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Abstract. In this paper, we consider the motion of two layers of fluids having different 
viscosity values. The motion is driven by a moving surface, but the bottom is fixed. An exact 
analytical solution for unsteady state cases is not available. Therefore, a numerical method 
should be used for the solution to unsteady state cases of the problem. In this work, we propose 
a finite volume numerical method to find the numerical velocity of the problem. We use the 
Lax-Friedrichs formulation for the flux calculation. Our numerical results show that fluids 
move following the motion of the surface. In addition, the fluid at the top layer moves faster 
than the bottom layer fluid. These behaviour is correct with respect to the physical problem 
under consideration. 

1.  Introduction 
Numerical simulation has been widely used by mathematical modellers to investigate physical 
phenomena. The phenomena is first modelled into a system of equations. The system is then solved 
numerically, as the exact analytical solution is generally difficult to find. 

This paper considers the problem of two layers of fluids moving in one direction. We assume that 
oil layer is on the top of water layer. The two layers are in between a moving surface and a fixed 
bottom. The moving surface has a constant velocity. This problem was introduced by Caldwell and 
Ng [1], who used a finite difference method to obtain its numerical solution. 

In this work, we provide an alternative numerical solver by proposing a finite volume method to 
find the numerical solution to the problem. The finite volume method works well as long as the 
mathematical model can be written in a conservative form. We implement the Lax-Friedrichs 
formulation [2-3] to compute numerical fluxes of the conservative form of the model. Our numerical 
scheme is explicit. As time tends to infinity, the motion of fluids is steady. This is confirmed by the 
exact as well as the numerical solution. The numerical solution agrees quite well with the exact steady 
state solution. 

The rest of this paper is organised as follows. We present the problem formulation in Section 2. 
Numerical method is proposed in Section 3. We provide numerical results in Section 4. The paper is 
concluded in Section 5. 

2.  Problem formulation 
This section introduces the equations for the motion of the two-layer fluids.  

Consider two horizontal plates with a distance of 10 cm and between those two plates there are oil 
and water layers, as shown in Figure 1. The top plate moves to the right with a constant velocity. The 
bottom plate is fixed. We assume that starting at time 𝑡 = 0, the top plate moves with constant 
velocity 7 cm/s. 

http://creativecommons.org/licenses/by/3.0
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Figure 1. Two plates spaced 10 cm apart. 

 
 

This problem has been modelled mathematically by Caldwell and Ng [1] as: 

∂𝑣&'()*
𝜕𝑡

= 𝜇&'()*
𝜕-𝑣&'()*
𝜕𝑥-

	, (1) 

and 
𝜕𝑣123
𝜕𝑡

= 𝜇123
𝜕-𝑣123
𝜕𝑥-

	. (2) 

Here 𝑣&'()* 𝑥, 𝑡  is the velocity of water, 𝑣123 𝑥, 𝑡  is the velocity of oil, 𝜇&'()* is the viscosity of 
water, and 𝜇123 is the viscosity of oil. The free variables are time 𝑡 and space 𝑥. The space 𝑥 is the fluid 
height measured from the bottom. At the oil-water interface, we have the following relations: 

𝑣123 = 𝑣&'()*	, (3) 
and 

𝜇123
𝜕𝑣123
𝜕𝑥

= 𝜇&'()*
𝜕𝑣&'()*
𝜕𝑥

	. (4) 

The simulation is conducted to determine the velocity of fluids at any time 𝑡 > 0, especially for a 
large time 𝑡, when the steady state is achieved. 

3.  Numerical method 
In this section we present a complete mathematical model and the finite volume method that we 
propose to solve the problem. 

The mathematical model is given in the following two sets of initial-boundary value problems: 

∂𝑣&'()*
𝜕𝑡

= 𝜇&'()*
𝜕-𝑣&'()*
𝜕𝑥-

, 0 ≤ 𝑥 ≤ 6

𝑣&'()* 𝑥, 0 = 0

𝑣&'()* 0, 𝑡 = 0

𝑣&'()* 6, 𝑡 = 𝑣123 6, 𝑡

𝜇123
𝜕𝑣123
𝜕𝑥 89:

= 𝜇&'()*
𝜕𝑣&'()*
𝜕𝑥 89:

 

 

(5) 
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𝜕𝑣123
𝜕𝑡

= 𝜇123
𝜕-𝑣123
𝜕𝑥-

, 6 ≤ 𝑥 ≤ 10

𝑣123 𝑥, 0 = 0

𝑣123 10, 𝑡 = 7

𝑣123 6, 𝑡 = 𝑣&'()* 6, 𝑡

𝜇123
𝜕𝑣123
𝜕𝑥 89:

= 𝜇&'()*
𝜕𝑣&'()*
𝜕𝑥 89:

 (6) 

The problem (5) and (6) can be solved separately, because there are some conditions that relate to each 
other. 

