 1
S, Bz —-
= U (23 4n)

Let G7 = B(z;;;,), and let A} = G7 and A7 = (G} \ (G U---UG?_;))N S, for
j = 2,...,ks. Then for each n € N the sets A} are mutually disjoint, A} C G7,

A% € K for every j € {1,2,...,k,}, and
kn
S, = | A7
i=1
Let D = {4]: § =1,2,...,k} and
Dpn={DNA}: D€ Dy, j=1,2,...,k} U {A}\ Sn-1: 5=1,2,...,kn}
for n > 2. Then by induction we have the following facts:

1. Each D, is a finite family of mutually disjoint sets. So for every n € N let

us write D, = {D}: j € Ty} for some finite index set T',,.
2. For every n € N we have S, = Ujer, D7-
3. Each D7 is the union of members of the family D, ;.

4. The family D, is a subset of K for every n € N.
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For each n € N and each j € T, let w} € D—;‘ such that
|w}| = inf {|z|: z € D7}.
We now define a function u,: C — C by setting

’an(Z) = Z ‘w;-lCD;}(Z)

J€ln

for every z € C. It is clear that u, € S(K,C) for every n € N. We claim that

lun(z) — z| <  for all z € C such that |z| < n.

1
o

If |2| < ;- then z ¢ S, and therefore u,(z) = 0. Thus |u.(2)—2| = |z] < 5= <
If - <|z|<nthenz€§,. Soz¢€ D7 for some j € T',, and therefore u,(z) = w7.
Since w} € D} C A? C G7, we get
lun(z) — 2| = [w} - 2|

< |wi =zl 4z - 2]

i
dn = 4n
_ 1 _1
T 92n n’

Thus for each z € C we have |un(2z) — 2| < 2 if n > |z|, which means that

un(z) — e(z) for every z € C.

We still have to show that
[un(2)] < [unt1(2)] - (3.2)

for every n € N and every z € C. Take any n € N and any complex number
2 € C. If z¢ Spy1, then u,(2z) = unya(2) = 0 and so inequality (3.2) holds. If
2 € Sp1 \ Sn, then u,(2) = 0 and thus inequality (3.2) also holds. If z € S,,, then

z € D} for some k € I'y,. So

Iu‘n(z)l = |wgl

= inf {|z|: z € D}}
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where wi € Tj,f Let I',, be a subset of 'y, such that D} = Ujep:l“ D;‘“. So

z € DM for some m € I, ,, and therefore

unsa(2)] = |wi|

= inf {|z|: z € D3}
where w*t! € Dr+l, But notice that

Dy = |J Dbt
Jern+1
= U Dt
T
J€l 4,
Thus D+l C Dy, which implies that [u,(z)| is also a lower bound of the set
{|z|: z € D=1}, Since |unis(2)| is the greatest lower bound of the set, we.get

[un(2)] < |tny1(2)| for every n € N and every z € C. 1

Lemma 3.8 Let V be a §-ring of subsets of X. If f € M(V,C) and u € S(K,C),
then (uo f) € S(V,C). -

Proof. Since u € S(K,C), we can find complex numbers z,...,2, and disjoint

sets Ay,...,A, € K such that

u(z) = Z zjca;(7)

for every z € C. And so
(uo f)(z) = Z%CA,
st
= ZZ]Cf ‘(A)

for every z € X. For j = 1,...,n let 4; = G; \ H; for some open sets G; and

H; whose closures do not contain 0. Since f € M(V,C), we have f71(4;) =
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FYUG;\ H) = f7YG;)\ f~Y(H;) € V. The sets f~!(A;) are mutually disjoint,
since the sets A; are. Thus (uo f) € §(V,C). I

Lemma 3.9 A4 function f € CX is measurable with respect to a o-ring V of subsets
of X if and only if there exists a sequence s, in S(V,C) such that s,(z) — f(z)

for everyz € X.

Proof. Let f € M(V,C), and u,,l be the sequence of functions from Lemma 3.7.
Then by Lemma 3.8 the sequence s, = u, 0 f € S(V,C). And for every z € X we
have sa(z) = ua(f(2)) — e(f()) = f(a).

Conversely, suppose that s, is a sequence of functions in S(V,C), converging
pointwise to function f € CX. Then s, € M(V,C) for every n € N, and so by
Proposition 3.6 we get f € M(V,C). §

Theorem 3.10 If V is a o-algebra of subsets of X, then the set M(V,C) of
measurable functions with respect to V forms a Baire algebra. Moreover, the set

M(V, R) of real-valued measurable functiohs is a lattice.

Proof. Ta,keb any two functions f and g in M(V,C). By Lemma 3.9, there exist
sequences s, and t, in S(V,C) such that s,(z) — f(z) and t.(z) — g(z) for
every ¢ € X. Since S(V,C) is an algebra, we must have (s, + t,) € S(V,C), and
therefore (s, +t,) € M(V,C) for every n € N. But the sequence s, +t,, converges
pointwise to f + g, and therefore by Proposition 3.6 we get (f + g) € M(V,C).
So we proved that M(V,C) is closed under addition. Using similar arguments
we prove that M(V,C) is closed under multiplication, scalar multiplication and
involution.
Since cx(z) = 1 for every z € X, we have

- X ifl1ed
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for every open set G in C. But X € V, since V is a o-algebra. Hence c3'(G) € V
for every open set G in C, which means that cx € M(V,C). Since M(V,C) is an
algebra, it must contain all constant functions. So we have proved that M(V,(C)
is a Baire algebra.

Take any two functions f and g from M(V, R) and consider functions u and v

from C? into R defined by
u(z1,22) = min {|21], |22]}

v(21, 29) = max {|z1], ]2}
for every (z1,23) € C%. Then both functions u and v are continuous. Since M(V, C)
is a Baire algebra, by Corollary 2.12, we get u o (f,g) € M(V,C) and vo (f,g) €
M(V,C). But uo(f,9) = fAgandvo(f,g9) = fV g and both are real-valued

functions. This completes the proof that the set M(V, R) is a lattice. i

Proposition 3.11 IfV is a o-algebra of subsets of X, then M(V,C) is the small-

est Baire algebra of functions in CX containing the set F' = {c,: A€ V}.

Proof. The Baire algebra M(V,C) contains the set F' = {ca: A € V}, since every
characteristic function in F is simple, and therefore measurable, with respecf to
V. Suppose that M, is another Baire algebra of functions in C* containing the
set F. Take any function f € M(V,C). By Lemma 3.9, there is a sequence s, in

S(V,C) converging pointwise to f. So

kn
8n = Z ZjCA;
Jj=1

where 4; € V for j € {1,2,...,k,}. Since cy; € F (and therefore in M;) for
7 €{1,2,...,k,}, and M, is an algebra, we must have s, € M, for every n € N.
Hence f € Mj, since M; is a Baire algebra. So we have proved that M(V,C) C My,

which means that M(V,C) is the smallest Baire algebra containing the set F. 1
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3.3 The Trace of a Space of Functions

Let L be a collection of functions in C*. Then we define
trace(L) = {4 C X: ¢4 € L}.
If L is an algebra of functions in C* and V = trace(L), then S(V,C) C L.

Theorem 8.12 If L is an algebra of functions in CX which is closed under point-

wise convergence on X, then V = trace(L) is a o-ring of subsets of X.

Proof. Take any two sets A and B in V. Then ca € L and cg € L. Notice that
CA\B = CA\(AnB) = €4 — CagnB = €4 — Cq-cp € L, since L is an algebra. 'fhus
(A\B) € V. Since AUB = (A\ BYU(ANB)U (B \ A), we have caup =
ca\B+ca-cp+cpa€ L. Thus(AUB)e V.

Now let {4, } be any countable collection of sets in V and 4 = U2, An. Let
B, = A;U.--UA, for every n € N. Then B, € V, and therefore ¢p, € L, for
every n € N. Moreover, A = U2, B,, and B, C B, for every n € N. We claim
that the sequence cg, converges pointwise to c4. Take any z € X. If z € A4, then
there exists some no € N such that ¢ € B,,. So z € B,,, and therefore ¢p,(z) = 1,
for all n > ny. Thus cp,(z) — ca(z) if 2z € A. If ¢ € A, then z ¢ B,, and
therefore cp,(z) = 0, for all n € N. Thus ¢p,(z) — ca(z) if z € A. So we have
proved that cp,(z) — ca(z) for every z € X. Since L is closed under poin@wise
convergence everywhere on X, we must have ¢y € L. Hence A = U2, 4, €V,

which completes the proof that V = trace(L) is a o-ring. §

Corollary 3.13 If L is a Baire algebra of functions in CX, then trace(L) is a

o-algebra of subsets of.X.

Proof. By Theorem 3.12, trace(L) is a o-ring. Since L contains all constant

functions, we must have cx € L. Hence X € trace(L).
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Proposition 8.14 If L is an algebra of functions in CX which is closed under
pointwise convergence and under involution, then L is closed under composition

with every continuous function u:C™ — C vanishing at zero.

Proof. Let u:C™ — C be a continuous function vanishing at zero. For m € N

consider the compact set
D, ={(z1y.-+y2n) € C™ |z;| <m, 7 =1,2,...,n}.
Let p;j: C™ — C be the projection onto the j-th coordinate. Then the set
B ={Reop;, Imop;: j =1,2,...,n}

is a subset of C(C™, R) and separates points of C”. So by the Corollary of the
Stone-Weierstrass Theorem the function » can be uniformly approximated on D,,
by a sequence of polynomials of members of B with complex coeflicients. Thus for

every m € N there exists such polynomial g,, such that
[u(2) = gm(2)| < 1/m

for all z € D,,. From this we see that the sequence g¢,,(2) converges to u(z) for
every z € C™. ,
Let fi,f2,...,f~ be any n functions from L. Then h,, = gm0 (fi, f2y-.+, fn) _
is a sequence of functions in L (because L is an algebra closed under involution)
converging pointwise to the function u o (f1, f2,..., fn). Since L is closed uﬁder

pointwise convergence, we get w o (fi, f2,...,fn) € L. 1

Proposition 3.15 If L is an algebra of functions in C* which is closed under
pointwise convergence and under involution, and G is an open set in C such that

0¢ G, then (cgo f) € L for every function f € L.
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Proof. Take any function f € L. Let F = G° and d be the distance function
defined by d(z) = inf {|z — w|: w € F} for every z € C. Function d is continuous
on C. For each n € N consider function d, defined by d.(z) = min {nd(z),1}.
Then function d, is continuous on C' and vanishes at zero (since 0 € F') for every
n € N. By Proposition 3.14, we get (d, o f) € L for every n € N. We claim that
dn(z) — cg(z) for every z € C. If z € G, then d(z) > 0, and so there exists some
ng € N such that d,(z) = 1 for all n > ny. Thus d,(2) — ¢g(z) if z € G. - If
2z € G, then d(2) = 0, and so d,(z) = 0 for all n € N. Hence d,(2) — cg(2) if
z & G.

So we have a sequence d, o f of functions in L, which converges pointwise to

cgo f. Thus (cg o f) € L, since L is closed under pointwise convergence. I

Theorem 3.16 If L is an algebra of functions in CX which is closed under point-

wise convergence and under involution, and V = trace(L), then M(V,C) = L..

Proof. Take any function f € M(V,C) and let s, be the sequence of functions in
S(V,C) converging pointwise to f. Then s, € L for every n € N since S(V,C) C L.

Since L is closed under pointwise convergence, we get f € L. So
M(V,C) C L. (3.3)

Now we take any function f € L. Let u, be the sequence of functions from

Lemma 3.7. As in the proof of Lemma 3.8, we have
kn

Uno f =D wics-1(ap)
j=1

where the sets A7} are mutually disjoint and each one is the difference of two open

sets in C whose closures do not contain 0. Suppose that A is any of such sets A7,

then 4 = G \ H for some open sets G and H in C such that 0 ¢ G and 0 ¢ H.
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Hence

caof = CG\HOf
=  C@\(GnH)© f
= (ecg—cg-chy)of

= Cg Of —-(CG Of)(CH Of)

By Proposition 3.15, both ¢g o f and cx o f are in L. Thus (cq o f) € L; or
equivalently c;-1(4) € L, and so f~'(4) € V. Hence (u, o f) € S(V,C), and
therefore (u, 0 f) € M(V,C) for every n € N. Since the sequence u, o f converges

pointwise to eo f = f, and M(V,C) is closed under pointwise convergence, we

must have f € M(V,C). Thus
L cC M(V,C). (3.4)

From (3.3) and (3.4) we conclude that M(V,C) = L. |




Chapter 4

Dirac Integral Spaces

Let A be an algebra of functions in the space C¥ and L a subset of 4. We say
that L is a solid subset of A if whenever f € 4, and g € L, and |f(z)| < |g(z)| for

every z € X, we have f € L.

Proposition 4.1 If L is a solid subset of a Baire algebra A, then f € L implies
|fl € L.

Proof. Take any function f € L. Then f € A. Since A is a Baire algebra, by
Corollary 2.12 it is closed under composition with continuous functions. Thus

|| € A. But L is a solid subset of A. So we must have |f| € L. §

A function f € C¥ is called non-negative if f(z) € R and f(z) > 0 for every
z€X. A function [ from a linear space L of functions in C¥ into the field of
‘complex numbers C is called a linear functional if for every functions f and g from

the space L and any complex number A we have
L f(f+9)=Jf+[g.

2. [Af=A[F.

A linear functional [:L — C is called positive if [ f > 0 for every non-negative

function f € L.

45
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A quintuple (X,C, A, L, [) will be called Dirac Integral Space if the following

axioms are satisfied:
1. The set A is a Baire algebra of functions in C¥X.
2. The set L is a solid linear subspace of A.
3. The map [ is a positive linear functional from L into C.

4. If f, is a sequence of functions in L such that ¥, |f.(z)] < oo for every

z € X, the series }_,, f.(z) converges to f(z) for every z € X, and the series
Y n [ |fn| is also convergent, then f € L and [ f =Y, [ fa.

The members of the space L are called summable (integrable) functions, and
the functional [ will be called Dirac integral. Before deriving important theorems
within this theory let us give some examples of Dirac Integral Spaces.

Ezample 1. Let X be any non-empty set and zg € X. If we take A = L = CX
and define [ f = f(zo) for every f € L, then (X,C, A, L, [) is a Dirac Integral
Space.

Ezample 2. Let X be any non-empty set and A = C¥. Notice that the
collection D = {J C X: J is finite} is a directed set with respect to the set

inclusion relation C. Let L be the set of all functions f € A such that

lim Y f(z) exists.
eJ

JeD,C
x

Define
[1= g T

zeJ
for every f € L. Then (X,C, A, L, f) is a Dirac Integral Space.
Ezample 3. Again we take any non-empty set X and A = CX. Let g be a

fixed non-negative real-valued function defined on X. Denote by. L the set of all
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functions f € A such that

im 3 g(z)f(z) exists.
e€J

JeD,C
x

If We define
[ 1= Jlim ¥ ge)f(=)
€J

JeD,c *

for every f € L, then (X,C, A, L, [) is a Dirac Integral Space.

