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Abstract. In this paper we present a new result on an analytical study of stochastic logistic 

equations of Richards-type for population growth. First, we introduce the Richards equation as 

a generalization of the classical Verhulst equation which allows a flexibility in the sigmoid shape 

of the solution curve. Next, the stochastic equation is formed by adding a multiplicative  white 

noise in the corresponding deterministic Richards equation. Our goal is to solve the stochastic 

Richards equation and investigate some of the qualitative properties of the solution. As a main 

result, an exact expression for the solution of the stochastic Richards equation is obtained by 

using tools from the Itô calculus. Some qualitative aspects of the solution, such as long time 

behavior and noise-induced transition, will be also discussed within the framework of diffusion 

processes theory. We also give a simulation of the solution of the stochastic Richards equation 
to illustrate the role of the so-called allometric parameter. 

1.  Introduction 

One of the most famous model in population dynamics is the logistic equation which was first proposed 

by P F Verhulst in 1838. It has been extensively studied due to its theoretical and practical significance. 

The logistic equation, also known as the Verhulst equation, is given by the ordinary differential equation

   
 

1 ,
N t

dN t rN t dt
K

 
   

 
 where ( )N t  is the population size (number of individuals in the 

population) at time t, r is the intrinsic growth rate, and 0K   is the carrying capacity/saturation level. 

This equation is also sometimes called the Verhulst-Pearl equation following its rediscovery by R 

Pearl in 1920’s. See references [1–3], among others, for further information on the subject of 

mathematical population dynamics. In 1959, F J Richard in [4] proposed the following modification of 

the logistic equation to model growth of biological populations: 

 

   
 

1
N t

dN t rN t dt
K

  
        

  

 

   (1) 

with the initial condition   00N N . Here we assume that 00 .N K  The allometric parameter 0   

provides a measure of flexibility in the curvature of the sigmoid shape exhibited by the resulting solution 

curve. In other words,   is the exponent of deviation from the standard logistic curve. The Richards 

equation is interesting for modeling purposes, as it allows the modeler to adjust the value of  to be as 

close as possible to its observations. Note that (1) is a Bernoulli equation of order   1   and the solution 

is given by 
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   

1

0

1 1 exp
K

N t K rt
N

 




   
      
     

  

 

   (2) 

It is obvious that for the case 1   (2) reduces to the solution of the Verhulst equation. The equation 

(1) possesses two equilibrium solutions:   0N t   which is unstable and  N t K  which is 

asymptotically stable. The long time behavior of the solution is given by  lim
t

N t K


 . For a more 

comprehensive study on (deterministic) logistic-type models including Verhulst and Richards equations, 

we refer to [5] and references therein. The aim of the present paper is to solve a stochastic version of 

equation (1) and to study some of the qualitative properties of the solution of (1).  

2.  Stochastic Richards Equations 
Population dynamics is better understood when we incorporate the influence of the uncertainty/random 
factors which cannot be determined in advance, such as natural disasters (flood, fire, volcano eruption, 
earthquake, and so on), diseases, predation, hunting, and many others. A mathematical idealization for 
these external random perturbations is the so-called white noise. In the applied science white noise is 
commonly taken as the time derivative of the Brownian motion. It is natural to assume that the strength 
of the noise is proportional to the population size. Hence, we construct the stochastic Richards model 
by inserting the multiplicative noise term in the deterministic model (2) to obtain a randomized equation 

   
 

 1     .
N t

dN t rN t dt noise N t dt
K




  
        

  

In the following we shall write tN   instead of  N t  to emphasize that tN  is, in general, no longer a 

deterministic function but a random variable. Now, we view the noise as the Gaussian white noise which 

is tdB

dt
and we get the stochastic differential equation in the Itô sense 

 

1 ,t
t t t t

N
dN rN dt N dB

K




  

        

  
 

   (3) 

where   is the diffusion coefficient which measures the size of the fluctuation of the noise. A stochastic 

Richards equation, which substantially differs from our equation (3), has been introduced and studied 

in [6–8]. The equation considered in those works contains quadratic random part and, hence, cannot be 

solved explicitly within the Itô interpretation. Thus, the focus of study was on the qualitative behavior 

such as existence, uniqueness, and stability of the solution. 

