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Abstract. Financial modeling is conventionally based on a Brownian motion (Bm). A Bm is a 

semimartingale process with independent and stationary increments. However, some financial 

data do not support this assumption. One of the models that can overcome this problem is a 

fractional Brownian motion (fBm). In fact, the main problem in option pricing by implementing 

an fBm is not arbitrage-free. This problem can be handled by using a mixed fBm (mfBm) to 

model stock prices. The mfBm is a linear combination of an fBm and an independent Bm. The 

aim of this paper is to find European option pricing by using the mfBm based on Fourier 

transform method and quasi-conditional expectations. The main result of this research is a closed 

form formula for calculating the price of European call options. 

1.  Introduction 

The Black-Scholes formula is a formula for calculating option prices based on geometric Bm. A Bm is 
a centered and continuous Gaussian process with independent and stationary increments. The existence 

of long-range dependence in stock returns has been an essential topic of both empirical and theoretical 

research. If stock returns show long-range dependence, the time series is said to depend on time to time 
for a long lag. This is the case of an fBm. Long-range dependence in stock returns has been tested in a 

number of studies, for example [1–6]. 

Kolmogorov introduced an fBm in 1940. Mandelbrot and Van Ness gave a representation theorem 

for Kolmogorov’s process and introduced the name of fBm in  [7]. The fBm has further been developed 
by Hurst in [8]. Currently, an fBm has an important part in assorted fields of study such as hydrology 

[8,9], insurance [10,11] and finance [12–14].  

The stochastic integral in an fBm is different from the classical Itô integral because the fBm is not a 

martingale. Duncan et al [15] introduced a Wick product for the fractional Itô's formula. They also 
introduced Girsanov’s theorem under the fBm. The option model under the fBm is arbitrage-free 

[16,17], if the Wick product is applied on the definition of stochastic integration. Hu and Oksendal [16] 

obtain a pricing formula for a European call option at 0t  . Necula [18] extended the formula in [16] 

to ,[ ]0t T . Moreover, Necula proved some results regarding quasi-conditional expectations by using 

Fourier transform. 

The European call option pricing formula obtained in [16] is an arbitrage-free and complete market. 

However, Bender and Elliott [19] and Bjork and Hult [20] still saw a possibility of arbitrage 

http://creativecommons.org/licenses/by/3.0
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opportunities in the resulting model in [16]. Cheridito [21] and Bender et al. [22] proposed an mfBm to 

reduce arbitrage opportunities. An mfBm is a linear combination of an fBm and an independent BM. 

Cheridito [23] has proven that an mfBm is equivalent to a Bm for  3
4
,1H  , therefore it can be said 

that the option model under an mfBm is an arbitrage-free. The aim of this paper is to obtain the pricing 

formula for European call options where a stock return is modeled an mfBm.  

2.  Mixed fractional Brownian motions 

Let H be a constant belonging to (0, 1). An fBm  ; 0H H

tB B t  of Hurst index H is a continuous and 

centered Gaussian process with covariance function,  

  2 2 21
,

2

H H HH H

t sB B t s t s         (1) 

for all , 0t s  , see [24]. Here    denotes an expectation with respect to a probability measure .H

Properties  of fBm, see [24], are 

 mean of an fBm is 0; 

 variance of an fBm is 
2Ht  for 0t  ; 

 an fBm has stationary increments, i.e., 
d

H H H
t s s tB B B    for all , 0t s  ; 

 an fBm is H-self similar, i.e., 
d

H H H

t tB B    for 0t  ; 

 an fBm has continuous trajectories. 

If  1
2
,H   then an fBm coincides with a standard Bm. The Hurst index H determines the sign of the 

covariance of the future and past increments. This covariance is negative when  1
2

0,H ,  zero when 

1
2

H  , and positive when  1
2
,1H . As a consequence, for  1

2
0,H  it has short-range dependence 

and for  1
2
,1H  it has long-range dependence. 