In order to use the finite volume method, we rewrite equations (5) and (6) as: 

∂𝑣&'()*
𝜕𝑡

− 𝜇&'()*
𝜕-𝑣&'()*
𝜕𝑥-

= 0	, (7) 

  
∂𝑣123
𝜕𝑡

− 𝜇123
𝜕-𝑣123
𝜕𝑥-

= 0	. (8) 

Therefore, we have 

∂𝑣&'()*
𝜕𝑡

−
𝜕
𝜕𝑥

𝜇&'()*
𝜕𝑣&'()*
𝜕𝑥

= 0	, (9) 

  
∂𝑣123
𝜕𝑡

−
𝜕
𝜕𝑥

𝜇123
𝜕𝑣123
𝜕𝑥

= 0	. (10) 

In compact forms, we write equations (9) and (10) as 

𝑣&'()*> + −𝜇&'()*𝑣&'()*@ 8
= 0	, (11) 

  
𝑣123> + −𝜇123𝑣123@ 8

= 0	. (12) 

Equations (11) and (12) are in the form of conservation laws, that is, in their conservative forms: 

𝑣&'()*> + 𝑓(𝑣&'()*)8 = 	0	,  (13) 
  

𝑣123> + 𝑓 𝑣123 8 = 0	. (14) 

where 𝑓 𝑣&'()* = −𝜇&'()*𝑣&'()*@ and 𝑓 𝑣123 = −𝜇123𝑣123@ respectively. 

Equation (13) is solved using the finite volume method with an explicit numerical scheme: 

𝑉&'()*E
FGH = 𝑉&'()*E

F −
∆𝑡
∆𝑥

𝐹&'()*EGH-
F − 𝐹&'()*EKH-

F . (15) 
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Here, 

𝑉&'()*E
F ≈ 𝑣&'()* 𝑥E, 𝑡F    and   𝐹&'()*EGH/-

F ≈ 𝑓(𝑣&'()*(𝑥EGH/-, 𝑡F)) 

are the conserved quantity and the flux function, respectively. Here ∆𝑡 is time step and ∆𝑥 is space 
step, 𝑖 is notation for the space index and 𝑛 is notation for the time index. To compute fluxes in 
equation (15), we use the Lax-Friedrichs formulation: 

𝐹&'()*HK	H-
F =

𝐹&'()*E
F − 𝐹&'()*EKH

F

2
−
∆𝑥
2∆𝑡

𝑉&'()*E
F − 𝑉&'()*EKH

F 	, (16) 

and  

𝐹&'()*HG	H-
F =

𝐹&'()*EGH
F − 𝐹&'()*E

F

2
−
∆𝑥
2∆𝑡

𝑉&'()*EGH
F − 𝑉&'()*E

F 	. (17) 

Analogously, equation (14) is solved using the finite volume method with an explicit scheme: 

𝑉123E
FGH = 𝑉123E

F −
∆𝑡
∆𝑥

𝐹123EGH-
F − 𝐹123EKH-

F 	. (18) 

To compute fluxes in equation (18), we use the Lax-Friedrichs formulation: 

𝐹123HK	H-
F =

𝐹123E
F − 𝐹123EKH

F

2
−
∆𝑥
2∆𝑡

𝑉123E
F − 𝑉123EKH

F 	, (19) 

and 

𝐹123HG	H-
F =

𝐹123EGH
F − 𝐹123E

F

2
−
∆𝑥
2∆𝑡

𝑉123EGH
F − 𝑉123E

F 	. (20) 

The finite volume schemes (15)-(17) and (18)-(20) are iterated with consideration of the initial and 
boundary conditions given in equations (5)-(6). The iterations result in numerical solutions for the 
fluid velocities. Note that another approach of finite volume method is available, for example, the 
relaxation system [4-6], but it doubles the number of equations to be solved. Our finite volume method 
in this paper is simpler than those relaxation approach. 