To solve stochastic differential equation (3) we need some results from Itô’s stochastic calculus 

which will be summarized below. For more details and proof see for example [9,10]. First, recall that a 

stochastic process  
0t t

X


 is called adapted if there exists a filtered probability space   0
Ω, , ,t t

  

such that for each 0t   the random variable tX  is defined on  Ω, ,   as well as t -measurable. In 

the rest of paper by  we denote the expectation with respect to the probability measure . An adapted 

stochastic process    0,t t T
X


 is called an Itô process if it can be written in the form 

    0 0 0

0 0

  ( ) ,    ,   0,

t t

t sX X b s ds s dB X x t T        

where b  and   are adapted stochastic processes satisfying  
0

   

T

b s ds and  
2

0

   

T

s ds  . The 

covariation of two Itô processes 
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        0 0

0 0 0 0

  and         

t t t t

t s t sX x b s ds s dB Y y d s ds s dB            

is the stochastic process  
 0,

,
t t T

X Y


 where    
0

,   . 

t

t
X Y s s ds ∶ The process ,:

t t
X X X  is 

called the quadratic variation of X.  

Theorem 1 [9,10]. If    0,t t T
X


  is an Itô process and

1,2 ([0, ] ),F C T   then 

          
2

0 2

0 0 0

1
, 0,   , , , .

2

T T T

T t t t t t t

F F F
F T X F X t X dX t X dX t X d X

x t x

  
   

       

 

Let [0, ]I T  or [0, )I   . Consider a stochastic differential equation 

                                             0 0, , ,     ,  t t t tdX b t X dt t X dB X x t I                                           (4)  

or in the integral form 

 
   0

0 0

, , ,   .

t t

t s s sX x b s X ds s X dB t I      
    

  (5) 

The first integral is the usual Lebesgue integral while the second is the Itô integral. A continuous 

stochastic process  t t I
X


 is called a solution of the equation (4) in the interval I if, for all t I , it 

satisfies (5) with probability one. A linear stochastic differential equation is an equation of the form 

          1 2 1 2 0 0,   ,t t t tdX a t X a t dt b t X b t dB X x         (6) 

where ia  and  1,2ib i   are deterministic function, bounded on every finite interval  0,T . If ia  and 

 1,2ib i   are constants, then (6) is called autonomous; if 0i ia b   then it is called homogeneous.  

Theorem 2 [9]. The stochastic process 

       1 1
0 2 1 2 2

0 0

Φ ( ) Φ   Φ ,   0,

t t

t t s s sX x a s b s b s ds b s dB t 
 

     
 
 

   

where      2
1 1 1

0 0

1
Φ  

2
:

t t

t sexp a s b s ds b s dB
  

       
   is the solution of the linear stochastic differential 

equation (6). 

3.  Results and Discussion 
This section contains the main results of this paper. The first result is the derivation of the exact solution 
of the stochastic Richards equation. 

Theorem 3. The solution of the stochastic Richards equation (3) is given by 
1

2 20
0

0

1 1
exp 1 exp

2 2

t

t t s

N
N N r t B r r s B ds

K

 

     


         

                         
 . 

 

Proof:  Let : t
t

N
X

K
 . Then, we obtain  1t t t t tdX rX X dt X dB     with the initial condition

0
0

N
X

K
 .  Let  , :F t x x   and, hence 

 2

1 2 2

1
,  , and   0.

F F F

x tx x x 

 
 

  
   

 
 The quadratic 
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variation of tX  is given by 2 2

0

t

st
X X ds   which means 2 2 .ttt

d XX dt  By using the notation 

 :t tY X   and applying Itô formula (Theorem 1) we obtain 

 
 

  2

1 2

11 1
  1 .

2 2
t t t t t t

t t

dY dX dX r Y r dt Y dB
X X 

 
     

 

   
         

  
  

This is a linear stochastic differential equation with integrating factor 

21
Φ exp .

2
t tr t B  

  
    

  
 Therefore, by Theorem 2, the solution of the linear stochastic 

differential equation in tY  is 

 2 2
0

0

1 1
exp exp .

2 2

t

t t sY r t B Y r r s B ds      
          

                          
   

Rewriting the last expression in term of tX  yields 

 

1

2 2

0
0

1 1 1
exp exp

2 2

t

t t sX r t B r r s B ds
X

 

     


                       
           

   

Finally, the solution of (3) is given by 

               

1

2 20
0

0

1 1
exp 1 exp

2 2

t

t t s

N
N N r t B r r s B ds

K

 

     


         

                         
       (7) 

The proof is complete. ■   

Note that if we let 0   in (7), then it is easy to see that (7) reduces (2). This fact means that when 

the random influence in the stochastic Richards model is very small, it is negligible and it suffices to 

work with the deterministic model. 