An fBm is neither a semimartingale nor a Markov process unless 1
2

H  . When H is not equal to ½, 

the option model has arbitrage opportunities. An mfBm is introduced by Cheridito [23], to avoid 

arbitrage opportunities. An mfBm of parameter H, a, and b is a stochastic process  ; 0H H

tM M t   

defined in [25] as follows  

 H H
t t tM aB bB    

where H

tB  is an fBm with Hurst index H and 
tB  is an independent BM. 

3.  Quasi-conditional expectations 
We will present some results regarding a quasi-conditional expectation in this section which is needed 

for the rest of this paper. These results were introduced by Necula [18] and then developed by Sun [14] 

and Xiao et al [13] for an mfBm. The proofs of theorems in this section can be seen in [13]. Let 

 , ,H H  be a probability space such that H

tB  is an fBm with respect to H  and 
tB  is an independent 

BM. 

Theorem 1 [13]. For every (0, )t T  and ,    we have  

       2 2 2 2 21 1
2 2

exp expH H H H

T T T

H

t TB B B B T t T t             
 

,  

where 
H

t  is a σ-algebra generated by  ;0H

sB s t   and H

t
 
 

 denotes a quasi-conditional 

expectation with respect to 
H

t  under a probability measure .H
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Using Theorem 1, one can determine a quasi-conditional expectation of a function of an mfBm as 
shown in the theorem below. 

Theorem 2 [13].  Let  f  be a function such that  , .H

T Tf B B   
 

 Then, for every (0, )t T  and 

,    we have  

  

 
    

    

2

2 2 2 2 2

2 2 2 2 2

exp
2

( ) .

2

H

t t

H H

H

T T
H

H

t
H

y B B

T t T t
f B B f y dy

T t T t

 

  
 

   

   
 
   
   

 
  

   

If f is an indicator function,   1 ( )Af y y , then we can easily obtain a corollary below. 

Corollary 3 [13].  Let ( ).A  Then,  

   

 
    

    

2

2 2 2 2 2

2 2 2 2 2

exp
2

1 .

2

H

t t

H H

H

A T T
H H

A

H

t

y B B

T t T t
B B dy

T t T t

 

  
 

   

   
 
   
   

 
  

   

Let ,   and [0, ]t T , consider the process, 

 * * 2 2 2 .H H H

t t t tB B B t B t            (2) 

From a fractional Girsanov theorem in [24], there exists a probability measure *H  such that 
* *H

t tB B    is a new MFBM. We will denote * H

t
 
 

 as a quasi-conditional expectation under the 

probability measure 
*.H

 Now, we have defined the process 

  2 2 21 1
2 2

( ) exp H H

t tZ t B t B t        ,  (3) 

where [0, ]t T . 

Theorem 4 [13].  Let f be a function such that  , .H

T Tf B B   
 

 Then, for every [0, ]t T  we have  

    * 1
( ) .

( )

H H H H

T T t T T tf B B f B B Z T
Z t

        
   

  (4) 

Theorem 4 illustrates a relationship between a quasi-conditional expectation H

t
 
 

 with respect 

to H  and a quasi-conditional expectation * H

t
 
 

 with respect to 
*.H

 Based on Theorem 4, a 

discounted expectation of a function of an mfBm is calculated in the theorem below. 

Theorem 5 [13].  The price at time [0, ]t T  of a bounded -H

t
measurable claim 2( )HV L  is given 

by  

 
( )r T t H

t T tV e V   
 

,  (5) 

where r is a constant riskless interest rate. 

4.  Results and discussion 
The aim of this section is to determine a formula for calculating European call option prices. Now let us 
consider a mixed fractional Black-Scholes market with two investment possibilities: 

 A bank account which satisfies a differential equation below 

 0, 1, [0, ],t tdA rAdt A t T     (6) 
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where r is a constant riskless interest rate. 

 A stock which satisfies a stochastic differential equation below 

 0, 0, [0, ],ˆ ˆ
t t t t

H

ttd TS S dB S dB S tS dt         (7) 

where H

tB  is an fBm and tB  is a Bm with respect to ˆ
H

,  is an appreciation rate, and  is a 

volatility coefficient.  

