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Abstract. The Ripa model is the system of shallow water equations taking the water
temperature fluctuations into account. For one-dimensional case, the Ripa model consists of
three partial differential equations relating to three primitive variables, namely water depth,
velocity, and temperature. The Ripa model is hyperbolic, and its solution can be discontinuous.
When the Ripa model is solved using a conservative numerical method, the solution is usually
diffusive around discontinuities. The diffusion at rough regions (around discontinuities, such
as contact and shock discontinuities) makes the solution inaccurate. In practice, we want to
know the places where the solution is accurate, and where it is inaccurate. That is, we want
to know where the solution is smooth, and where it is rough. In this paper we propose the
numerical entropy production to detect the smoothness of numerical solutions to the Ripa
model. Numerical results show that the numerical entropy production is a robust smoothness
indicator for numerical solutions to the Ripa model.

1. Introduction
Ripa [22, 23] studied shallow water waves with the water temperature fluctuations taken into
account in the dynamics. The resulting model is an extension of the Saint-Venant system of
shallow water equations. The model is hyperbolic system of partial differential equations. This
model has now been in the interest of a number of researchers due to its applications [1, 3, 24, 25].

As any other hyperbolic system, the Ripa model is challenging to be solved. The system
admits discontinuous solutions even when the initial condition is continuous. Standard numerical
methods, such as finite volume method, are generally diffusive at around discontinuities [6, 7].
Smooth regions are easier to be well-solved by standard numerical methods. Some numerical
treatments to improve the accuracy of numerical solutions are needed at around rough regions.
Therefore a good smoothness indicator is desired to detect the positions where solutions are
smooth and where they are rough.

The numerical entropy production (NEP) has been successful as a smoothness indicator for
various problems of conservation laws. It performs quite well for gas dynamics [4, 5] and the
standard Saint-Venant system [8, 15]. The NEP is promising to be implemented in conservative
numerical schemes, as discussed by Puppo [19, 20] as well as Puppo and Semplice [21]. Therefore,
in this paper we propose the use of the NEP as a smoothness indicator for solutions to the Ripa
model. Numerical tests shall confirm if the NEP gives better indication of the smoothness of
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numerical solutions to the Ripa model than a weak local residual formulation of the entropy
equation.

The paper is organised as follows. We recall the equations of the Ripa model in Section 2.
Numerical methods and results are presented in Section 3 and Section 4 respectively. Some
concluding remarks are drawn in Section 5.

2. Ripa model
In this section we recall the Ripa model [22, 23] and its entropy relation following the work of
Sánchez-Linares et al. [24].

The Ripa model is an extended system of shallow water equations involving horizontal
temperature gradients. In one dimension, the Ripa model takes the form

∂h

∂t
+
∂(hu)

∂x
= 0, (1)

∂(hu)

∂t
+
∂(hu2 + 1

2
gh2θ)

∂x
= −ghθ dz

dx
, (2)

∂(hθ)

∂t
+
∂(hθu)

∂x
= 0. (3)

Here h = h(x, t) represents the water depth, u = u(x, t) denotes the velocity, z = z(x) is the
bottom topography function, g is the acceleration due to gravity, and θ = θ(x, t) represents
the potential temperature field. In the Ripa model, hu is the water discharge and 1

2
gh2θ is

the pressure which is dependent on the water temperature. When θ is unity, the Ripa model
becomes the one-dimensional shallow water equations [10, 11, 13, 14]. An extension to two
dimensions [12, 16] is possible, but is not discussed in this paper.

The Ripa model can be rewritten as a balance law

∂q

∂t
+
∂f(q)

∂x
= s(q)

dz

dx
(4)

where the vectors of conserved quantities, fluxes, and sources are respectively given by

q =





h
hu
hθ



 , f(q) =





hu
hu2 + 1

2
gθh2

hθu



 , s(q) =





0
−gθh
0



 . (5)

As long as hθ > 0, the Ripa model is hyperbolic. The Jacobian matrix J(q) = ∂f(q)/∂q of the
flux function F(q) has three eigenvalues, namely u±

√
ghθ and u.