Now we want to compute the approximate mean and approximate variance of the solution process

 
0t t

N


.  Note that tN   in (7) can be expressed as  

1

1
1 10

0
0

.Φ 1 Φ
t

t t s

N
N N r ds

K

 

 



 
  

       
   Since 

the randomness of the tN  is encoded in the term
1 , it is quite natural to approximate the mean of tN  

by the one of 
1 . Since the random variable tB  is normally distributed with mean zero and variance 

t , we have 

 1 21
Φ exp

2
t tr t B  

    
           

 2 2 21 1
exp exp

2 2
tr t B



 
     

      
     

 exp .r t  

Hence, 

   

 

1 1

1

0 0

10 0

0 0

Φ exp
( )

1 (Φ ) 1 exp

t

t
t t

s

rt
N N N

N N
r ds r rt ds

K K

 

 



  





   
   
    
   

   
          

      
 
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                          

11
2

0 0
0

0

1 exp 1 exp 1
N N K

N rt K rt
K K N

  

 


                                         

. 

Then, the approximate long time behavior of the solution is described by lim ( ) .t
t

N K


  This means 

that, in average, the population size converges near to the carrying capacity. By a similar argument, we 

compute the variance of tN . Note that 

            
2 21 2 2 1

Φ exp 2 2 exp 2 exp 2
2

t t tr t B r t B



                
    

 

                                       2 2 2 2exp 2 exp 2 exp 2tr t B r t


       . 

As a consequence 

          1 2 2Var Φ exp 2 exp 2 ) exp(2 exp 1 .t r t rt rt c t            

Therefore, 

     

   

1 1

1 2

0 0

1 20 0

0 0

Var Φ exp 2 (exp 1)
Var( )

1 Var(Φ ) 1 exp 2 (exp 1)

t

t
t t

s

rt c t
N N N

N N
r ds r rt c t ds

K K

 

 

 

   





   
   
    
   

   
           

      
 

     

              
 

   

1

2

2

2 2
0

exp 1

1 1
exp 2 exp

2 22 2

t
K

K r r
rt t

N r r







 
 

 
 
 
 

              
       

 . 

       In the following we simulate the solution of the stochastic Richards equation by using the Euler-

Maruyama scheme in MAPLE. The goal is to compare the behavior of the stochastic Richards equations 

with different allometric parameters. We set 0
20N  , 0.5r  , 400K  , and 0.01  . The horizontal 

axis represents time ( t ) and the vertical axis represents the size of population ( t
N ). 

 

Figure 1. Simulation of the 

solution of the stochastic 

Richards equation with 0.3   

 

Figure 2. Simulation of the 

solution of the stochastic 

Richards equation with 1  

 

Figure 3. Simulation of the 

solution of the stochastic 

Richards equation with 3  
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In the simulations above we see that the stochastic solutions fluctuate around the deterministic 

solutions. It is also possible for stochastic solutions to have values above the carrying capacity due to 

the incessant and irregular movement of Brownian motion. Of course, the value of  should not too big, 

otherwise the stochastic solutions will be very wild and deviate largely from the deterministic solutions. 

As we can see above Richards curve for 3   is steeper than Verhulst curve (Richards curve for 1 

) which is in turn steeper than Richards curve for 0.3  . Hence, the values of  determine the shape 

and steepness of the solutions curve (both in the case of deterministic and stochastic) as well as the speed 

of convergence to the equilibrium solution .
t

N K  

Next, we shall discuss some qualitative aspects of the solution of the stochastic Richards equation. 

We recall some basic notions from the diffusion processes theory and refer to [11,12] for details. A 

solution X of the stochastic differential equation (4) is called a diffusion process. The coefficients b and 

 are called the drift and diffusion coefficient of process X, respectively. If the b and  do not depend 

on t, X is called a (time)-homogeneous diffusion process. In order to emphasize the dependence of X on 

the initial point x, we denote it ,xX  and by a diffusion process X we mean the whole family of solutions 

 ,xX x . Any diffusion process X  is a Markov process and its transition density function will be 

denoted by ( , , )p t x y . The generator of a homogeneous diffusion process  xX X  is the operator A

defined by   
   

0
lim , 

x
t

t

f X f x
Af x x

t


  on a set of real-valued function .f    

A stationary density of a diffusion process X with transition density  , , ,   0, ,p t x y t x y   is a 

density function  0 , p y y , satisfying the equation      0 0, , ,   0,   .p y p t x y p x dx t x    In 

fact, under rather general conditions, the stationary density of a diffusion process has a certain attraction 

property: the distribution of a diffusion process 
x
tX  starting from any initial point x eventually stabilized 

in the sense that the density of 
x
tX  becomes close to the stationary one. Precisely speaking, as t   

we have    0, , ,  , .p t x y p y x y   The sample paths of a diffusion process X may have a certain 

closedness with respect to some interval  ,a b  : starting at any point  ,x a b , it stays in  , a b

forever. Then, a  and b  are called unattainable boundaries of X. For the solution (7) of the Richards 

equation (3) such interval is  0, . In such a situation, it makes sense to consider the stationary density 

in the interval  , a b .  