By using change of variable ˆ ˆH H

tt t tB B r B B         , then under a risk-neutral measure, we 

have  

 
0, 0, [0, ].H

tt t t t tdS S dB S dB r d SS t t T        (8) 

Furthermore by using a Itô formula in [24], we obtain a solution of (8) as 

  2 2 21 1
0 2 2
exp .H

t

H

ttS S B B t t rt          (9) 

The price of a European option at time t with an expire date T and a strike price K is denoted ( , ).tC t S

We present a formula for a call option pricing under MFBM in the theorem below. 

Theorem 6. Suppose a stock price tS  defined by (9), then the price at time [0, ]t T  of a European call 

option with an expire date T and a strike price K is given by 

 ( )

1 2( , ) ( ) ( )r T t

t tC t S S N d Ke N d   ,  (10) 

where 

 

   

   

2 2 2 21 1
2 2

1
2 2 2 2

ln ( )

,

H H t

H H

S
T t T t r T t

K
d

T t T t

 

 

 
      

 


  
  (11) 

 

   

   

2 2 2 21 1
2 2

2
2 2 2 2

ln ( )

,

H H t

H H

S
T t T t r T t

K
d

T t T t

 

 

 
       

 


  
  (12) 

( )N   is a cumulative probability function of a standard normal distribution. 

Proof: Motivated from Theorem 5, the call option with an expire date T and a strike price K is 

theoretically equivalent to 

 
( )( , ) max{ ,0}r T t H

t T tC t S e S K   
 

  

    
( ) ( )1 1 .

T T

r T t r T t

T S K S

H H

t tK
e S Ke   

 
    
   

  (13) 

Meanwhile option holders would exercise the option only when TS K . Solving (9) on this boundary, 

we have 

 2 2 21 1
2 2

0

ln .H

T

H

T

K
B B T T rT

S
   

 
     

 
   

Let 

 * 2 2 21 1
2 2 2

0

ln .H K
d T T rT

S
 

 
    

 
   (14) 

Using Corollary 3 and applying (14) on the second of the RHS in (13), we have 

      *
2

1 1
T

H H H

t T T tS K x d
B B 

 

    
    

 

    

 
    *

2

2

2 2 2 22 2 2 2

e p
22

1
x

H

t t

H HH H
d

y B B
dy

T t T tT t T t
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*
2

2 2 2 2

21
1 exp

22

H
t t

H H

T

B B d

T t T t

H

tS K

z
dz

 

 



 

  





 
     

 
   

 2( ),N d  (15) 

where 

    

*

2
2

2 2 2 2

H

T T

H H

B B d
d

T t T t

 

 

 


  

. Furthermore, (9) can be written as  

 2 2 21 1
2 2

0

ln .H H t
t t

S
B B t t rt

S
   

 
    

 
  (16)  

Hence, using (14) and (16) on d2, we have  

 

   

   

2 2 2 21 1
2 2

2
2 2 2 2

ln ( )

.

H H t

H H

S
T t T t r T t

K
d

T t T t

 

 

 
       

 


  
   

Let us consider a process 

 * * 2 2 2 ,H H H

t t t tB B B t B t            (17) 

for [0, ]t T . The fractional Girsanov theorem assures us that there is a probability measure  *H  such 

that * *H

t tB B   is an new mfBm under *H .  We will denote 

  2 2 21 1
2 2

exp H H

t t tZ B t B t         (18) 

By using Theorem 4 and (18) on the first of the RHS in (13), we have 

 

 

 
 

 

   

   

2 2 21 1
2 2

*
2

*
2

0

0

0

*

0

1 1

1

1

1

H H
T T

T T

T

B T BH rT H

T t tS K S K

rT H

T tS K

rT H H

T T T ty d

rT H H

t T T ty

T

d

S S e e

S e Z

S e Z B B

S e Z B B

   

 

 

  

 







   
    

 
 

  
  

  
  