Ezample {. Consider the integral developed by V. M. Bogdan in his paper [5].
He starts with a positive volume v defined on a prering V of subsets of a space X,
that is a set-function v: V — [0, 00) satisfying the condition: v(U, E,) = ¥, v(E,)
for every countable collection {E,} of disjoint sets from V such that U, E, € V.
For every simple function s € S(V,C) define [s = ¥%, 2,v(E;) and ||s|| = [|s]
if s = }:f=1 z;cg, for some complex numbers z,..., 2z, and disjoint sets Ey,..., E;
from V. Then [ is a positive linear functional on S(V,C). A sequence t, is called
basic if there exists a sequence s, € S(V,C) and a positive constant M such that
th =81 +382+ - +3, and ||s,]| < M4™" for every n € N. A subset E of the space
X is called a null-set if for every € > 0 there exists a countable collection {E,} of
sets from V such that E C U, E, and 3, v(E,) < €. A condition p(z) depending
on a parameter ¢ € X is said to be satisfied almost everywhere (a.e.) on X if tlhlere
exists a null-set E such that p(z) is true for all z € (X \ E). Let L be the set of all
functions f € CX such that there exists a basic sequence t, converging pointwise
almost everywhere to f. For every f € L define [f = lim, [¢, if {, is a b;sic
sequence converging pointwise almost everywhere to f. Consider the set A of all
functions f € C* such that f~1(C \ {0}) C Unen En for some sequence E, of sets
from V and cEl_%—%f_l € L for every E € V. Let A be the set of all functions f € CX
such that cgf € A’ for every E € V. Again the quintuple (X,C, 4, L, [) is a Dirac

Integral Space. The facts that A4 is a Baire algebra and L is a solid linear subspace
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of A follow from Theorems 1, 2 and 3 of paper [6]. Using Theorems 1, 4 and 5 of
paper [5] we can prove that conditions 3 and 4 of the Dirac Integral Space are also
satisfied.

Ezample 5. We can also derive a Dirac Integral Space from a given one. Suppose
that (X,C, A, L, [) is a Dirac Integral Space. Take any function fo € A and let
X'=fo(X). fwelet A' ={uecCX: uofo€ Ayand L' = {u € A"t uo fo € L}
and f'u = f(uo fo) for every u € L', then (X',C, A’, L', [') is also a Dirac Integral
Space.

Ezample 6. Let T be any index set and (X}, C, 4;, L;, ;) a Dirac Integral Spatce
for each j € T. Let X; = X; x {j} for each j € I'. Then the sets X, are mutually
disjoint and each Xj is in one-to-one correspondence with X;. We shall identify

these spaces. Consider the space X = U;er X;. Let 4 = {f € CcX: cx;f € A}

s

and

L:{feA: ex,f€L; & Z/'cxjf
jer??
and

/f=Z cx; [

jer*?d
Then (X,C, A, L, f) is also a Dirac Integral Space.

Ezample 7. Suppose that (X,C, 4;,L;, [;) is a Dirac Integral Space for each
j € T. If we take A = Njer 4; and L = {f € Njer Lj: Tjer J;1f| < oo} and
[ f=2jer J; f, then (X,C, A, L, [) is also a Dirac Integral Space.

4.1 Convergence Theorems

In this section we are going to verify important theorems in the integration theo-
ry, namely the Monotone Convergence Theorem and the Dominated Convergence

Theorem. To accomplish this we need several Propositions and Lemmas. We begin
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by proving that the Dirac integral is a monotone functional, in the sense described

in the following Proposition.

Proposition 4.2 If f and g are real-valued functions in L, and f(z) < g(z) for

everyx € X, then [ f < [g.

Proof. Let f and g be real-valued functions in L such that f(z) < g(z) for every
z € X. Then (g — f) is a non-negative function in L. Since [ is a positive linear

functional, we must have (g — f) > 0. Hence fg— ff > 0 and thus [f < [fg. 1

Lemma 4.3 If f € L and ¢: C — R is a linear map over the field of reals, then

1. The composite function (po f) € L, and [(¢o f) = o([ f).
2. For every z € C, sup {p(z): |p| <1} = |2].
Proof. Let f € L. Then f € A and thus g = Reo f € A. Since L is solid in A and

lg(z)|] < |f(z)| for every z € X, we have g € L. Similarly, we get h = Imo f € L.

Now, let ¢: C — R be alinear map. Then

(pof)z) = o(f(z))
o(g(z) +ih(z))

g(z)e(1) + h(z)e(3)

for every z € X. So po f =¢(1) g+ () h, and thus by the linearity of L, we

get (¢ o f) € L. By the linearity of [ we also have

Jteof) = 1) [g+¢6) [
| = w(/g)ﬂo(i/h)
(
(

= ¢ /(g+ih))

= wff)-
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For every z € C we have |p(z)] < |¢||z|. Thus |¢(2)| < |z| for all ¢ such that
le| < 1. Hence

sup {p(2): || <1} <z (4.1)

for every z € C.
If z = (z,y) is any complex number such that |z| < 1 and v = (¢(1), (1)),

then

le(2z)] = lo(z + iy)|
= [p(z) + ¢(iy)]
= |(e(1))z + (¢(i))yl
= |vez

— Jo||z|| cosal

INA

[v].

Thus lo| = sup {e(): o] < 1} < Iol = (p(1)sp(@))| for every lincar map
¢:C — R.

Now let z = (z,y) be any complex number in C, and ¢:C — R be a map
defined by ¢(w) = |i—l(:z:Re(w) + yIm(w)) for every w € C. Map ¢ is linear, since
maps Re and Im are. Since |p| < |(p(1),¢(?))| = |(ﬁ,r‘z’—|)| = ﬁ|z| = 1 and

p(z) = (= +y°) = {}jl2[* = |2[, we must have

2] < sup {(2): Iyl < 1. (42)
Hence, from (4.1 ) and (4.2 ), we conclude that sup {¢(z): |¢| <1} =[z|. I
Proposition 4.4 For every f € L, the inequality | [ f| < [|f] holds.

Proof. Let f € L and ¢:C — R be a linear map such that || < 1. Then for
every & € X we have |p 0 fI(z) = lp(f(2))] < lpllf(@)] < If(@)] = IfI(2), ie.
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le o fl < |fl. Thus, by applying the first part of Lemma 4.3, we get o([ f) =
f(pof) < [leofl < JIfl, which means that f|f| is an upper-bound of the
set {¢(ff): l¢| < 1}. But, by using the second part of Lemma 4.3, we have

sup {¢(f f): lo]l <1} =|[f|. Hence | [ f| < [[f]. X

A real-valued function || - | defined on a linear space L is called a semi-norm

on L if it satisfies the following conditions:
1. |[fll > 0 for every f € L.
2. 1 + gll  I7]| + g for every f and g in .
3. [|Afll = |2l fll for every A € C and f € L.

Let us define || f|| = [ |f| for every f in the space L of summable functions and

prove the following Proposition.

Proposition 4.5 The function || - || is a semi-norm on L.

Proof.

1. Since [ is a positive linear functional, we immediately get || f|| = [|f] > 0 for
every f € L.

IA

2. For every f and g in L and every z € X we have |f + g|(z) = |f(z) + g(=)|
|f(z)| + lg(z)| = (If] + lgl)(z). Thus by Proposition 4.2 we get [|f + g| <
J(I£1+ lgl) = J|fI + [ |g|, which shows that ||f + g|| < [If]| + [|g]I-

3. Forevery A € C, f € L and z € X, we have |Af|(z) = |(Af)(2)] = |Af(z)|
|Allf(=)| = [Al|f|(z). Hence, by the linearity of [, we get [|Af] = [|A]|f]
A1 S I£1, which means that [Af]| = [ 7] T

1l

Proposition 4.6 If f € L and f, is a sequence of functions in L such that
| fn = fIl — O, then [ fu — [ f.
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Proof. Let € > 0 be given. Since || f,, — f|| — 0, there exists a positive integer ng
such that ||fo — fl| <eforalln > no. But | [ fo = [ fl=J(fn =) < S|fa—fl=
| fo = f || <€ for all n > ny, which means that [ f, — [ f. }

A sequence f, of real-valued functions defined on X is said to be increasing if
fa(z) € far1(z) for every n € N and ¢ € X. The sequence f, is called decreasing
if fa(z) > fay1(z) for every n € N and ¢ € X. It is called a monotone sequence if

it is either increasing or decreasing.

Theorem 4.7 (Monotone Convergence Theorem) If f, is a monotone
sequence of real-valued functions in L such that f.(z) — f(z) for every ¢ € X,
then the following statements are equiﬁalent:

1. The sequence [ f, is bounded.

2. The function f€ L and [ f, — [ f.

3. The function f € L and ||f, — f|] — 0.

4. The sequence || fn|| is bounded.

Proof. Let us assume that the sequence f, is increasing. For decreasing sequences
the proof is analogous.
(1) = (2): Assume that the sequence [ f, of numbers is bounded. Let g, =

fat1 — fn for every n. Then g, € L and gn(z) > 0 for every n and every « € X. So
Z lgn(z)] = Zgn(“’)
= lim 3 g5(=)
= ,}i_{{}o(fnﬂ(w) — fi(z))
= f(z) — fi(=)
= (f- fi)(z) < o0
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for every # € X. By the linearity of [ we also have

;/ng/an—/fl

which is bounded since the sequence [ f, is bounded. Thus the sequence }_7_, [ g;
is convergent, and so

;/Ign|=§:/gn<oo-

Now, using axiom (4) of Dirac Integral Space, we get (f — f1) € L and

/f f1 Z/gn

Hence f =(f — fi) + f1 € L and

[i-[f = li,gng/gj
= tip (/- 5)
= (/)[4

which implies that lim,, [ f, = [ f.

(2) = (3): Let f € L and [ fo —> [f. Then (Jf — Jfu) —> 0. But
o= fll=S1fa=fl=S(f = fa) = J f = [ fa. Hence ||fu — f|| — 0.

(3) = (4): Suppose that f € L and ||f, — f|| — 0. This means that the
sequence ||f, — f|| is bounded. But ||fa]| < ||fa — fll + ||f]]. Hence the sequence
£ is also bounded.

(4) = (1): Let |[fa]| be a bounded sequence. Then the sequence J f, is also
bounded, since |/ f,] < J17u] = [|1u]. B

Theorem 4.8 (Dominated Convergence Theorem) If g € L and f, is a. se-
quence of functions in L such that |f,| < |g| for every n € N and f, converges

pointwise to some function f, then f € L and ||fo— f]| — O and [ fn — [ f.
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Proof. We first consider the case where f,, and g are real-valued functions in L.

Then f must also be real-valued. For every pair of positive integers n and m let
hnm(z) =sup {fi(z): n<j<n+m}

for every # € X. The function hy,, is well-defined since —|g(z)| < fi(z) < |g(=)|
for every 7 € N and ¢ € X. We observe that h,,, € L for every n,m € N. Notice
that as m — oo the sequence h,,, converges increasingly to the function h,, defined

by the formula
ho(z) = sup {f;(z): n <3}

for every z € X. Since hnm(z) < |g(z)| for every n,m € N and every z € X, we
have [ hpm < [lg] < oo for every n,m € N. So the sequence [ h,,, is bounded.
Thus by the Monotone Convergence Theorem we get h,, € L for every n € N. But
the sequence h,, converges decreasingly to the function f and the sequence [ h, is

bounded. Applying the Monotone Convergence Theorem again we get f € L and
lim, [ h, = [ f.

Similarly, if for every n,m € N we define
knm(z) =inf {fi(z): n <j<n+m}

and
kn(z) = inf {f;(z): n < j}
for every z € X, then k, is an increasing sequence of functions in L converging

pointwise to f, and the sequence [ k, is bounded. Thus lim, [k, = [ f. We also

notice that

and
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which imply that _
[fa(®) = f(2)] < hn(@) — kn(z)

for every n € N and every z € X. So

Ma= = [ 1= 11 < [ho= [k
Hence lim, ||fo — f|| < lim, [hn —lim, [k, = [f — [ f = 0, which shows that

limn [[fo = fll = 0.

In the case where f,, g and f are complex-valued functions, we see that |g| € L
and |Reo f,| < |fa] < |g| and |Imo f,| < |fa| < |g| for every n € N. Since L is solid
in A, we get Reo f, € L and Imo f, € L for every n € N. From the continuity of

the functions Re and Im we have
Reof, — Reof and Imo f, — Imo f.
By the above discussion on real-valued functions we obtain

ReofeL and |Reof,—Reof||—0

and

ImofelL and |Imof,—Imo f| — 0.

Thus f = (Reo f) +i(Imo f) € L. Moreover

Ifa=fl = |(Reo fa—Reo f)+i(Imo fo —Imo f)]

< |Reo f, —Reo f| + [Imo f, ~ Imo f|
which implies that

W= 1l = [1fa= 1l
< [IReofu~Reof|+ [Jimo f~Imo f]

= ||Reo fo —Reo f|| + ||Imo fn —Imo f].

Hence ||fn — f|| — 0. And by Proposition 4.6 we get lim, [ f, = [ f. 1



Ch.4. Dirac Integral Spaces . 56

4.2 Convergence Almost Everywhere

Let Ly = {f € L: ||f|| = 0} and V; = trace(Ly). The members of L, are called
null-functions and the members of V null-sets. A proposition p(z), depending on
x € X, is said to hold almost everywhere (a.e.) on X if there exists a null-set E
such that p(z) is true for all z € (X \ E).

A subset B of an algebra A is called an algebra-ideal if B is a linear subspace
of 4, and B is closed under multiplication with functions in 4, namely if f € 4
and g € B then fg € B. We are going to prove that the set Ly of null-functions
is an algebra-ideal and a solid subset in the Baire algebra A, and is closed under
pointwise convergence and under involution. Let us now establish the first step by

proving the following Lemma.
Lemma 4.9 The set Ly is an algebra;ideal and is solid in the Baire algebra A.

Proof. Take any two functions f and g in Ly. Then [|f] = [lg| = 0. For every
2 € X we have |f(z) + g(2)] < |f(2)] + lg(2)]. Thus [|f + gl < F1fl +f lgl = 0,
from which we conclude that [|f + g| = 0. So (f + g) € Lo. From the fact that
|Af(z)] = |A|lf(z)| for every z € X and XA € C, we obtain []Af| = |A|[|f] = 0.
Thus Af € Lo. Hence Ly is a linear subspacé of 4.

Let f € Aand g € Ly. For every positive integer n consider function h,: C — C
defined by ..

hn(2) 2{ (nz)/]z] i t{ o

for every z € C. Then function h, is continuous, and |h,(2)| < n for every n € N
and z € C. Since the Baire algebra A is closed under composition with continuous
functions, we must have (h, o f) € A4, and hence the function (h, o f)g € 4
for every n € N. For every ¢ € X we have |(hn o f)g|(x) = |ha(f(2))g(z)| =
|hn(f(2))llg(z)] < nlg(z)| = |ng|(z). But ng € Lo (and therefore ng € L), and
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- L is a solid subspace of A. So we get (h, o f)g € L,Va,nd hence the function
kn = |(hno f)g| € L, for every n € N. From the above inequality we also obtain
J kn < n[|g| =0, which implies that [k, = 0 for every n € N. Thus the sequence
Tk, ié bounded.

We observe that, for every z € C, the sequence |h,(2)| converges increasingly
to |z| as n tends to infinity. This implies that |h,(f(z))| ./ |f(z)| for every z € X.
And so kn = |h, o fl|lg] /" |fllg] = |fgl.