A diffusion process X with transition density  , ,p t x y is said to have a stationary density 0p  in the 

interval  , a b if    , , 1,    0,  ,

b

a

p t x y dy t x a b   and        0 0, , ,   0,   , .

b

a

p y p t x y p x dx t y a b     

There are two types of unattainable boundaries of diffusion process. In the first case 
x
tX a , or 

x
tX b  as t  ; then a  and b  is called an attracting boundary of  X. In this case, X  has no stationary 

density in the interval  , a b  since the limit distribution of the process is concentrated at point a  or b . 

In the other case, the process
xX , when started at any point  ,x a b , infinitely often visits all points of 

the interval  , a b ; then a  and b  are called the natural boundaries of X. 

Proposition 4 [11,12]. Let X  be a diffusion process with generator A  and transition density 

 , ,p p t x y  which has a  stationary density  0 0
 p p y in the interval  , a b  . Suppose that p  and 0

p
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are continuous functions having continuous partial derivatives 
22

0 0

2 2
, , , ,  .

p pp p p
and

t y y y y

   

    
 Suppose 

also    0, ,x x a b   . Then, the stationary density 
0

p   of  X  is of the form 

  
 

 
 

 0 2 2
exp 2 ,   ,

 

y

k

b uN
p y du y a b

y u 

 
   

 
   

where k  is an arbitrary point from ( , )a b  and N  is the normalizing constant such that  0
1.

b

a

p y dy   

To analyze how the stationary density varies under a proportional increase in noise, we assume that 

the diffusion coefficient is proportional to some function, i.e.    x g x  (this includes the case of 

stochastic Richards equation). From (7) we see that if 0
 0N  , then also  0

t
N  , for all 0t  . If 

21

2
r 

, then 2 21 1

2 2

t

t

B
r t B t r

t
   

    
          

    
 as t  , since by the Brownian law of large 

number, we have lim 0t

t

B

t
 . Hence, lim 0

t
t

N


 . In other words, whenever the random influence is too 

strong compared to the growth rate, then the population will vanish eventually. Thus, for 
21

2
r  the 

point 0 is an attracting boundary and   is a natural boundary. As a consequence, we can expect the 

existence of stationary density 0
p  in the interval  0,  only for 

21

2
r  . By Proposition 4 it must be 

of the form (choose 1k  ) 

  1

0 2 2 2 2 2 2 2 2

1 1

1

        exp 2 exp 2
x x

u
ru

KN N r r
p x u du

x u x u K





    



   
           

      
   

 
 

    

                                  2  

2
2

2 2 2 2 2 2

2 1 2 2
exp ln 1 exp exp

r
N r N r r

x x x x
x K K K

 

       

      
          

      
 . 

The function 0
p  is integrable on  0,  if and only if 

2

2
2 1

r


   , that is, for

21

2
r  . Thus, a 

noise-induced transition occurs whenever
21

2
r  . This means that the diffusion process described by 

the Richards equation has no stationary density for 
21

2
r  and has a stationary density for

21

2
r  . In 

terms of the generalized function theory we say that in the case 
21

2
r  , the stationary density 0

( )p x  

is given by the Dirac delta function ( )x . Moreover, we have the following result on the limiting 

behavior of 0
( )p x  as x approaches zero:  
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x

for r

N
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K
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 


 






  


  

   
 

 



  

We see that the behavior of the stationary density are different for 
2 2r r   and 

2 r  . Thus, 

we can say that at 
2r   there is also a noise-induced transition. 

4.  Conclusion 

We have solved a stochastic Richards equation analytically by using the Itô theory for stochastic 

differential equation. The simulation gives an insight on how the solution behaves according to the 

allometric parameter. Moreover, we analyze the qualitative aspects of the solution by using tools from 

diffusion processes theory. The provided analytic solution could be very useful for researchers for 

testing the existing and new numerical methods for the solution of stochastic differential equations. As 

a future work we will consider the study of the stochastic Richards equation driven by another stochastic 

process such as fractional Brownian motion or Levy process. 
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