  

  
*

0 1
T

rT H

t tS K
S e Z


 
 

  (19) 

By substituting (17) into (9), we obtain  

  * * 2 2 21 1
0 2 2
exp .H H

t t tS S B B t t rt          (20) 

Solving (20) in time T for the boundary TS K , we have 

 * * 2 2 21 1
2 2

0

ln .H H

T T

K
B B T T rT

S
   

 
      

 
  

If we denote 

 * 2 2 21 1
1 2 2

0

,lnH K
d T T rT

S
 

 
     

 
  (21) 

we get 

     *
1

* * * *1 1
T

H H H

t T T tS K y d
B B 
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    *

1

2
* *

*

2 2 2 22 2 2 2

1
1 exp

22
T

H

t tH

tS K H HH H
d

y B B
dy

T t T tT t T t

 

   





  
    

         

   

 

 

   

* * *
1

2 2 2 2

21
exp

22

H
t t

H H

B B d

T t T t

z
dz

 

 



 

  



 
  

 
   

 1( ),N d    (22) 

where 

   

* * *

1
1

2 2 2 2

H

t t

H H

B B d
d

T t T t

 

 

 


  
. Subsequently, (20) can be written as 

 * * 2 2 21 1
2 2

0

ln .H H t
t t

S
B B t t rt

S
   

 
      

 
  (23) 

Substituting (21) and (23) on d1, we get  

   

   

   

2 2 2 21 1
2 2

1
2 2 2 2

ln ( )

.

H H t

H H

S
T t T t r T t

K
d

T t T t

 

 

 
      

 


  
 

Substitution of  (22) into (19) yields 

 
 

 

0 1

2 2 21 1
0 12 2

1 ( )

exp ( )

T

H rT
T t tS K

rT H H
t t

S S e Z N d

S e B B t t N d   


 
 

  




   

 ( )
1( ).r T t

te S N d   (24) 

Finally, from (13), (15) and (24) we obtain 

 
  ( ) ( ) ( )

1 2

( )
1 2

, ( ) ( )

( ) ( ).

r T t r T t r T t
t t

r T t
t

C t S e e S N d Ke N d

S N d Ke N d

    

 

 

 
  

   

FIGURE 1. Price of option on 

Hurst vs strike price at T=0.25. 

FIGURE 2. Price of option on 

Hurst vs strike price at T=1. 

FIGURE 3. Price of option on 

Hurst vs strike price at T=5. 

 

The formula in Theorem 6 allows us to determine a fair price for a European call option in terms of 

an expire date  T, a strike price K, an initial stock price S0, a risk-free interest rest r, and a stock volatility 

.  Let S = 100, K  (0,200), H  (0,1), r = 0.05, and  = 0.3. When T = 0.25, T = 1, and T = 5, we get 

Figure 1, 2 and 3 respectively. We see that when K  200 and H  0 the price decreases significantly 

in Figure 3. 
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FIGURE 4. Price of option on 

Hurst vs volatility at T=0.25. 

FIGURE 5. Price of option on 

Hurst vs volatility at T=1. 

FIGURE 6. Price of option on 

Hurst vs volatility at T=5. 

 

Let S = 100; K = 100; r = 0.05,   (0, 1)  and H  (0, 1). If T = 0.25 we obtain Figure 4 which is 

concave upward. The price increases significantly when   1 and H  0. If T = 1 we obtain Figure 5 

which is more linear and as the volatility increases for all Hurst parameters the price increases. If T = 5 

we obtain Figure 6 which is concave down and we see that the prices increase significantly with high 

Hurst index and high volatility. Overall, as T,  and H increase, the price increase in rate and magnitude. 

5.  Conclusion 

In this paper, to exclude arbitrage opportunities in an fBm model and to capture long-range dependence, 

stock returns are modeled with an mfBm. By using Fourier transformation method and quasi-conditional 

expectation theory, we get a formula for calculating a price of European call options. This formula can 

be used by investors to predict option prices for stocks that have long-range dependence.  
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