Now, applying the Monotone Convergence Theorem, we get |fg| € L and
Jkn / [|fg]- But L is solid in A. So we must have fg € L. Recall that the
sequence [k, = 0 for every n € N, from which we must conclude that f|fg| = 0.
Hence fg € Ly.

To show that Lg is solid in A, take any function f € A and g € Ly such that
|f(z)]| < |g(z)]| for every ¢ € X. Then g € L and [|g| = 0. Since L is solid in A,
we get f € L. Hence |f| € L; and [|f| < [|g| = 0, which implies that [|f| = 0.
So f € Lo. 1 |

‘Lemma 4.10 If f,, is a sequence of non-negative real-valued functions in Lo, and

f(z) =sup {fa(z): n € N} < 0o for every z € X, then f € L.

Proof. For each n € N and z € X, let g,(z) = sup {fi(z),..., fa(z)} and hn(z) =
fi(z) + -+ fo(z). Then g, € A for every n € N. We show this by induction.
The function g, € 4, since g; = 3(fi + fo + |fi — f2). If g« € A, then gry1 € 4,
since ger1 = 3(gk + ferr + 19k — Frsrl)- .
For every n € N, the function h,, € Lo, since Lo is a linear subspace of 4.
Notice that 0 < ga(z) < ha(z) for every n € N and z € X. Since Ly is solid in 4,
we get g, € Lo, and thus [ g, = 0, for every n € N. We also see that the sequence

gn converges increasingly to f. So, by the Monotone Convergence Theorem, we

obtain f € L and [g, — [ f. Hence [ f = 0, which shows that f € L,. 1
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Proposition 4.11 The set Ly is an algebra-ideal and a solid subset in the Baire

algebra A, and is closed under pointwise convergence and under involution.

Proof. We have proved that Ly is an algebra-ideal and is solid in A. Now take any
sequence f, of functions in Ly which converges pointwise to some function f € A.
Let g, = |f,| for every n € N, and g = |f|. Then g, € Ly and g.(z) — g(=)
for every ¢ € X. Hence g(z) = limsup,_,o, gn(z) for every z € X, ie. g(z) =
inf {h,,(z): m € N} where h,,(z) = sup {ga(z): n > m} for every z € X. By
Lemma 4.10, we get h,, € Lo for every m € N. We also see that the sequence
hm(z) converges decreasingly to g(z) for every z € X, and that [ h,, = 0 for every
m € N. Thus, by the Monotone Convergence Theorem, we obtain g € L and
Jhm — [g. From this it follows that [g = 0, and hence Jlg| = 0. Thus g € L.
But Ly is solid in A and g = |f|. So f € Ly, and thus L, is closed under pointwise
convergence.

To show that Ly is closed under involution, we take any function f € Lo. Then

f € Land f|f|] =0. Since L is solid in 4 and |f| = |f|, we have f € L. Moreover
J1f1=J1fl=0. Hence f € Lo. I

The support of a function f: X — C is the set supp(f) of all z € X at which

f(z) # 0. In other words

supp(f) = {z € X: f(z) # 0} = F(C\{0}).

In the following Proposition we shall see further characterization of the null-

functions.

Proposition 4.12 If f € A, then the following conditions are equivalent:

1. f i3 a null-function

2. supp(f) is a null-set
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3. f(z) =0 a.e. on X

Proof. (1) = (2) : Let f be a null-function, i.e. f € Lo. Since Lo is an algebra of
functions in C¥ which is closed under pointwise convergence and under involution,
by Theorem 3.16 we get Ly = M(V,,C), where V, = trace(L,). For each positive
rational number r € Q let B, = {z € C: |z|] < r}. Then the set G, = C \ B, is
open in C, and 0 ¢ G,. So f~1(G,) € V, for every positive rational number r, and
consequently U,¢q f~1(G-) € V, since, according to Theorem 3.12, V; is a o-ring.

But

UsiG) = Uf(Cc\B)

reQ reQ

= U\ F(B)

reQ

= fTC)\ [ F71(B:)

reQ

= O\ B

reQ

= f(C\ B)

reQ

= fH(C\{0})

= supp(f)

which shows that supp(f) € V.

(2) = (3) : Assume that supp(f) € V,. It is clear that f(z) = 0 for all
z € X \ supp(f), which means that f(z) = 0 almost everywhere on X.

(3) = (1) : Now we assume that f(z) = 0 a.e. on X. Then there exists
a null-set E € V; such that f(z) = 0 for all z € X \ E. So cx\gf = 0. Since
ex\&f = f — cef, we get f = cgf. But cg € Lo (since E € V;), and Lo is an

algebra-ideal in A. This implies that cgf € Lo, and therefore f € Lo. I

Proposition 4.13 If f € L, g € A, and f(z) = g(z) almost everywhere on X,
thenge L, [g=[f, and |lg|l = |If].
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Proof. Take any functions f € L and g € A such that f(z) = g(z) almost
everywhere on X. This means that there exists a null-set E € V, such that f(z) =
g(:z:) for all # € X \ E. Hence cx\gf = cx\gg, or equivalently f —cgf = g — czg.
Thus
9=1f—cuf+czg. (4.3)

But cg € Ly, and Ly is an algebra-ideal in A. So both cgf aﬁd cgg are contained
in Lo, and therefore in L. Hence from equation 4.3 we conclude that g € L.

Since cgf € Lo, we have [|cgf| = 0. From this it follows that [cgf = 0, since
0 < [feufl < flenf|. Similarly, we get [cpg = 0. Hence fg = [f — [eaf +
Jeeg=[1.

Notice that, by Proposition 4.1, we have |f — g| € L. Thus cg|f — g| € Lo,

which means that [ cg|f — g| = 0. From this we get

VILAE=Nlgll | <11 — gl

Hence || f|| = |lg]-

Proposition 4.14 If f and g are real-valued functions in L such that f(z) < g(z)

almost everywhere on X, then [ f < [g.

Proof. Let f and g be functions in L such that f(z) < g(z) a.e. on X. Then we can
find a null-set £ € V such that f(z) < g(z) forallz € X\ E. Thus cx\gf < cx\&9.
And so, by Proposition 4.2, we get [cx\gf < [cx\gg, or equivalently [ f—[cpf <
J g — [cgg. But as in the proof of Proposition 4.13 we have [cgf = [cgg = 0.
Hence [ f < [g. 1
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Theorem 4.15 (Strong Monotone Convergence Theorem) If f € A and
frn is @ monotone sequence of real-valued functions in L with respect to the re- -
lation < a.e. on X and fo(x) — f(z) a.e. on X, then the following statements

are equivalent:

‘1. The sequence [ f, is bounded.
2. The function f € L and [ f, — [ f.
3. The function f € L and ||f, — f|| — O.

4. The sequence | f.|| is bounded.

Proof. Suppose that f, is a sequence of real-valued functions in L with the proper-
ties: (1) for every n € N there exists a null-set E,, € V, such that fn(z) < frra(z)
for every z € X \ Enj (2) there exist a function f € A and a null-set Eq € V; such
that fn(z) — f(z) for every z € X \ Eo. Let

Then E € V,, since Vyis a o-ring. Let g, = cx\gfn and g = cx\gf. Notice that g, is
a sequence of real-valued functions in L such that g,(¢) < gny1(z) for everyn € N
and every z € X, and g,(z) — g¢(z) forevery z € X. Since g, = f,a.e. andg= f
a.e., by Proposition 4.13, we get f € L < g € L and [gn = [ fn and ||gnl| = || fall
and [g = [f. We also observe that g, — g = cx\5fa — cx\&f = cx\&(fa — f),
which means that g, — g = f, — f a.e. on X, and therefore ||g, — g|| = ||fn — flI-
Hence we can apply Theorem 4.7 to get Theorem 4.15.

Similar arguments can be applied to prove the theorem for the case where the

sequence f, is decreasingll

Theorem 4.16 (Strong Dominated Convergence Theorem) Let f € A and

g € L. If f, is a sequence of functions in L such that |f,| < |g| a.e. on X for
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everyn € N and f,(z) — f(z) a.e. on X, then f € L and ||f, — f|| — 0 and
thus [ fn — [ f.

Proof. Use similar arguments as in the proof of Theorem 4.15 and apply Proposi-

tion 4.13 and Theorem 4.8. 1
4.3 Measure Generated by the Dirac Integral Space

Let V be a o-algebra of subsets of the space X. A set-function p: V — [0,00] is

called a measure if
1. u(0)=0.

2. w(U2y E,) = 122, u(Ey) for every countable collection {E,} of disjoint sets

in V. In this case we éay that p is countably additive.

These two conditions imply the finite additivity of the set-function p on V. Every
measure p defined on V is monotone, in the sense that if E and D are sets in V
such that £ C D then u(E) < p(D). This inequality follows from the fact that
W(D) = W(EU(D\ E)) = u(E) + w(D \ E) > ().

A triple (X, V,p) will be called Lebesgue Measure Space if

1. The collection V is a o-algebra of subsets of X.

2. The set-function p is a measure defined on V.

The members of V are called measurable sets. In the folowing theorem we shall

see that every Dirac Integral Space can generate a Lebesgue Measure Space.

Theorem 4.17 Let (X,C,A,L,[) be a Dirac Integral Space. If V = trace(A),

and p i3 the set-function defined on V by the formula

u(E) = { iocE :}c: ;é
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for every E € V, then the triple (X,V,u) forms a Lebesgue Measure Space. This

Lebesgue Measure Space 13 said to be generated by the Dirac Integral Space.

Proof. From Corollary 3.13 we know that V is a o-algebra of subsets of X. We
need to prove that the set-function p is a measure. From the definition of t“his
function it is clear that u(E) > 0 for every E € V, and that pu(0) = 0.

Let {E,} be any countable collection of mutually disjoint sets in V', and let
E = U2, E.. First, consider the case when 322, u(E,) < oco. In this case we
have u(E,) < oo, and therefore cg, € L, for every n € N. Since the sets E,, are
mutually disjoint, we get

es(z) = icw)

for every z € X. Notice also that

g/c&‘ 22/1,(1‘7") < oo.

Now, applying Axiom 4 of the Dirac Integral Space, we get cg € L and

Jes=3 [

Thus

In the case when Y22, u(E,) = oo we claim that pu(E) = oo, and therefore
w(E) =32, u(E,). Suppose that u(E) < oo. Thencg € L. Let E, = E U.--UE,

for each k € N. Then cg, < cg for every k € N. Since L is a solid subspace of
A, we must have cg, € L for each £k € N. By Proposition 4.2 we also obtain
[ cg, < [cE, or equivalently Y°F_ u(E,) < u(E), for every k € N. So we conclude

that

$ W(E) < u(E) < oo

n=1

which contradicts our assumption.
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4.4 Completeness of the Space of Summable Functions

Let (X, V, ) be the Lebesgue Measure Space generated by the Dirac Integral Space
(X,C,A,L,[). Aset E €V is called a set of finite measure if u(E) < oo. Set
E €V is of finite measure & cg € L < E € trace(L).

If u(E) = 0, then the set E is called a set of measure zero. Set E € V is of
measure zero < [cg =0 & cg € Lo & E € Vp = trace(Ly). In oher words, a set

E € V is of measure zero if and only if it is a null-set.

Lemma 4.18 Let f, be an increasing sequence of non-negative real-valued func-
tions in L such that [ f, is bounded. If E 1is the set of all z € X at which the

sequence fo(z) is not convergent, then E is a null-set.

Proof. Let us first examine the set E. Since the sequence {f.(z)} of values is

increasing, we have

E = {93 € ‘Xl JLI{.lo fn(m) = OO}
o= {:B - X' (VkGN) (aneN) fn(m) > k}
= N U {z€X| fulz) >k}

keN neN

= 1 U Ea

keN neN
where E,; = f;*(Gi) and G = {z € C| Re(z) > k}. By Theorem 3.16, we
know that A = M(V, C), which implies that f, € M(V,C) for every n € N. Thus
E,r € V for every positive integers n and k. But V is a o-algebra. So we get
EeV.
Yor each k € N, let Dy = Upeny Eng- Then cg,,  cp, as n goes to infinity.

Let M be a positive real number such that [ f, < M for all n € N. Then

' 1
/cEn,k = 'I;/kcEn,k
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1
S E/f"cEn,k
1
<
<11
< M
Tk

which means that the sequence {[ cg, , }nen is bounded for every k € N. Applying
the Monotone Convergence Theorem, we get ¢p, € L and [ cg,, — [ cp, for each
k € N. This convergence implies that fcp, < M/k for every k € N. Notice that
E = Nken Di. Thus, by the monotonicity of u, we get u(E) < u(Di) = fep, < ¥

for every k € N. This implies that y(E) =0, i.e. E is a null-set. I

Recall that the space L of summable functions is a semi-normed linear space,
with the semi-norm || - || as defined on page 51. A sequence z, in a semi-normed
space (X, || - ||) is called a Cauchy sequence if for every € > 0 there exists a positive
integer no such that ||z,, — z,|| < € for all m,n > ny. A semi-normed linear space
is said to be complete if every Cauchy sequence in it converges to some point
belonging to the space. Now we are going to prove that the space L is complete.

To do that we use the following Theorem, which is due to S. Banach [2].

Theorem 4.19 A semi-normed space (X, ||-||) ¢ complete if and only if for every
sequence x,, in X satisfying the condition Yoroq ||zall < oo, there exists an element

z € X such thatlim, o ||z — (&1 + -+ 2,)|| = 0.

Theorem 4.20 If (X,C,A,L,[) is a Dirac Integral Space, then (L,| - ||).is a

complete semi-normed space.

Proof. By Proposition 4.5, we already have that (L, || - ||) is a semi-normed space.

Let f, be a sequence of functions in L such that 322, ||f.]| < co. Let g, =
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Ifil +1f2) + <+« + |fa]- Then g, is an increasing sequence of non-negative real-
valued functions in L. Moreover

[on = 5 [15

j=1
= 2 Il
j=1
< 2Ll < oo
i=1
Thus, by Lemma 4.18, the set E of all z € X, at which the sequence g,(z) is not

convergent, is a null-set. Now let f: X — C be a function defined by

0 fze F
f(“”z{ = fu(e) ifcg B

for every z € X. This function f is well defined, since if # ¢ E then the sequence
gn(z) is convergent, i.e. the series 1,2 f.(z) is absolutely convergent, which
implies that this series is convergent. Consider function h, = cx\gfn, 1.e. h, = f,

almost everywhere for every n € N. By Proposition 4.13 we get h, € L and

|hnll = || fall for every n € N. We also notice that

S ha(e) = f(=)

n=1

for every z € X. Morover, the series

S [ lhal = 3 llhall = 3 1all < oo.
n=1 n=1 n=1 )
Applying the Axiom 4 of the Dirac Integral Space, we obtain f € L and [f =
Sl

From the above discussion we see that ' i

1F = (s o+ Bl = uféh,’—(h1+~-+hn)n

= 13 mil )

j=n+1
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=/|ihj|

j=n+1

< [ % mt (4.4)

i=n+1

Notice that

n4+m

X Ihl= Jim Y Ik
j=n+1 j=nt1

for each fixed positive integer n. But s, = Y717, [h;] is an increasing sequence

of functions in L and

n+m

[om = /j;l b
n+m

> /lhjl

j=n+1

il

n+m

= > Al
j=n+1
n+m

= 2 4l

j=n+1

00
< SOl < oo
=1

Hence, by the Monotone Convergence Theorem, we get

Z lhleL
j=n+1
and
oo n4+m
f > |h5|=,,1,1_f}go/ >, kgl
j=n+1 j=n+1
Since
n+m n+m
[ X ml= 3 sl
j=n+1 j=ni1

for every m € N, we must have

[ =3 llfjllsiflfj;l<m.

j=n41 j=n+1
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Thus

lim [ 3 Il =o0.

j=n+1

Hence, from inequality (4.4), it follows that

If = (hit-+ha)l| — 0

as n — 0o.