4.  Numerical results 
In this section we present some representatives of our numerical results. The numerical results are 
compared with a known analytical exact solution. 

As the benchmark, we recall the analytical exact solution obtained by Caldwell and Ng [1] as 
follows. First considering 

QRSTUVWX
Q8R

= 0	,	 0 ≤ 𝑥 ≤ 6	, (21) 

with 

𝑣&'()* 0 = 0	, (22) 

we get 
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𝑣&'()* 𝑥 = 𝐴𝑥 + 𝐵	. (23) 

Because 𝑣&'()* 0 = 0	, then 𝐵 = 0. Equation (23) becomes: 

𝑣&'()* 𝑥 = 𝐴𝑥	,	 0 ≤ 𝑥 ≤ 6	. (24) 

The steady state case for oil requires 

QRS[\]
Q8R

= 0	,	 6≤ 𝑥 ≤ 10	, (25) 
with 

𝑣123 10 = 7	, (26) 
  

𝑣123 6 = 𝑣&'()* 6 	, (27) 
  

𝜇123
𝜕𝑣123
𝜕𝑥 89:

= 𝜇&'()*
𝜕𝑣&'()*
𝜕𝑥 89:

		. (28) 

Then we get: 

𝑣123 𝑥 = 𝐶𝑥 + 𝐷	,	 6≤ 𝑥 ≤ 10	. (29) 

The conditions (26) and (27) lead to 

10𝐶 + 𝐷 = 7	, (30) 
  

6𝐶 + 𝐷 = 6𝐴	. (31) 

Because  `S[\]
`8

= 𝐶  and  `STUVWX
`8

= 𝐴, we write 

𝜇123(𝐶) = 𝜇&'()*(𝐴). (32) 

Equation (30)-(32) can be solved to obtain: 

𝐴 =
7𝜇123

6𝜇123 + 4𝜇&'()*
 (33) 

  

𝐶 =
7𝜇&'()*

6𝜇123 + 4𝜇&'()*
 

(34) 

  

𝐷 =
21	(𝜇123 − 𝜇&'()*)
3𝜇123 + 2𝜇&'()*

 (35) 

Finally, the exact steady state solutions are: 

𝑣&'()* 𝑥 = cd[\]
:d[\]GedTUVWX

𝑥	,	 	0 ≤ 𝑥 ≤ 6	, (36) 

  

𝑣123 𝑥 = cdTUVWX
:d[\]GedTUVWX

𝑥 + -H	(d[\]KdTUVWX)
fd[\]G-dTUVWX

		,				 6≤ 𝑥 ≤ 10	. (37) 
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Figure 2. Large time behaviour of velocity of two fluid layers, at time 𝑡 = 100 s. 

 

Numerical setting in this simulation is as follows. We assume that 𝜇&'()* = 1 cp and 𝜇123 = 3 cp. 
The cell width or also known as the space step is ∆𝑥 = 0.1. The time step is ∆𝑡 = 0.001 ∙ ∆𝑥	. The 
simulation is stop at the final time 𝑡 = 100 s. Here we want to see that change of velocity of two-fluid 
layers from 𝑥 = 0 to 𝑥 = 10 when the steady state is achieved. Note that the 𝑥-axis is vertical, instead 
of horizontal. 

Our numerical results show that the numerical method solves the problem successfully. The main 
source of numerical error is at the non-smooth trasition between the oil and water layers, that is, the 
oil-water interface. At this interface, the fluid viscosity is discontinuous. However, we can have 
smaller error if we take smaller cell width and smaller time step. A representative of our numerical 
results is shown in Figure 2. The numerical results is correct physically. The velocity values get larger 
from the bottom to the top surface. This phenomena is identified in both the analytical and numerical 
solutions. 

5.  Conclusion 
We have proposed a finite volume numerical method to solve the problem of two layers of fluids 
driven by a horizontally moving surface with fixed bottom. The numerical method can be used to 
solve both steady and unsteady state problems. Accurate solution can be obtained using a fine 
numerical mesh, that is, fine cell width and fine time step. Our research results are limited to one-
dimensional problems. Future research direction could be an extension to higher dimensional 
problems. 
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