Now let u, = f = (h1+ -+ hp)and v, = f~(fi + - + fa). Then Up — Up =
(fi = h1)+ -+ (fn — hn) = 0 almost everywhere since f, = h, a.e. for every
n € N. Thus u, = v, a.e., and therefore ||u,|| = ||v,]|, for every n € N. This
shows that ||f — (fi + -+ fu)ll — 0 as n goes to infinity. By Theorem 4.19, we

conclude that the space (L, || - ||) is complete. §

Let L/Ly be the quotient space generated by the space L, of null-functions,

that is
L/Lo = {[fl: [fl=f+ Lo, f €L}

Then L/Ly is a linéar space with respect to addition and scalar multiplication

defined as follows:

]+ [g] = [f + 9]
ALfl = A Sl

It is obvious that f € [f]; and if f € Lo, then [f] = Lo. It is also easy to
see that [f] + Ly = [f] for every [f] € L/Lgy, which means that L is the zero
element in the linear space L/Ly. If g; and g, are any two functions in [f], then
91 = f+hy and g, = f + h, for some functions hy and hy in Lg. Thus the function
g1 — g2 = hy — hy € Lqg. So, by Proposition 4.12, we get (g; — g2)(z) = 0 almost

everywhere, i.e. g1(z) = g2(z) almost everywhere. Hence Proposition 4.13 implies

that [ g, = [ g, and Hng = ”92“
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Now on L/L, we define a complex-valued function Z by
Tifl= [ f
for every [f] € L/Ly, and a norm { - § by

#A =17

for every (f] € L/Lo. By the above remark, these are good definitions, since they

are independent of the representations which we choose from the residue class [f].

Proposition 4.21 The function T is a linear functional on L/Lgy, and the in-

equality |Z[f]] < §[f]} holds for every [f] € L/ Lo.
Proof. For every [f] and [g] in L/Lo and every complex numbers A and p we have

I +plg)) = TIAS + pg]

= [0 +ug)

= 2[f+nfg

= AZIf] + uZlg]

which shows that function I is linear. Moreover |Z[f]| = | [ f| < [If| = [|fll =
iV

A semi-norm || - || defined on a linear space L is called a norm if ||f|| = 0 only |

if f =0. A complete normed linear space is also called a Banach space.
Theorem 4.22 The space (L/Lo,{ -}) is a Banach space.

Proof. From the fact that || - || is a semi-norm it is easy to show that § -} is a
semi-norm. Let §{f]} = 0. Then ||f|| = 0, which means that f € Lo. So [f] = Lo,

which is the zero element in L/L,. Hence f - § is a norm.
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Let [f.] be a Cauchy sequence in L/Ly. Given any £ > 0, we can find a positive
integer ngy such that §[f..] — [fu]l < € for all myn > no. But {{fm] — [full =
$[fm — falf = |[fm — fall. This implies that f,, is a Cauchy sequence in L. Since
L is complete, there exists a function f € L such that ||f, — f|] — 0. Thus, for
every € > 0, there exists a positive integer m such that Wfn—Ffll <e for‘all n > m.
But [|fo — Il = #lfa — f18 = Hfu] ~ [f]1. This implies that F{f,] — [/}t — 0, which
means that the sequence [f,] converges to [f]. Hence the normed linear space L/FLO

is complete. B



Chapter 5

Generating Dirac Integral from Lebesgue Measure

Let (X, V,u) be a Lebesgue Measure Space as defined in Section 4.3 of Chapter 4.
Since V is a o-algebra of subsets of X, from Theorem 3.10 we know that the set
M(V,C,) of measurable functions with respect to V is a Baire algebra. We are
going to construct a Dirac Integral Space with M(V,C) as the underlying Baire
algebra of functions.

Let W be the collection of all measurable sets with finite measure, i.e.
W={FeV: u(E) < oo}.

It is easy to see that W is a é-ring of subsets of X. So, by Theorem 3.3, the space
S(W, C) of simple functions generated by W is an algebra. Recall that a function
s belongs to the space S(W, C) if and only if there exist disjoint sets E;, E,, ..., E,

from W and complex numbers z;, z,..., 2z, such that
s(z) = éz;cE‘.(m)

for every z € X.

5.1 Integral on Simple Functions

On the space S(W, C) let us define a functional o by

o(s) = éziu(E;)

71
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if s = Y0, 2zcp, € S(W,C) for some complex numbers 2y,...,2, and disjolnt
sets E1,...,E, from W. We observe that the above representation of a simple
function s is not unique. Suppose that for a simple function s € S(W,C) there
exist families {Ey,..., E,} and {D,,..., Dn} of disjoint sets from W, and complex

numbers 2q,...,2n,W1,...,Wn, such that

(e) = 3. nen(e) = L wien, (2

forevery z € X. Let H ={E;: i1 =1,...,n}U{D;: j=1,...,m}. Then H is n
finite subfamily of W. Since W is a prering, by Proposition 3.2, it has the finite
refinement property. Let B = {B,..., Bt} be a finite refinement of H. Then

every set E;, as well as every set D;, is a union of disjoint sets from B. Thus

_Jy ifzeB
3(“’)_{0 if z ¢ UL, B,

where y; = 2; if B, C E; for some %, and y, = w; if B, C D, for some j, else y, = 0.
Hence

o16) = LB = s ) = 3wl D)
This shows that the functional o is well defined, since its value o(s) does not

depend on the different representations of the simple function s.

Proposition 5.1 The functional o is a positive linear functional on S(W,C). If

s; and s, are functions in S(W, R) such that s; < s, then o(s;) < o(s;).

Proof. Take any two simple functions s; and s, in S(W,C), and any complex
numbers a and S. TFor each i € b{l, 2}, there exist a finite index set I';, disjoint sets
E;; e W (j €I}), and complex numbers z;; (7 € I';) such that

. _ Zij ifz € E,'j
si(2) = { 0 if 2 & User, Bij-
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Let D = {E;;: i =1,2;7 € I';}. Since W has the finite refinement property, there
exists a finite refinement B = {B;, Ba,..., Bx} of D. Every set E;; € D is a union

of disjoint sets from B. Thus

. o yit if T € Bf,
(=) = { 0 ifzd UL, B

where y;; = z;; if By C E;; for some pair of indexes ¢ and j, else y;; = 0. Therefore

(ass + fa)(a) = { g+ He € B

0 if e ¢ Uk, B,.

And so
k
o(as; + Bs2) = Z(Gyu + By )u(By)
k k
= «a z_: yept(By) + B Eyzt#(Bt)
= ac(s;)+ Po(ss)

which shows that ¢ is a linear function.

Let s € S(W, R) and s(z) > 0 for every # € X. Suppose that

s(z) = zj: ricp,(z)

for every # € X. One may assume that sets E; are not empty. Then r; > 0 for

every 1 = 1,2,...,n, and therefore

0'(3) = i:r,-,u(E,-) Z 0.

This proves that the functional ¢ is positive.
If s; and s, are functions in S(W, R) such that s; < s,, then (82 — s1) > 0. So

o(s2 — 81) > 0, which implies that o(s1) < o(s2). 1

A sequence F, of sets is said to be increasing if E,, C E, ., for everyn € N. It

is called decreasing if E, D E,,; for every n € N.



Ch.5. Generating Dirac Integral from Lebesgue Measure 74

A linear functional ¢ defined on a linear subspace L of C* is said to be Daniell-
continuous if and only if for every decreasing sequence s, of real-valued functions
in L converging pointwise to zero, the sequence p(s,) of values also converges to
zero. To prove that the functional o is Daniell-continuous we need the following

Lemma.

Lemma 5.2 If E, is a decreasing sequence of sets in V such that u(E,) < 00.and

B, =0, then limpe0 u(E,) = 0.

Proof. For every positive integer n let D,, = E, \ E,+;. Then D, is a sequence of

disjoint sets in V, and Ey; = >, D,. Thus

n=1

wE) = p(lJ Dn)

n—voo £~
n-1

= Jim u( D)
i=1

- JimaE )
But p(Ey) = p((Ey \ Ex) U E,) = p(Ey \ E,) + p(E,), which implies that

lim (B \ E,) = lim (u(B) — u(E,))

n—oo n—00

= p(B) - lim u(E,).
So we conclude that lim, ., p(E,) = 0.

Proposition 5.3 The linear functional o as defined above is Daniell-continuous

on the space S(W,C) of simple functions.



Ch.5. Generating Dirac Integral from Lebesgue Measure 75

Proof. Let s, be a decreasing sequence of simple functions in S(W, R*) such that
sn converges pointwise to zero. Suppose that s;(z) = Y%, r1;cg,;(z) for every
¢ € X, where ry; > 0 and E;; € W for every j = 1,2,...,k. Let
r=max {r;: 1 =1,2,...,k},
and F = {z € X: s;(z) > 0}. Then
E=|J Ej;ew
r1; >0

and s;(z) < rcg(z) for every z € X. We next consider two cases, namely pu(E) =0
and p(E) > 0.

If w(E) = 0, we must have o(s;) = 0, since 0 < o(s;1) < o(rcg) = ru(E) = 0.
But 0 < s, < s for every n € N, which implies that 0 < o(s,) < o(s;). Thus
o(8n) = 0 for every n € N, and hence lim, oo o(s,) = 0.

If p(E) > 0, we take any € > 0, and let 7 = ¢/(2p(E)). Let
E,={z € X: s.(z) > n}

for every n € N. If 5, = 7% rnjcg,; where {E.;: j =1,...,m} are disjoint sets,
then
E, = U Enj e W.

Paj 27
Moreover E,,, C E, for every n € N; and

fi E, = {2€ X: (Vaen) 1 < 8a(2)} i
=0 ' ‘

i
since s,(z) N\, O for every ¢ € X and > 0. So, by Lemma 5.2, we get }

lim,, o (En) = 0. This means that there exists a positive integer no such that

£
E)< —
p(En) < o
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for all n > ny. Notice that E, C E for every n € N. So

Sh = CESn

i

(ce\E, + CB, )Sn

= CE\E.Sn T CE,Sn
and from this it follows that

o(s,) = a(cE\En.sn)-{—a(cEnan)

< o(neg) + o(reg,)

= nu(E) + ru(En)
PRI
gty =F¢

which is true for all 7 > no. This shows that lim, e o(s,)=0. 1

Corollary 5.4 If s € S(W,C) and s, is a decreasing (increasing) sequence of
real-valued functions in S(W, C) which converges pointwise to s, then the sequence

o(sn) converges decreasingly (increasingly) to o(s).

Proof. If s, converges decreasingly to s, .consider sequence t, = 3, — s (if s,
converges increasingly to s, consider seqﬁence t, = 8 — 8,), which is decreasing
and converging pointwise to zero. By the Daniell-continuity of functional o, the
sequence o(t,) converges decreasingly to zero. But o(t,) = o(s,—38) = o(s,)—0(s),

which implies that the sequence (s, ) converges decreasingly to o(s). I

If on S(W, C) we define a functional L1l by |lls]l = o(]s]) for every s € S(W,C),
then || -|| is a semi-norm on S(W, C). Moreover, if s € S(W,C) and s = ¥, zcg,,

then

o(s)l = I3 el E)|

i=1
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"
); e
=4

()
This shows that the inequality |o(a)] +. ||a]| holds for every s € S(W, ().
5.2 Extension of the Intogral

Let R* be the set of all non-negative renl numbers. Denote by D(W, ') tha set
of all functions f: X — R* such thal there exists an increasing sequence a, of
functions in §(W, R*) converging pointwisn to f and the sequence o(s,) of values

is bounded. On D(W, R*) we define n fitnctlonal ¢ by

¥(f) — W a(sn)

"o

for every f € D(W, R*), where s, is an incronning sequence in S(W, R*) converging
pointwise to f and the sequence o(s,) in honnded. To show that this funcional 11;

is well-defined, we prove the following Liennina, which is due to P. J. Daniell.

Lemma 5.5 If s, and t,, are increasing acquences of functions in S(W, ') auch
that lim, s,(z) = limp, tm(z) for every w « X, and the sequences o(s,) and a(ty)

are bounded, then lim, o(s,) = lim,, (1, ).

Proof. Let s(z) = lim, s,(z) = lim,, t,,(») for every ¢ € X. For every positive
integers n and m we have (s, A ty) = 4, nnd therefore o(s, A tm) < 0(sn). But
(8n Atm) / (8 Aty) = t,, and therefore o(s, Aty) / o(tn), for each m € N
as n — o0o. So we must have o(i,) -2 lim,o(s,) for every m € N. Hence
lim,, o(t,,) < lim, o'(s;,). Using similar arguments as above we can also get the

inequality lim, o(s,) < lim,, o(t,,), which completes the proof. I
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Corollary 5.6 If s, and t, are sequences of functions in S(W,R*%) such that
Ynsn(z) = X ntm(z) for every z € X, and the series Y, 0(s,) and ¥, o(tm) are

convergent, then 3., o(s,) = Y, 0(tm).

Proof. Let u, = Yo, and w, = Y7, t. Then u, and w,, are increasing

sequences of functions in S(W,R"), and

lim un(z =Y su(z) = D tm(z) = lim w,(z)
n=1 m=1

for every z € X. Moreover

n (>}
=Za SZos;)<oo

1=

-
..
ft
-

and

H

Z Z o(t;) < oo.

i=1 1

Thus, applying Lemma 5.5, we get lim, o(u,) = lim,, o(w,,), that is ¥, o(s,) =
Ym(tm) 1

From Lemma 5.5 it is obvious that the value of ¥(f) does not depend on the
sequence 8, converging to f. Thus the functional 9 is well-defined. It is also clear
from the definition of the set D(W, R*) that S(W, Rt) C D(W, R*'); and for every
s € S(W,R*) we have 9(s) = o(s). Thus the functional ¢ is an extension of &

from S(W, R*) onto D(W, R*).

Proposition 5.7 (a). If f and g are any two functions in D(W,R*) and o and
B are non-negative real numbers, then (af + Bg) € D(W,R*) and ¥(af + Bg) =
ap(f) + Bv(g). (b). If f and g are functions in D(W,R*) such that f < g, then
B(f) < b(9). |

Proof. (a). Let s, and ¢, be sequences of simple functions from the space S(W, R+)

converging increasingly to functions f and g, respectively, such that the sequences
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o(s,) and o(t,) are bounded. For every n € N let u, = as, + St,. Then u,
is an increasing sequence of functions in S(W, R*) converging pointwise to the
function af + Bg. The sequence o(u,) is bounded, since o(s,) and o(t,) are
bounded. Hence (af + Bg) € D(W,R*). Moreover ¥(af + Ag) = lim, o(u,) =
alimn o(an) + Blimn o(t) = o(f) + BY(9). | |

(). Let f and g be functions in D(W,R*%) such that f < g. Let s, and
tn be increasing sequences in S(W, Rt) converging pointwise to functions f and
g respectively, such that the sequences o(s,) and o(t,,) are bounded. For every

positive integers n and m we have (s, A t,n) < t,, and therefore
(80 Atm) < o(tm). | (5.1)
But for each n € N we have |
nl,i—lgo('g"/\t”‘):""/\g:""
since s, < f < g. Therefore

Jim o(8p At) = 0(8,).

From this and inequality (5.1) it follows that

o(s,) < lim o(t,,)

m-—00

for every n € N. Hence

lim o(s,) < Jim o(tm)

n—oo

that is ¥(f) < (g). ¥

Proposition 5.8 If f, is an increasing sequence of functions in D(W, R") such
that f, converges pointwise to a function f and the sequence ¥(f,) ts bounded,

then f € D(W,R*) and ¥(f) = limpoo¥(fn).
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Proof. Let f, be an increasing sequence of functions in D(W, R*) such that f,
converges pointwise to a function f and the sequence ¥(f,) is bounded. Then for

each n € N there exists an increasing sequence sp, in S(W,R*) such that

lim spm(z) = fa(z)

for every z € X. Let

8n = 81n V8an V-V 8nn
for every n € N. Then s, is an increasing sequence of functions in §(W, R*). Since
Snm < fu < f for all n and m, we have s, < f for all n € N. So s, is bounded,

and therefore it is convergent. Let

lim s,(z) = s(z)

n—oo

for every z € X. It is obvious that s < f. On the other hand, since s, < 8,, < s
if n < m, passing to the limit m — oo we get f, < s for every n € N, and so

f < s. Hence s = f. Therefore

lim s.(z) = f(z)

n—oo

for every z € X. Since 8, = 81, V- V8pn < fi V-V fr, = fn, we have
o(sn) = ¥(8a) < ¥(fn) (5.2)

for every n € N. So the sequence o(s,) is bounded, because #(f,) is bounded.
Thus f € D(W, R").
From inequality (5.2) it also follows that limp e 0(8n) = liMn 00 ¥(8n) <

limy, oo ¥(fs). Thus

B() < lim $(fo). (5.3)
On the other hand

n—oo

lim 3(fn) < $(f) (5.4)
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since f, < f for every n € N. Hence from (5.3) and (5.4) we conclude that

Y(f) = limpoo $(fo). B

Corollary 5.9 If f, is a sequence of functions in D(W, R") such that 332, fu(z)

oo

converges to f(z) for every z € X, and the series 350,

then f € D(W,R*) and ¥(f) = 2, ¥(fn).

¥(fn) 18 also convergent,

Proof. Let f, be a sequence of functions in D(W, R*) satisfying the conditions as

stated in the hypothesis of this Corollary. For each n € N let

gn(z) = 3_ fil)
i=1
for every z € X. Then g, is a sequence of functions in D(W, R*), and g,(z) ./ f(z)
for every z € X. Moreover Y(gn) = (X0, fi) = T2, ¢(fi) for every n € N.
Thus limp o P(gn) = Zopey ¥(fn) < 00, i.e. the sequence ¥(g,) is bounded. By

Proposition 5.8, we get f € D(W, R*) and ¥(f) = limn oo ¥(gn) = To2, ¥(fn)-

Proposition 5.10 Let s, be an increasing sequence in S(W,R%) such that s,

converges pointwise to a function f and the sequence o(s,) is bounded. Then

lim o(s,) = sup {o(s): s € S(W,R*"), s < f}.

n-—oo

Proof. Let s, be a sequence in (W, R*) such that s, is convergent increasingly

to a function f and o(s,) is bounded. Let
sup {o(s): s € S(W,R*), s < f} =r.
Then s, < f, and therefore o(s,) < r, for every n € N. Hence

lim o(sn) <. (5.5)

n— oo

Take any function s € S(W, R*) such that s < f, and let ¢, = s, A s. Then ¢,

is a sequence in S(W, R*), which is convergent increasingly to function f A s = s.
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By Corollary 5.4, we get o(t,) ,/ o(s). But t, < s,, and therefore o(t,) < o(s,),

for every n € N. So we must have o(s) < limpa 0(3,), which is true for every

s € S(W, R*) such that s < f. From this we conclude that

r < lim o(sp). (5.6)

n—o0

The equality we are proving follows from (5.5) and (5.6). §

As defined in Section 3.2 of Chapter 3, the set M(W,C) is the collection of all
functions f € C¥ which are measurable with respect to the family W of subsets of
X. We know that S(W,C) is a subset of M(W,(C), and that M(W, R") is also a
subset of M(W, C). Now we want to show that D(W, R*) is a subset of M(W, R*).

First we prove the following Lemma.

Lemma 5.11 Let E,, be an increasing sequence of sets in W such that the sequence

(En) is bounded. If E = U, En, then E € W and lim,_, o u(E,) = p(E).

Proof. The set E belongs to the family V, since V is a o-algebra. Let D; = E;,

and D, = E, \ E,_; for every positive integer n > 2. Then D, is a sequence of

disjoint sets in V, and E = U2, D,. Thus

w(E) = p(J Dn)

= lim  u(D;)
i=1

= lim p(lJ D;)

n—oQ

= lim p(E,).

n—oo

Since the sequence u(E,) is bounded, we must have pu(E) = lim, o p(En) < o0,

which means that E ¢ W. §
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Proposition 5.12 The set D(W, R*) is a subset of M(W, R").

Proof. Take any function f € D(W, R*). Then there exists an increasing sequence
s, of functions in S(W, R*) such that s, converges pointwise to f and the sequence

o(8s,) is bounded. Let a be any positive real number. Then

fa,0) = {e€X| f(z)>a}
= {:vEXI(VnD,{) f(m)>a—‘r_17;}
(Vm>i) (3rew) sn(z) > a— %}

= ﬂ U sgl(a—nll,oo).

m>i nenN

Let Eppm = 87 (a — i, o0). Then E,,, € W for every positive integer n and m such
that m > %, since s, € M(W,R*) for every n € N. It is easy to see that E,,, is
an increasing sequence of sets with respect to n for each m > (11 Furthermore, we
observe that (a — X)cg,, < sn, which implies that o((a — L)eg,,,) < o(s,}), and
therefore (@ — 2 )u(Enm) < 0(s,), for every n € N and m > L. But the seqﬁence

1

0(3) is bounded. So the sequence u(E,n) must be bounded for each m > 2.

Hence, applying Lemma 5.11, we get that the set E,, = {J,cn Enm belongs to the
family W for every m > . Hence f™*(a,00) = N;ns1 Em € W, since W is a §-ring.
So fe M(W,R*). }

5.3 The Space of Summable Functions

A sequence 3, of simple functions in S(W, C) will be called a fundamental sequence

if it satisfies the following conditions:
1. The series Y 0., |8p(x) — s,41(z)] converges for every z € X.

2. The series Y,20 | |80 — 8n41]| converges.
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Now let L denote the set of all functions f € C¥ with the property that there
exists a fundamental sequence s, such that s,(z) — f(z) for every z € X. The

members of L are called summable functions. Clearly the space S(W,C) is a subset

of L.
Proposition 5.13 The set D(W, R*) is a subset of L .

Proof. Take any function f € D(W,R*%). Then there exists a sequence s, €
S(W, Rt) such that o(s,,) is bounded and s,(z) ,/ f(z) for every # € X. To prove
that f € L, it is sufficient to show that the sequence s, is fundamental. To do so

we observe that

3 lenfe) = sms(e)] = Jim 3 laie) = s ()

= lim Z(si“("’) - 3i(z))

= lim(sn11(2) — 51())

n— o0

= flz) —s1(z) <

for every ¢ € X; and the series

n

(>}
X llan = snpall = Jim 3 ollsi = sona])

i=1

il

3

= Jim 3 ofeun ~ #)
1

= lim (0(8n+1) - ‘7(31))

n—oo

= P(f) —(s1) < o0.

So 3, is a fundamental sequence and therefore f € L. I

A function u:C* — C is called a Lipschitzian function if there exists some

positive number A such that

u(z) — w(y)] < A= -]
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for every « and y in C*. The function u is said to vanish at zero if u(0,...,0)'= 0.

Lemma 5.14 Let u:C* — C be a Lipschitzian function vanishing at zero, and 53,
a fundamental sequence for each j € {1,2,...,k}. Then the sequence s,, defined

by sn(z) = u(sl(z),s2(z),...,sE(z)) for every x € X, is a fundamental sequence.

Proof. Proposition 3.2 guarantees that s,, € S(W,C) for every n € N. Since the

sequence sJ, is fundamental, for each j € {1,2,...,k} we have
lei("’) - 3i+1(‘”)‘ <™
n=1
for every ¢ € X, and
Z“-Si - 33;+1” < 0.
n=1
From the fact that u is Lipschitzian, we get
[3n(2) = snia(2)] = fu(sp(@)y- ., s0(2)) —u(shps(@), s shp(@))]
< M(sa(@)y -5 80(2) ~ (naa (@) - s 8mga (2)]
= M(sn(2) ~ snya(2),.. ., 90(2) = 541 (2))]
< Alsp(z) - '9711+1(‘L')| Tt /\Is:(m) - 32+1("3)|

for every n € N and some positive number A. And so

Slen(z) = snaa(o)] < A Dleb(e) = shia(e)] 4+ 4 A lek(e) = ek (o)

which shows that
3 [5n(2) = sns1(2)] < oo.
n=1

From the above inequality we also have

Hsn — Snt1 ” = a'(lsn — Sn41 ')
< /\0(|5 n+1|) ©+ ’\‘T(IS n+1')

= ’\”3:1 - '5711+1 ” +oeeet ’\”""fz - 5:+1”
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which implies that
[o0]
Z[[sn — 8nt1|| < o0.
n=1

Thus the sequence s, is fundamental.

Corollary 5.15 If s, is a fundamental sequence, then the sequence |s,| is also

fundamental.

Proof. Let s, be a fundamental sequence. Function u: C — C, defined by u(z) = |z
for every z € C, is a Lipschitzian function vanishing at zero. Thus, by Lemma

5.14, the sequence |s,| is fundamental. 1

Corollary 5.16 The set L is closed under composition with any Lipschitzian func-
tion vanishing at zero, in the sense that if u:C* — C is a Lipschitzian func-

tion such that u(0,...,0) = 0, and {fi, f2,..., fx} is any finite subset of L, then
wo (fi;f2--, fx) € L. '

Proof. Let {f1, f2,..., fx} be any finite subset of L. Then there exist fundamental
sequences s%,s2,..., sk such that lim,_, si(z) = f;(z) for each j € {1,2,...,k}

and every ¢ € X. Let s,(z) = u(si(z),...,s*(z)) for every z € X. By Lemma

5.14, the sequence s, is fundamental. Moreover

Jim sp(z) = Jim u(si(z),...,s5(z))

= u(fi(z),..., fr(z))

for every z € X. Hence wo (fi, fa,..., fe) € L.

Proposition 5.17 The set L is a linear space with respect to scalar multiplication

and addition of functions.
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Proof. Consider function u:C?* — C defined by u(z1,23) = 2, + 2, for every
z1,22 € C. Function u is Lipschitzian and vanishes at zero. Hence, by Corollary
5.16, we get wo (fi,f2) = fi + fo € L for every f; and f, in L, i.e. L is closed
under addition of functions.

Similarly, by considering function u:C — C defined by u(z) = Az for every
z € C and any fixed complex number A, we prove that L is closed under scalar

multiplication.

To verify that L is a solid linear subspace of M(V, C), we need several Lemn;a,s.
We first prove that the space M (W, C) is closed under dominated convergence.

Let W; and W, be collections of subsets of X such that Wy C W,. We shall
say that W; is an itdeal of W, if whenever E € W, and D € W, then (END) € W,.
It is easy to see that the collection W = {E € V: u(E) < oo} is an ideal subset of
V, and also of W°.

Lemma 5.18 Let W, and W, be §-rings of subset of X. Then M(W,,C) is a
solid subset of M(W,,C) if and only if Wy is an ideal of W,.

Proof. Let M(W,,C) be a solid subset of M(W,, C). Take any set E € W, and D €
W,. Then cg € M(W,;,C)and cp € M(W,,C). And socgnp = cg'cp € M(Wz',C).
Since cgnp < cg and M(W;,C) is solid in M(W,,C), we get cgnp € M(W;,C).
Hence czlp(C \ B(0,1/2)) = END € W;. So W, is an ideal in W,.

Conversely, let W; be an ideal of W,. It is clear M(Wi,C) C M(Wa,C). Let
f e M(W;,C) and g € M(W,,C) such that |g| < |f]. Take any open set G in C
such that 0 ¢ G. Then g7*(G) € W,. Let H = (G)°. Then H is an open set énd

0 € H. So there exists a positive number r such that the closed ball

B={2€C: |z|<r} CH.
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From this it follows that G ¢ H® C B¢, where B¢ is open and its closure does not

contain 0. Hence
97M(G) = {zeX: g(z)eG}

c {ze€ X: g(z) € B}

i

{z € X: |g(a)] >}
C {oeX: |f(@) >}
= {ee€X: f(z) € B
= f7(B").
Therefore g~} (G) N f~}(B¢) = ¢g~(G). But f~}(B°) € W, since f € M(W;,C).
So g=1(G) € Wy, and hence g € M(W;,C). §

Proposition 5.19 If W is a §-ring of subsets of X, then the space M(W,C) is
closed under dominated convergence, i.e. if g € M(W,C) and f, is a sequence of
functions in M(W,C) such that |f.(z)| < |g(z)| for everyn € N and ¢ € X and

fn converges pointwise to a function f, then f € M(W,C).

Proof. Let f, be a sequence of functions in M(W, C) as described in the hypothesis
of this Proposition. Then f, € M(W?°,C) for every n € N. Since M(W°,C) is
closed under pointwise convergence, we must have f € M(W?,C). But M(W,C)is
a solid subset of M(W?, (), since W is an ideal subset of W7. And |f(z)| < |g(z)]
for every z € X. Hence f € M(W,C). 1

Lemma 5.20 The space D(W, R*) is a solid subset of M(W, R*).

Proof. In Proposition 5.12 we have proved that the space D(W, R*) is a subset of
M(W,R*). Now take any function f € D(W,R*) and g € M(W, R") such that

g < f. Consider a sequence e,, of functions defined as follows

(2]

en(r) = cpony(7) B
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for every non-negative real number 7, where [r] denotes the greatest integer which
is less than or equal to r. It is easy to see that e,(r) / e(r) = r for every
r € [0,00). Let s, = e, 0g for every n € N. Then s, is an increasing sequence
of functions in S(W, R*) which converges pointwise to function g. So s, < g < f,
and therefore o(s,) = ¥(3,) < ¥(f) < o0, for every n € N. Thus the sequence
o(s,) is bounded. Hence g € D(W, R*). 1 .‘

Lemma 5.21 The space L is a subset of M(W,C). Moreover, if f € L, then
|[fl € D(W, BY).

Proof. Let f € L, and s, be a fundamental sequence such that s,(z) — f(m)
for every z € X. By Corollary 5.15, the sequence ¢, = |s,| is fundamental, and

to(z) — |f(z)| for every # € X. Let

un(z) = (@) + 3 lisa o) = t(a)]

for every z € X. Then u, € S(W,R"), and therefore u,, € D(W,R*) for every
n € N. Since t, is fundamental, the sequence u,, converges (increasingly), say to

a function g. Moreover

P(un) = ofun)
= U(It1')+zg(lti+l —ttl)

=1

< Il 4+ 20 ltian = till < co.

=1
So by Proposition 5.8 we get g € D(W, R*), and therefore g € M(W,C).

We observe that for every ¢ € X and every n € N we have

lsn(2)] = tn(=)
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= [ta(2) + (ta(2) —tu(2)) + - + (ta(2) — tas(2))]
< (@) + () — fi(@)] + -+ + [Ea(@) — tns(2)]

= up_y(z)

< g(=).

Since the space M(W,C) is closed under dominated convergence, we must have
f € M(W,C). This proves that L C M(W,C).

The above inequality also implies that |f(z)| < g(z) for every z € X. Since
F € M(W,C), we must have |f| € M(W, R*). But D(W, R*) is solid in M(W, R*).
So |f| € D(W,R*). A '

Before we prove the next Lemma, let us recall that if f is a real-valued function
defined on X, then the positive part f* of f is the function f* = f vV 0, and the
negative part f~ of f is the function f~ = (—f) vV 0. It is easy to see that
f=f"—fand|fl=ft+f". If f e M(V,R), then both the positive and the
negative parts of f also belong to M(V, R), since M(V, R) is a lattice.

Lemma 5.22 The space L of summable functions is a solid subset of M(W,(C).

Proof. In Lemma 5.21 we have proved that the space L is a subset of M(W,C).
Now take any function f € L and g € M(W,C’) such that [g| < |f|. By Lemma
5.21, the function |f| € D(W,R*). Let gt = Reog and g, = Imo g. Then g;
and g, belong to M(W, R), and therefore g{, g7, 95, and g; are all in M(W, R*).
Since g < |g1] < |g], we have gi < |f]. But D(W, R*) is solid in M(W, R*), thus
g7 € D(W,R"), and so g7 € L. Similarly, we can easily show that g7, g7, and 97

are also in L. Hence g;,9, € L, and consequently g € L. 1

Theorem 5.23 The space L is a solid linear subspace of M(V,C).
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Proof. We have proved that L is a linear space aﬁd that L is a subset of M(W, C).
Thﬁs L is a linear subspace of M(V, C). Take any function f € L and g € M(V,C)
such that |g| < [f|. Then f € M(W,C). Since W is an ideal of V, the space
M(W,C) must be a solid subset of M(V,C). So g € M(W,C). But L is solid in
M(W,C). Thus g€ L. 1

5.4 Construction of the Dirac Integral

Our next step is to extend the functional ¥ to a functional [ with domain L and
prove that it is a Dirac Integral. To guarantee that this extension is well-defined

we first prove the following Lemmas.

Lemma 5.24 If s, ts a fundamental sequence, then the sequence o(s,) is conver-

gent.

Proof. Let s, be a fundamental sequencé. Then the series 32°, ||8, — 8p41]| con-

verges. Given any ¢ > 0, there exists a positive number ny such that

I s = seenll = Do Nlsi — seall] <&
i=1 i=1
for all n > ng. Thus

Ko o]
> llsi— sl <e

i=n+1

for all n > no. Let m be a positive integer greater than n. Then
m-1
lsn = smll < D2 llsi = i
—
< Yollsi—siall < e

i=n

for all m > n > ng + 1. This shows that s, is a Cauchy éequence. But

|o(8n) = o(sm)l = [o(8n = 5m)]

< llsn = smll-
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Thus o(s,) is also a Cauchy sequence (of complex numbers). By the completeness

of C' we conclude that the sequence o(s,,) is convergent. I

Lemma 5.25 If s,, is a fundamental sequence of functions in S(W, R*) such that

s,(z) —> 0 for every ¢ € X, then o(s,) — 0 and ||s,|| — 0.

Proof. Let s, be a fundamental sequence of functions in S(W, Rt) such that
sp(z) —> 0 for every z € X. Let to = sy, and t,, = 8,41 — 8, for every positive
integer n. Then t, is a sequence of functions in S(W, R*), and

S tle) = Jim > u(e)

n=0

= Jim snii(z) =0

for every z € X. But

io n(z) = i(t:(m ~(2))
==§¢m—§uw

and hence

D ti(z) =3 tr(z)

n=0 . n=0
for every ¢ € X. We also have t1(z) < |{,.(z)| and t(z) < |t.(z)| for every z € X.
This implies that o () < ||t.]| and o(t;) < lt.]| for every non-negative integer n.

And therefore

immsiyw

oo
= sl + X lsnsr = snll < 00

n=1

i.e. the series Y.7°,o(t}) is convergent. Similarly, the series 322, o(t;) is also

convergent. Thus, by Corollary 5.6, we get

o0 oo

o(ty) =3 o(ts)

n=0 n=0
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And so
Yoot = Doty — 1)
n=0 n=0
= Y ot -
n=0 n=0
But

Za(tn) = nlLrg’Za t

n=0 ‘ 1=0
= Jim (3 t)
1=0

= Jim o(ors2)

Hence lim,_,o 0(s,) = 0.
By Corollary 5.15, the sequence |s,| is also fundamental; and |s,(z)] — 0 for

every z € X. Hence ||s,]| = o([sn]) — 0. §

Now let us define a functional f on L. For any function f € L, let

/f:hma.sn)

where s, is a fundamental sequence converging pointwise to f. To show that the
functional [ is well defined, we first note that since s, is a fundamental sequence,
by Lemma 5.24, the lim, . 0(s,) exists. Now let us suppose that there exist
fundamental sequences s,, and ¢, such that s,(z) — f(z) and t,(z) — f(z) for
every ¢ € X. By Lemma 5.14, the sequence u, = 3, — t, is fundamental. And
lim, 4, = lim, s, —lim,{, = 0. Thus, by Lemma 5.25, we get lim,o(u,) = 0.
Consequently lim,, 0(3,) = lim, o(t,). This shows that the value of f f does not
depend on the fundamental sequence converging to f.

Notice that the functional [ is an extension of ¥ from D(W, R*) onto L, since

D(W,R*) C L and for every f € D(W, R*) we have [ f = lim, 00 0(5.) = ¥(f).
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Theorem 5.26 The functional [ is a positive linear functional from L into C.

Proof. Take any two functions f and g in L, and any complex numbers a and
B. There exist fundamental sequences s, and ¢, such that s,(z) — f(z) and
to(z) — g(z) for every z € X. By Lemma 5.14, the sequence u, = as, + Bt, is

fundamental. And lim, e tn(z) = af(z) + Bg(z) for every z € X. Thus

n—oo

/(af +Bg) = lim o(u,)
= nl}_{]-;) U(a‘sn +ﬂtn)

= a lim o(s,) + 8 lim o(t,)

a/f+ﬂ/g

which shows that [ is a linear functional.

i

Let f € L such that f(z) > 0 for every z € X, and let s, be a fundamental
sequence converging pointwise to f. Then the sequence ¢, = |s,| is fundamental,
and t,(z) — |f(z)| = f(z) for every z € X, and t,(z) > 0 for every z € X. Thus
Jf =lim, o o(t,) > 0, since ¢ is a positive linear functional. This shows that [

is a positive linear functional. §

Theorem 5.27 If f, is a sequence of functions in L such that 352, |fa(z)] < o0
for every ¢ € X, the series 350, f.(z) converges to f(z) for every z € X, and the

series 300, [1fal is also convergent, then f € L and [ f =32, [ fu.

Proof. Let g, = Reo f, and h, = Imo f, for every n € N. Then both g, and A,

are sequences in M(W,C) and

fn = gn+ihn

= (gF —g7) +i(hf —h})
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Notice that g}, g7 ,hf,h- € M(W,R*?) and
gn < gnl < 1fal (5.7)

for every n € N. But |fu] € D(W,R"), and D(W,R%) is a solid subset of
M(W,R*). So g} € D(W,R") for every n € N. From inequality (5.7) we also

have

i <Z|fn )| < oo

n=]
for every z € X, and
> blor) < Z (1£1) z/m: < oo.
n=1 n=

Thus, by Corollary 5.9, we get

Y gt e D(W,R")C L

and
@b(g gr) = 2 P(g7).

We also have the same results for g;;, b}, and h].

Thus, since

f@) = 3 hule)

_ f_ilg:(m) - if:lg;(w +i§hx(w) - i b ()

for every z € X, and L is a linear space, we must have f € L. Moreover

[5=[Za-[Son+ifSr-i[3n

n=1
= WS o)~ w(E an) + (5 k) - (S )
n=1 =1 n=1 n=1

> o] o0

S (e~ Yo plen) +i 3 w(ht) — i 3o p(h)

n=1 n=1 n=1 n=1

il
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= z/ t - g0) +ilhE - b))
= fa
>/
which completes the proof. I

We close this chapter by concluding that if (X,V,u) is a Lebesgue Measure
Space, then the quintuple (X,C,M(V,C), L, [), as constructed in this chapter,
forms a Dirac Integral Space. This Dirac Integral Space is said to be generated by

the Lebesgue Measure Space.




Chapter 6

Isomorphism between the Categories DIS and LMS

A category C consists of a class O, whose elements are called objects, and a class

M, whose elements are called morphisms, such that

1. For every morphism f € M, there exist objects X and Y in O which are
called the domain and codomain of f respectively. In this case we write
f: X — Y. Sometimes we will use the notations dom (f) and cod (f) for the

domain and codomain of f, respectively.

2. For every object X € O, there exists a morphism 1x: X — X which is called

the tdentity morphism of the obAject X.

If the domain of a morphism g coincides with the codomain of another mor-
phism f, then we define the composition g o f as a morphism with domain dom
(f) and codomain cod (g). Composition of morphisms must satisfy the following

conditions:

1. For every composable morphisms f, ¢ and h, the associative law holds, that

is(gof)oh=go(foh)

2. For every morphism f: X — Y, the identity law is satisfied, that is

folx=f=1yof.

97
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Let C and D be two categories. A functor F:C — D is a map from category C
to category D, which consists of two related functions, namely an object function
and a morphism function. The object function assigns to each object X € C an
object F(X) € D and the morphism function maps each morphism f: X — Y in
C to a morphism F(f): F(X) — F(Y) in D in such a way that

1. F(1x) = 1p(x) for every identity morphism 1y in C.
2. F(go f) = F(g)o F(f) for each pair of composable morphisms f and g.in C.

It is easy to see that if C is any category, the identity map Ic:C — C defined by

the formula

I(X)=X and I(f)=f

for every object X € C and every morphism f € C, is a functor. It is called the
identity functor of the category C. If F:C — D and G:D — & are functors, then

the composition G o F:C — £ defined by the formula
(G o F)(X) = G(F(X)) and (G o F)(f)=G(F(f))

for every object X € C and every morphism f € C, is also a functor. From
these remarks it follows that categories (as objects) together with functors (as
morphisms) form a category.

A functor F:C — D is called an isomorphism if and only if there exists a functor
G:D — C such that F oG = Ip and G o F = I.. Two categories C and D are said

to be isomorphic if there exists an isomorphism F:C )
6.1 The Categories DIS and LMS

A morphism of a Dirac Integral Space (X,C, 4, L, f) to a Dirac Integral Space
(X',C, A", L', [') is a Baire algebra morphism ¢p: A — A’ (as defined in Section 2.4)
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which preserves summable functions and the value of the Dirac integral. In other

words, the morphism ¢ must satisfy the following conditions:

7.

. plaf + Bg) = ap(f) + Be(g) for every functions f and g in A and any

complex numbers @ and 8

e(fg) = ¢(f)e(g) for every functions f and g in 4

If f, is a sequence of functions in A converging pointwise to a function f, then
¢{fn) is a sequence of functions in A’ converging pointwise to the function

e(f)

o(F) = ¢(f) for every function f € A

. QO(C)() = Cx!

.feLl & o(f)el

[e(f)=[f forevery function f € L

Dirac Integral Spaces together with such morphisms form a category which will be

denoted by DIS. A morphism in DIS will be called a DIS-morphism. The identity

morphism of a Dirac Integral Space (X,C, A4, L, f) is the operator 14:4 — A

defined by lA(f) = f for every f € A.

A morphism of a Lebesgue Measure Space (X, V, 1) to a Lebegue Measure Space

(X', V', ') is a set-function ¢: V — V' which preserves the o-algebra structure and

the value of the Lebesgue measure, i.e. for every sets £ and D in V and every

sequence F,, of disjoint sets in V', we have

1.

2.

¢(E\ D) = ¢(E)\ ¢(D).

$(UnEr) = Und(En).
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3- ¢(JY) = JY’.

4. p(E) = p'(¢(E)).
Lebesgue Measure Spaces together with such morphisms also form a category which
will be denoted by LMS. A morphism in LMS will be called an LMS-morphism.

The identity morphism of a Lebesgue Measure Space (X, V, i) is the set-function
1y:V — V defined by 1y(E) = E for every set E ¢ V. ‘

6.2 Functor F' from DIS to LMS

In this Section we construct a functor F': DIS — LMS by defining its object function

and morphism function. To do so we need the following Proposition.

Proposition 6.1 If ¢: A — A’ is a Baire algebra morphism and cg € A, then

©o(cg) = cg for some E' € V' = trace(4’).

Proof. Since cg-cp = cg and ¢ is a Baire algebra morphism, we have o(cg)p(cg) =

p(cg) for every E € V = trace(A4). From this it follows that

plee)(z)(p(cp)(z) -1) =0

for every # € X'. Thus ¢(cg)(z) = 1 or ¢(cg)(z) = 0 for every z € X'. This
means that there exists a subset E' of X' such that ¢(cg) = cp. But p(cg) € A
Hence E' ¢ V'. }

Let (X,C, A, L, [) and (X',C, A', L', [} be Dirac Integral Spaces, and (X, V, u)
and (X',V’,u') the Lebesgue Measure Spaces generated by these Dirac Integral
Spaces, respectively (as discussed in Section 4.3 of Chapter 4). Let ¢ be a DIS-

morphism from the Dirac Integral Space (X, C, 4, L, [} to the Dirac Integral Space
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(X',C, A, L', ["). We now define n asl-funetlon ¢:V — V', Take any set E € V
and let

B(10) - B =k p(op) = cp'.

In other words, for every 111 V' we liave

plom) = tyn).

Proposition 6.1 guarantees thinl tile set funetlon ¢ is well-defined.

Before we prove that the wel fusictlon ¢ In an LMS-morphism, let us make the
following remark on the convergenee of chnracteristic functions. The sequence
cg, of characteristic functionn converges poiniwise to cg if and only if cg(z) =

limsup, cg,(z) = liminf, ¢y, () for every w ¢ X. From the fact that
limsup ey, (0) — h’}f sup {cp,.(z): m >n}
= My, o }),""(:D)

for every z € X, we derive Lhnl the wequence cp, converges pointwise to cg if and

only it B = nn. UmZﬂ Em = Uu ‘ 'm " I"'m'

Proposition 6.2 The set-funetion o as define above is a LMS-morphism from the

Lebesgue Measure Space (X, V) to the Lebesgue Measure Space (X', V', p').
Proof. Take any two sets I¥ nndd 1) from V., Then

Co(I\D) p(cmn)
¢(cn -~ cpep)
p(cr) -~ ¢(er)e(ep)
Cp(1) = CHE)CH(D)

CHENHD):
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Hence ¢(E \ D) = ¢(E) \ ¢(D).
Let E, be a sequence of disjoint ot In ¥/, I'hen E = U, E, € V. Let D, =
i—1 E; for every n € N. The sequence ¢y, converges pointwise to the characteristic
function cE Therefore the sequence (), ) converges pointwise to the function

o(cg) = CH(E)- Consider a function u: (! v (! delined by

u(z1,..0y20) X {|z]y 00, )2al}

for every z;,...,2, € C. The function u ix continuous. Thus by Theorem 2.18 we
get
p(uo(cg,-.. ,Cw,.)) 0 (‘«P((’lb‘l ), s p(er,))

But

(u 0 (CEl yoe- ,ch))(m) mnx {('71.')1(33), s ,cEn(z)}
"lc‘,u...uI’Ju(“’)

. (w)

for every z € X. So
p(uo(em,. .. en,)) = p(ep,)

which converges pointwise to the function ¢yp). And

wo (p(ep )s- - p(Cr,)) = WO (ChE)s--»CoEn))

cd’(El )U"'U¢(Eﬂ.)°

Thus the sequence cy(p,)u..ug(B,) Must converge pointwise to the function cy(g).
By the remark on the convergence of characteristic functions we conclude that
¢(E) = Ung(Ey).

From the fact that p(cx) = cx/, we immediately get #(X) = X'. Now take any
set E € V. If E € trace(L), then cg € L, and therefore u(E) = fcg = [ p(cE) =
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[ csmy = W(H(E)). U E ¢ trace(L), then cg ¢ L, and therefore u(E) = oo.
Since cg ¢ L, we have ¢(cg) = cgp) € L', and therefore p'(¢(E)) = oo. Thus

W(E) = 1/($(E)). 8

We shall say that the LMS-morphism ¢ as defined above is induced by the
DIS-morphism ¢. Now let us consider a function F' from the category DIS to the

category LMS defined as follows

1. Function F' maps each Dirac Integral Space in DIS to the Lebesgue Measure

Space generated by it.

2. Function F maps each DIS-morphism in DIS to the LMS-morphism induced

by it. Thus for every DIS-morphism ¢ we have
Flp)=¢ <= vlcg) = cyn)
for every E € V.
Theorem 6.3 The function F:DIS — LMS as defined above is a functor.

Proof. Let (X,C,A, L, [) be a Dirac Integral Space, with the identity morphism
14, and (X,V,p) the Lebesgue Measure Space generated by it, with the identity
morphism 1y. We need to prove that F(14) = 1y. Let F(14) = ¢ and E be
any set in V. Then cg € A and 1a(cg) = cp. But 14(cg) = c4p). Hence
#(E) = E = 1y(E) for every set E € V, which shows that F(1,) = 1y.

Now let ¢: A — A’ and ¢¥: A’ — A" be two composable DIS-morphisms, and
F(p)=¢:V > V'and F(¢p) = 7: V' — V" their images under the function F. We
need to verify that F(¢ o ¢) = F(¢) o F(p). Take any set E € V. Then ¢g € 4

and

(Yop)(cr) = d(eler))
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= P(ewm)
= O(p(N))

= o) B)

Hence F(pop)=T1o¢ = I'(4p) v I'(p). ]
6.3 Functor G from ILMHN o DIS

To establish the isomorphisin helween Lhe two categories we need to show that
there exists a functor G:LMS +» DIN mnuch that the composition of this functor
with the functor F yields the ldentity funetor, To prove the existence of such a
functor we need several Proponltlona,

First we observe that the set ¢y — {0, 1} In n field with respect to addition (&)

and multiplication (-) deflined nn folliwe

Omn—0 N:0=20
Ol — 1 0.1 =0
ety — | 1. 0=0
bpl —0 1 =1

Notice that z @y = |z — y| for every w nnd g in Co, if we consider Cy as a subset
of C. Using this field Co we can deline Hnire algebra of functions in C3¥ and the
space of compositors of order ' which will he denoted by Comp(Cly,T). It is easy
to see that all the Propositionn nud 'l'heavemns in Chapter 2 are also valid if we
replace the field C of complex numbern by the field Co.

If V is a family of subsets of n npnee X then let
F(VY  {ew eV}

It is clear that F(V) is a subsel of the space CF. If cg and ¢p are in F(V), then

for every £ € X we have

(ce ® CD)(fB) = cp(x) O ep(e)
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liple)  wp(o)]

lemn(#) + #pap(®) — co\e(z) — cpne(e)|
lowyn(w)  epyn(e)l

() e epy (o)

“'51"1“(‘")

where EA D = (E\ D)U(D\ ). Notles also that

(ewep)(w) = ep(e)-cp(z)

- ﬂmrw(-’”)

for every £ € X. Thus

tuthep — ¢pap
“wCn - CEnD

for every cg,cp € F(V).

Proposition 6.4 4 family V of subsets of X 1s a o-algebra if and only if F(V)

. . . . [
is a Baire algebra of functions in ).

Proof. (=) : Suppose that V in n o nlgebra of subsets of X. Take any-two
characteristic functions cg and ¢y from F(V). Then E € V and D € V, and
ce @ cp = cgap € F(V), since (/A D)« V. Also cg-cp = cgnp € F(V) since
(END)eV.

It is clear that F(V) is closed under sealar multiplication (where the scalars
are elements of (o), and under involution (where the conjugate of an element in
Cy is the element itself), and is containing all constant functions (since V is a

o-algebra).
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To show that F(V') is closed nnilri puintwine convergence, we take any sequence
cg, of characteristic functions from (V') mueh that cp, (z) — cg(z) for every
¢ € X. Then E, € V for every n = N, Py the remark on the convergence of
characteristic functions and the Inii thal every o-ring is closed under countable
unions and intersections we get ' |, Ungm fin € V. Hence cg € F(V).

(«) : Assume that F(V) in n Halre plgebra of functions in Cff. The space
X € V since cx € F(V). Take nny twn nela Il and D from V. Then both cg and
cp belong to F(V). Notice thal

CE\D — ‘Ha(RD)

vp i (g ap) € F(V).

Thus (E\ D) eV,
We also have

CEUD = C(Ea)a(HnN)

= (egthep)ih(ep - cp) € F(V)

which proves that (E U D) € V,

Take any countable collection [, ol nein from V and let D, = E;U---UE,

and E = U,ey En. Then D, ¢ V |t vvery n € N, and so cp, is a sequence
of functions in F(V). As shown in the proof of Theorem 3.12, the sequence cp,
converges pointwise to the funclion ¢, Since F(V) is closed under pointwise
coﬁvergence, we get cg € F(V). 'I'hnan I« V. This completes the proof that V is

a o-algebra. I

Let V and V' be o-algebras of nubuels of spaces X and X’ respectively, and
$:V — V' be a o-algebra morphism, i.c. a set-function which preserves the

o-algebra structure. From Proposition 6.1 we know that F(V) and F(V') are
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Baire algebras in C3'. Now let us define an operator ¢: F(V) — F(V') by

Y(cr) = co(m)

for every cg € F(V). Notice that ¥(cp) = c40) = ¢cp, since ¢(0) = #(E \ E) =
(E)\ (E) = 0.

Proposition 8.5 The operator 1 as defined above is a Baire algebra morphism.

Proof. Take any two characteristic functions ¢g and ¢p from F(V). Then E and

D arein V and

Y(cg ®cp) = YP(ceap)
= CHEAD)
= CH(E)LH(D)

= cy(E) D cy(D)

= Y(cm) ® P(cp).

Also

Y(ce-¢ep) = Y(cpnp)
= cy(mnD)
= Ca(B)nd(D)
= ca(B) " CHD)

= P(cr) - Y(ep).

It is easy to see that 1 preserves the scalar multiplication, constant functions and
involution.

Let cg, be a sequence of characteristic functions in F(V) converging pointwise

to CE- Then E = nnUmZn Em = Unnm_)_n Em' Thus d)(E) = nn Umz'n ¢(Em) =
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Un Nm>n ¢(Em). This implies that cy(g,)(z) — cgm)(z) for every z € X, or
equivalently the sequence ¥(cg,) converges pointwise to the function z/J(cE).‘ So
the operator v preserves pointwise convergence. This completes the proof that

is a Baire algebra morphism. §

Let (X,V,u) and (X',V’,u') be Lebesgue Measure Spaces, which generate
Dirac Integral Spaces (X,C,M(V,C),L,[) and (X',C,M(V',C), L, ['), respec-
tively, as discussed in Chapter 5. Suppose that ¢ is a LMS-morphism from (X, V, i)
to (X', V',u'). From Theorem 2.17 and Proposition 3.11, we know that

| fEM(V,C) = f=uo(ca)ey
for some u € Comp(V). Let us now define an operator p: M(V,C) — M(V',C)
by the formula

o(f) =uo (%(E))Eev
if f =wo(cg)pev for some u € Comp(V). ‘
To show that this operator ¢ is well-defined, let f € M(V,C) such that f =

uvo(cg)gev = vo(cg)gev, where u and v are compositors of order V. Let w = u—wv.
Then w € Comp(V') (and therefore w is a Baire function), and

wo (cg)pev = 0 = cp. (6.1)

Consider the injective functién i:Cy — CV defined by i(z) = z for every

z € Cy, and a constant function r:C — C, defined by r(z) = 0 for every z € C.

Both functions are continuous, and therefore they are Baire functions. So by

Proposition 2.6 the function wg = ro w o1 is a Baire function from Cg’ into Cy.

Thus we € Comp(Co, V') and therefore wp o (cg)pey € F(V') since cg € F(V) for

every E € V and F(V) is a Baire algebra in Cf. We also note that wq is the

restriction of w to CY. Thus

wo 0 (¢g)gev = w0 (¢g)Eev = Cp
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by equation (6.1). Let ¢: F(V) — F(V') be the operator defined on page 107. “

Then
1/’(wo % (CE)EEV) = 1/’(00)-

Since v is a Baire algebra morphism, by Theorem 2.18 we get
wo 0 (Y(cE))rev = co.
Thus wp o (cy(z))zev = 0 or equivalently
w o (cy(gy)Eev = 0.
From this it follows that

w0 (co(m))Eev = v 0 (c(m))EeV

which shows that the operator ¢ is well-defined.

Proposition 6.6 The operator ¢: M(V,C) — M(V',C) as defined above is a

Baire algebra morphism.

Proof. Take any two functions f and g from the space M(V,C). Then f =

u o (cg)pev and g = v o (cg)rev for some compositors u,v € Comp(V), and so
of +Byg = a(uo(cg)pev)+ B(vo(cr)rev)

= (ou)o(cg)pev + (Bv) o (cp)mev

= (au + ﬂv) o (CE)EGV
or any complex numbers a and 5. Thus

plaf +B8g) = (ou+ PBv)o(cyr))rev
= afuo(cym))rev) + B(vo (cyr))Bev)

= ap(f) + Belg)-
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We can prove analogously that ¢(fg) = ¢(f)e(g).

Let f, be a sequence of functions in M(V,C) converging pointwise to some
function f € M(V,C). Then there exists a sequence u,, of compositors in Comp(V)

such that f, = u, o (cg)gev. Let v:CYN — C be the function defined by

(o) = lim, 2, if 2, converges
VlZnjneN) =19 ¢ if 2, does not converge.

From Lemma 2.16, we know that v € Comp(/N). Since the sequence f, converges

pointwise to function f, we have v o (fn)neny = f. But

vo (fn)neN = vo (un 0 (CE)EGV)nEN
= vo (un)neN % (CE)EeV
= wo (CE)EGV

where w = v o (u,)nen. Notice that w € Comp(V) since v € Comp(N) and

Comp(V') is a Baire algebra. Thus f = w o (cg)gev, and so

o(f) = wo(cyr))mev
= (v 0 (Un)nen) © (co(E))Eev
= v 0 (Un 0 (cy(E))EeV )neN
= v 0 (@(fa))nen
= lime(fn)
which shows that ¢ preserves pointwise convergence.

I f=wuo(cp)pevy € M(V,C) for some u € Comp(V), then f = i o (cg)gev,

and so

o(f) = @o(cym)rev

= uo(cym)mev

= o(f).
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We notice that cx = px o (cg)gev where the projection pp((cg)rev) =cp is a

compositor of order V for every D € V. Hence

I

o(cx) = px o(cy(m))Eev
= Cy(x)
= Cx.

This completes the proof of the Proposition. ¥

We recall that if (X,V,u) is a Lebesgue Measure Space then S(W,C) is the
set of all simple functions with respect to the family W = {F € V: u(E) < oo}.
For the operator ¢: M(V,C) — M(V',C) as defined above we prove the following

Lemmas.

Lemma 6.7 A function s belongs to the space S(W,C) if and only if ¢(s) €
S(W',C). Moreover, for every s € S(W,C) we have [ s = [ p(s).

Proof. - We first observe that cg = pg o (¢cp)pev, where the projection pg €
Comp(V) for every E € V. Thus

p(ce) = pgo (c¢(D))D€V

= C¢(E)-
From this it follows that
cg € S(W,C) < EecW

p(E) < oo
#($(E)) < o0
H(E) e W'

cH(E) € S(W', C)

(I

¢(cp) € S(W',C).
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Hence, by the linearity of the spaces S(W,C) and S(W’,C), and of the operator

v, we get the equivalence
s € S(W,C) = ¢(s)e S(W,C).
Moreover

/cE = p(E)
= p($(E))

I
= /%w)

= /b@w

for every cg € S(W,C). Thus by the linearity of the integrals and the operator ¢

f8=/?@)

we get

for every s € S(W,C). &

Let X be a topological Hausdorff space. ‘Consider the Baire space B(X,C)
of functions from X. into C. Let V = trace(B(X,C)). The members of V are
called Baire sets. In other words, a subset F of X is a Baire set if and only if
the characteristic function cg of the set E is a Baire function. Since B(X,C) is a
Baire algebra, from Corollary 3.13 we know that the collection V of all Baire sets

forms a o-algebra of subsets of X. Let us prove the following Proposition.

Proposition 6.8 If X is a metric space, then every open or closed subset of X is

a Batre set.

Proof. Let G be any open subset of a metric space X with metric d. Consider a

function f: X — R defined by

f(ﬂ:) = d(ma Gc)



Ch.6. laompiphiem helween the (!ntegories DIS and LMS 113

for every w € N The funetlon [ is continuous on X, and f(z) > 0 if and only
if @ € (! Yoo the funellon gy, — nf A cx is also continuous on X, and therefore
gn € B(X,t"), b every n £ N, Moreover the sequence g, converges pointwise
to the charnctriable himetion ¢y, Since the Baire space B(X,C) is closed under
pointwise convergene, we have 1 ¢ B(X,C). Hence G is a Baire set.

If I i w clomesd ashaet of X, then ' = G° for some open set G. Thus F is also

a Baire sal, 1

For ench m & N conalder n function v,,: CY¥ — R defined by the following
formula
t ((&n)Jnenv) Z |2n — 2n41]
for every ((2y)nen) € ' 'I'liin function v,, is continuous on C¥ for every m € N.
Let B be the aet of all ({s,)nen) € CV such that the series 322, |2n — Zn41]

converges. 'I'hen

o
4

> |20 = zay1] < oo}

nol

(”"ﬂGN) ( mEN Z |zn — Zn41] < k}

n=1

"

( ) )ur:N

( Ey )Ht N

1AL b St <]
l J [ ] " ((—Oo,k))

M N e N

where v, (( o k) in an open wel in CV for every m € N and k € N. Since CV is
metrizable, the net o '(( v, b)) is a Baire set for each m € N and k € N. Hence

the set I3 is o Baire net, und connequently cp is a Baire function. So ¢g € Comp(N).

Lemma 0.9 Let a, be any sequence of functions from a Baire algebra A in CX,

and the set BB as defined above. Then the following two conditions are equivalent:

1 z 1'371.( ) ) n|1( )|<00f07'allz:EX
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2. cp © (sn)nGN =Cx
Proof. Take any z € X. Then

ij:l lsn(‘v) - 3n+1($)[ <0 (Sn(:v))ﬂeN € B

= cp((8n(2))ner) = 1

<= (cp o (n)nen)(z) = cx(z) (6.2)
which implies that the conditions stated in the Lemma are equivalent. §

Lemma 6.10 If a sequence s, € S(W,C) is fundamental, then the sequence 1 =
©(sn) € S(W',C) ts fundamental.

Proof. Take any fundamental sequence s,, from S(W,C). Then

00

> 3a(z) = 8n41(z)| < 00 Vz € X,

n=1
which is equivalent to
¢p 0 (8p)nen = cx
by Lemma 6.9. Applying the Baire algebra morphism ¢ to both sides of the above
equality, we get
¢(cp o (sn)nen) = p(cx).

Using the fact that cg € Comp(N) we have
¢ 0 (¢(8n))neny = cx

or equivalently

Cp O (tn)nGN = Cx'.

By Lemma 6.9 the last condition is equivalent to

Z (tn(l‘,) — tn+1((l!,)‘ < 00 Vil!, € XI.

n=1
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By Lemma 6.7 we get

[lsn=smal = [ ollsn = snil
[ o(5n = smia)
[ 16(52) = (s

/Iltn ~ tny]

Il

which implies that

oo oo
D llsn = snnrll <00 = Y ltn — tapa]l’ < 0.

n=1 n=1

Thus the proof of the Lemma is complete. I

Lemma 6.11 A function s belongs to the space S(W,C) if and only if s € S(V,C)

and s € L.

Proof. If s € S(W,C) then it is clear that s € S(V,C) and also s € L. So take any

simple function s € S(V,C) such that s also belongs to the space L. Then

n
8 = Z szEj
j=1

where {E;: j = 1,2,...,n} is collection of disjoint sets from V. Thus cg, €
M(V,C), and consequently cg,|s| € M(V,C), for j = 1,2,...,n. But cgs| < [s|.
Since L is solid in M(V,C), we must have cg;|s| = cg;|z;| € L. Without loss of
generality we may assume that z; # 0 for j = 1,2,...,n. Thus cg; = ,’zlj“.,CEﬂ"l €L

and therefore E; € W for j = 1,2,...,n. Hence s € S(W,C). 1

Proposition 6.12 The operator p: M(V,C) — M(V',C) as defined above is a
DIS-morphism from the Dirac Integral Space (X,C,M(V,C),L,[) to the Dirac
Integral Space (X',C,M(V',C),L’, ).
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Proof. In Proposition 6.6 we have proved that ¢ is a Baire algebra morphism. So
we need only to show that ¢ presseven mnpumable functions and the value of the
Dirac integral.

Let f € L and s,, be a fundumental nequence in S(W, C) converging pointwise
to f. Then p(sn) is a fundamental sequence in S(W',C) converging pointwise to
the function ¢(f) € M(V',C). Thun p(f) ¢ L.

Conversely, take any function ¢(f) ¢ I/ where f € M(V,C). Let u, be the
sequence of functions in S(K, ) much that un(z) — e(z) = z and |u.(2)| / |2|
for every z € C (cfr. Lemma 3.7). 'I'hen by Lemma 3.8 we get (u, o f) € S(V,C)
for every n € N. Therefore p(u, 0 f) ~ n,00(f) € S(V',C) C M(V',C) for every
n € N. Since (f) € L' and |u, 0 @(f)| < |@(f)| and L' is solid in M(V',C), we
have (u, 0 @(f)) € L' for evey n. ¢. N. And 8o by Lemma 6.11 we get (u, o p(f)) €
S(W',C) for every n € N. We also see that |u, o o(f)| 7 le(f)]; and therefore
Tunoo(£) /I le(f)], which mennn that the sequence [’ |u, o @(f)| is bounded.
Notice that [u, o f| 2 |f] and [ [un o f] = J' [un 0 @(f)| which is bounded. By the
Monotone Convergence Theorem we getl |f| € L. But L is solid in M(V,C), so we
must have f € L. Thus we have proved that f € L « o(f) € L.

Take any function f € L and let s, € S(W, C) be some fundamental sequence
converging pointwise to f. Then ¢(s,) € S(W',C) is a fundamental sequence

converging pointwise to the function ¢(f) € L'. Thus

/f = li'{n/sn

- i [ e
= /IsO(f)

for every f € L. I

The morphism ¢ introduced by means of the above construction will be called
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the DIS-morphism induced by the LMS-morphism ¢. Now let us consider a func-

tion G from the category LMS to the category DIS defined as follows

1. Function G maps each Lebesgue Measure Space in LMS to the Dirac Integral

Space generated by it.

2. Function G maps each LMS-morphism in LMS to the DIS-morphism induced

by it.
Theorem 8.13 The function G:LMS — DIS as defined above is a functor.

Proof. Let (X,V,u) be any Lebesgue Measure Space, with identity morphism 1y,
and let (X,C,M(V,C), L, [) be the Dirac Integral Space generated by it, with the
identity morphism 1. We have to show that G(1y) = 1p. Take any function
f € M(V,C). Then f = uo (cg)gev for some function u € Comp(V). Thus
G(v)(f) =uo(eiy(m))Eev = uwo (cB)Eev = f = 1y(f). Hence G(ly) = 1y.

Now let ¢:V — V' and 7: V' — V" be any two composable LMS-morphisms.

Notice that for every F € V we have

G(r)(csm)) = G(7)(Ps(m)© (cp)Dev)
= py(p) © (G(T)(cp))pev
= py)° (cr(D))Dev
= Cr(y(B))-

Take any function f € M(V,C). Then f = u o (cg)gev for some function u €

Comp(V'). Thus

G(tod)(f) = wol(ciropyr))Bev
= uo(cr(ym))Bev

= wo(G(T)(cym)))Eev
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= G(7)(u o (co(m))Bev)
= G(T)}(G(¢)(f))

for every f € M(V,C), which proves that G(7 0 ¢) = G(1) 0 G(4). 1
6.4 Isomorphism between the two Categories

In this Section we are going to show that the functor F:DIS — LMS and the
functor G: LMS — DIS are inverse to each other, i.e. to prove that F o G = Ipms
and G o F' = Ipjs where Ijys and Ipgs are the identity functors of the categories

LMS and DIS, respectively.

Proposition 6.14 The composite functor F oG is the identily functor of the cate-
gory LMS.

Proof. We have to show that (F o G)(X,V,u) = (X,V,u) and (F o G)(¢) = ¢
for every Lebesgue Measure Space (X,V,u) and every LMS-morphism ¢ in the

category LMS.

X, Vu) —2—~ (x,0,M(V,0),L,]) —=

¢ G(g)=¢ F(e)=¢

' |

F

Y

(X, V', ') (X', C,M(V',C), L', [) (X', V1, pul)

Take any Lebesgue Measure Space (X, V,p) and let (X,C,M(V,C), L, [) be

the Dirac Integral Space generated by it. Suppose that (X, V,ﬁ) is the Lebesgue
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Measure Space generated hy the [Mrao Integral Space (X,C, M(V,C), L, [). We
need to verify that V = V and ji — Iy

Take any set E € V. Then vy & M{V,0), and so E € trace(M(V,C)) =V.
Thus V C V. Conversely, tnhe nny sey ) € V= trace(M(V,C)). Then cg €
M(V,C). Let G={z¢ C: |« 1|+~ 1/3), "Then G is an open set in C and 0 ¢ G.
So cg'(G) € V. But z € ¢),'((!) + ng(m) € G & cg(z) =1 & z € E, which
means that ¢z (G) = E. Thun IV t. ¥, and so V C V. Hence V=V.

Take any set E € V. If N« W, then ag € L, and so i(E) = [cg = p(E). If
E ¢ W, then cg ¢ L, and #o ji( M) — 00 = p(JF). Thus i = p.

Now let ¢ be any LMS-morphilum and ¢ be the DIS-morphism induced by it.
Suppose that ¢ is the LMS-morphlam induced by ¢. We need to show that é=¢.
In the above paragraph we hnve proved that the domains of the morphisms ¢ and

 are the the same, say V. 'I'nke niy wel 18 € V. Then

Chmy wlen)
‘P(Pw 0 (CD)DeV)
Pn o (CqS(D))DGV

Chen)-

Hence %(E): $(E) for every ItV « V, which means that q?z . 1

To prove that the composite functor Go F is the identity functor of the category
DIS we need the following Lemmas. Let (X,C, 4, L, [) be any Dirac Integral Space
and (X, V,un) be the Lebesgue Measure Space generated by it. We recall that the
set S(W,C) is the collection of all simple functions with respect to the family
W ={E € V: u(E) < oo}. Let (X,C, M(V,C), L, ) be the Dirac Integral Space
generated by the Lebesgue Measure Space (X,V,u). In Theorem 3.16 we have
proved that M(V,C) = A.
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(X,C,A,L,‘I') !: =1 (i‘l‘/.ﬂ') '_'g'_"' (X,C,]VI(V,C),E,I)

Lemma 6.15 If s« 5(W\ ('), then a belongs to both L and L, and [ s = Js.

Proof. Take any wlmple fanethon o ¢ S(W,C). It is obvious that s € L. By
definition s = 3! | &;1's, fuf e complex numbers zy,. .., z, and some collection
{E;} of disjoint neta i W, Blnew F; € W, we have u(E;) < oo, which méans

that cg, € L. Thus hy tha linenrily of the spaces L we get s € L. Moreover

[

NgE
N
=
e

-
il
-

M=
RN
—
§

.
i}
=)

V)

Wk
R
o
=

since both integraln nie lineny
Lemma 6.16 If [« |, then |« L and [ f = If

Proof. Take any Mmudtivn [ « L and let u, be the sequence of functions in S(K;C)
such that u,(2) - v r(+) - wndl |u,(2)| / |2| for every z € C (cfr. Lemma 3.7).
Let v, = upo f. Thenw v, « N(V, (') for every n € N. Since |v,| = |u,0 f| < |f] and
L is solid in M(V, ('), we liwve n, o L f‘or every n € N. By Lemma 6.11, we get
vp € S(W,C) for every w1 N Nolice that the sequence v, converges pointwise to

the function eo f /. 'I'hnn, by the Dominated Convergence Theorem, we get

[ln 1= o = £l — 0.
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This impliee that ||,  »,]| -— 0 when n and m tend to infinity. So we can find

an incronalng eequense b, of positive integers such that
vk, — vl < 277

for all 1 = b, el a, -- vy, for every n € N. It is obvious that s, is a sequence

of functiona I (W, ('), Lt

n

=>_ls; = sinl.

=1

Then h,, {s niy Inerensing #rquence of non-negative real-valued functions in L and
n
[in = 3 [les =
n
= Z |85 — 8541l
o
= Z ”vk ~ Vkjpa I

< 277 < 1.

M: i

1

[
i

Let E bo nol of all w ¢ X ai which the sequence h,(z) is not convergent. From

Lemma 4.1 we hinow that the set E is a null-set. Let D = X \ E and t, = cps,

and g = epf. Then t, o S(W,C) for every n € N. Since
(i) = sa(z) ifz ¢ E
=19 ifz € E,

we must have

3 t(2) — tapa(e)] < oo

nel

for every @ « X. We uluo observe that
. o0
Sollbe = tara)l = D |Isn — sn1]
n=1
o0
< Yo o=

n=1
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since t, —t,11 =9, 4., Al/MABH everywhere, and t,(z) — cp(z)f(z) = g(w) for
every z € X. Thun /, 1= a fupd&Mmental sequence in S(W,C) converging poiniwise
to the function g. Heme y & E‘ and ,Tg = limy, Jt, = lim, [ t,. But, since |ty| /]
a.e. for every n ¢ N, hy the Birong Dominated Convergence Theorem we have

g€ Land ft,—> [y Hn ?jifp. Notice that fe LC A=M(V,C)and f =g
a.e. Therefore f ¢ [, MnFééVQ!ff = [ ¢ and jf = [g. Hence Jf= ff |

Proposition 6.17 I'he sninpaslle functor Go F is the identity functor of the cate-
gory DIS.

Proof.  We need tu veilfy that (G o F)(X,C,A,L,f) = (X,C,A,L,[) and
(G o F)(¢) = ¢ for evary Dirac Integral Space (X,C,4,L,[) and every DIS-

morphism ¢ in the entegiry DIS,

x, e " (v —S s (x,0,Mv,0),L])
@ F(p)=1¢ G(¢)=¢
Y 1
I G

(‘XI,C,AI,LI,.[‘I) - ("rl,Vl,/‘I) - (‘YI,C,M(VI,C),E,fI)

Let (X,C, A, 1, [') he wny Dirac Integral Space and (X, V,u) be the Lebesgue
Measure Space genviated by it. Let (X,C,M(V,C),L,J) be the Dirac Integral
Space generated by the li-hesgue Measure Space (X, V,u). In Theorem 3.16 we

have proved that A/(1',¢') A. We still have to verify that L =1L and f = [: By
Lemma 6.16 we have 1, « [ and [ f = [ f for every f € L. So it suffices to show

that L C L. Take any function f € L. Then there exists a fundamental sequence
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3, in S(W,C) such that s, converges pointwise to f. From Lemma 6.15 we know

that s, € L for every n € N. Let

and
[}
g(z) =) lsi(z) = sia(2)]
i=1
for every ¢ € X. Then g, is an increasing sequence of real-valued functions in L

converging pointwise to the function g. Moreover, the relations
n
/gn = Z/|8¢—8¢+1|
i=1
o~
= Z/lsi—8i+1[
i=1
n
= X llsi = suall”
i=1

©o
Do llsi = siall” < o0
i=1

IA

show that the sequence [ g, is bounded, where ||s||~= ]|s| Thus, by the Monotone

Convergence Theorem, we get g € L. Notice that

lsnl = o1+ (s2— 1)+ + (80 — 501l
< syl 4 sz — 8|+ + |80 — 8n1]
= |81] + gn-1
< lsil+g
for every n € N, and |s;| + g € L. So by the Dominated Convergence Theorem we
get f € L. Thus L C L. Hence L = L and consequently [ = J.

Let ¢ be any DIS-morphism and ¢:V — V' be the LMS-morphism induced
by it. Let ¢ be the DIS-morphism induced by the LMS-morphism ¢. We need to
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show that @ — . It hiaa heen shown in the above paragraph that the domadins of
the morphistmin 4 anil ¢ are the same, i.e. M(V,C) = A. Now take any function

f €A Then [ - ww(vg)pey for some u € Comp(V). So

B(f) = uo(cym)per
= uo(p(cr))rev
= @(uo(cp)pev)

= (,O(f),

which shows thnt ¥ = . |

We end thin jmper by stating the concluding Theorem which follows directly

from Propositiona 14 and 0.17.

Theorem 6.18 1'he funetor I7 establishes the isomorphism of the category of

Dirac Integral Spuncea DIS with the category of Lebesgue Measure Spaces LMS.
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