Entropy solutions of the Ripa model must satisfy the entropy inequality

∂η

∂t
+
∂ψ

∂x
≤ 0 (6)

in the weak sense for all entropies. When the solution is smooth, the relation (6) is an equation.
When the solution is rough (discontinuous), the relation (6) is a strict inequality. We consider
the entropy pair

η(q) = h
u2

2
+
g

2
hθ(h+ z), (7)

ψ(q) = hu(
u2

2
+ gθ(h+ z)) (8)

as the entropy function and the entropy flux function.
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3. Numerical method
In this section we present a finite volume scheme for the NEP formulation of the Ripa model.

In simulations we carry in this paper, we focus on horizontal topography. A semi-discrete
finite volume scheme for the homogeneous Ripa model is

∆xj
d

dt
Qj + F(Qj ,Qj+1)−F(Qj−1,Qj) = 0 (9)

where F is a numerical flux function consistent with the homogeneous Ripa model. Here ∆xj
is the cell-width of the jth cell.

We continue discretising the semi-discrete scheme (9) using the first order Euler method for
ordinary differential equations. We obtain the fully-discrete scheme

Qn+1

j = Qn
j − λnj

(

Fn
j+ 1

2

− Fn
j− 1

2

)

. (10)

Variable ∆tn represents the time step at the nth iteration. The notation Qn
j is an approximation

of the integral averaged exact quantity qj (x, t
n) in the jth cell at the nth iteration. Here

λnj = ∆tn/∆xj . In addition Fn
j+ 1

2

:= F(Qn
j ,Q

n
j+1) and Fn

j− 1

2

:= F(Qn
j−1,Q

n
j ) are numerical

fluxes of the conserved quantities computed at xj+1/2 and xj−1/2 in such a way that the method
is stable.

We consider two numerical flux formulations. The first is the local Lax-Friedrichs flux
formulation, which is also known as the Rusanov method (flux). The second is the central-
upwind flux formulation. When we solve Ripa problems, either one of these fluxes is used.

When we implement the Rusanov method, we note as follows. The Rusanov flux takes the
form

Fn
j+ 1

2

=
1

2

[

f
(

Qn
j+1

)

+ f
(

Qn
j

)

− αn
j+ 1

2

(

Qn
j+1 −Qn

j

)

]

, (11)

and

Fn
j− 1

2

=
1

2

[

f
(

Qn
j

)

+ f
(

Qn
j−1

)

− αn
j− 1

2

(

Qn
j −Qn

j−1

)

]

. (12)

Here

αn
j+ 1

2

= max
{
∣

∣

∣
unj+1 +

√

g(hθ)nj+1

∣

∣

∣
,

∣

∣

∣
unj +

√

g(hθ)nj

∣

∣

∣

}

, (13)

and

αn
j− 1

2

= max
{
∣

∣

∣
unj +

√

g(hθ)nj

∣

∣

∣
,

∣

∣

∣
unj−1 +

√

g(hθ)nj−1

∣

∣

∣

}

. (14)

To make the meaning of our notations clearer, we note that Qn
j = [hnj (hu)nj (hθ)nj ]

T , where hnj
is an approximation of the integral averaged water height h in the jth cell at the nth time step.
The notations (hu)nj and (hθ)nj are understood similarly. To compute the NEP, first we store

the entropy value ηnj = η
(

Qn
j

)

at the nth iteration. Then we compute

ηn+1

j = ηnj − λnj

(

Ψn
j+ 1

2

−Ψn
j− 1

2

)

. (15)

The local Lax–Friedrichs flux for the entropy evolution is

Ψn
j+ 1

2

=
1

2

[

ψ
(

Qn
j+1

)

+ ψ
(

Qn
j

)

− αn
j+ 1

2

[

η
(

Qn
j+1

)

− η
(

Qn
j

)]

]

, (16)

and

Ψn
j− 1

2

=
1

2

[

ψ
(

Qn
j

)

+ ψ
(

Qn
j−1

)

− αn
j− 1

2

[

η
(

Qn
j

)

− η
(

Qn
j−1

)]

]

. (17)
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The NEP is the local truncation error of the entropy:

NEP =
1

∆t

∣

∣

∣
ηn+1

j − η(Qn+1

j )
∣

∣

∣
, (18)

where ηn+1

j is found from equation (15), and η(Qn+1

j ) is the entropy function value for the

quantity Qn+1

j in the jth cell at the (n+ 1)th iteration.
When we implement central-upwind fluxes, we note as follows. The central-upwind flux for

conserved quantities takes the form

Fn
j+ 1

2

=
a+
j+ 1

2

f
(

Qn
j

)

− a−
j+ 1

2

f
(

Qn
j+1

)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[

Qn
j+1 −Qn

j

]

(19)

and Fn
j− 1

2

is defined similarly. The largest and the smallest eigenvalues of the Jacobian ∂f/∂q

are [1]:

a+
j+ 1

2

= max

{

uj+1 +
√

g(hθ)j+1 , uj +
√

g(hθ)j , 0

}

, (20)

a−
j+ 1

2

= max

{

uj+1 −
√

g(hθ)j+1 , uj −
√

g(hθ)j , 0

}

, (21)

in which we have dropped the superscript n. These eigenvalues represent one sided local speeds
of propagation in the central-upwind flux (19). Furthermore, the central-upwind flux for the
entropy has the form

Ψn
j+ 1

2

=
a+
j+ 1

2

ψ
(

Qn
j

)

− a−
j+ 1

2

ψ
(

Qn
j+1

)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[

η(Qn
j+1)− η(Qn

j )
]

. (22)

The numerical scheme for entropy is the same, that is, equation (15). The NEP is computed
using the same formula, that is, formula (18).

The time step ∆t is taken such that CFL (Courant–Friedrichs–Lewy) condition is satisfied.
This means that we must take

∆t = CFL
∆x

λmax

, (23)

where
λmax = max

{
∣

∣

∣
u+

√

g(hθ
∣

∣

∣
,

∣

∣

∣
u−

√

ghθ
∣

∣

∣

}

(24)

with CFL ≤ 1. That the CFL condition is satisfied is necessary for stability of numerical
methods.

4. Numerical results
In this section we present results of two simulation tests. Both tests are dam break over flat
bottom. The first and the second tests use coarse and fine grids respectively. The tests are
adapted from the paper of Sánchez-Linares et al. [24]. The performance of the NEP for the
Ripa model is compared with a smoothness indicator based on the weak local residual of the
entropy equation. We take the weak local residual formulated by Constantin and Kurganov [2],
and denote by CK (Constantin–Kurganov) their smoothness indicator. We note that a similar
weak local residual formulation has been successfully implemented in detecting the standard
shallow water equations [18], and we extend the implementation here for the Ripa model.
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Figure 1. Comparison results using the Rusanov method with 500 cells at time t = 0.2. The
first subfigure is the water surface, the second is part of the NEP indicator, and the third is part
of the CK weak local residual indicator.
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Figure 2. Comparison results using the central-upwind method with 500 cells at time t = 0.2.
The first subfigure is the water surface, the second is part of the NEP indicator, and the third
is part of the CK weak local residual indicator.
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Figure 3. Comparison results using the Rusanov method with 5000 cells at time t = 0.2. The
first subfigure is the water surface, the second is part of the NEP indicator, and the third is part
of the CK weak local residual indicator.
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Figure 4. Comparison results using the central-upwind method with 5000 cells at time t = 0.2.
The first subfigure is the water surface, the second is part of the NEP indicator, and the third
is part of the CK weak local residual indicator.
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Table 1. The relation between smoothness indicators and the mesh ratio simulated using the
Rusanov method at time t = 0.2. Here we take the mesh ratio ∆t/∆x = 0.1.

∆t ∆x ∆x ·max |NEP| max |CK|/∆x
0.004 0.04 1.067 0.272
0.002 0.02 1.020 0.271
0.001 0.01 1.036 0.274
0.0005 0.005 1.107 0.273
0.00025 0.0025 1.138 0.261
0.000125 0.00125 1.142 0.264

Table 2. The relation between smoothness indicators and the mesh ratio simulated using the
central-upwind method at time t = 0.2. Here we take the mesh ratio ∆t/∆x = 0.1.

∆t ∆x ∆x ·max |NEP| max |CK|/∆x
0.004 0.04 1.161 0.280
0.002 0.02 1.125 0.280
0.001 0.01 1.090 0.283
0.0005 0.005 1.084 0.284
0.00025 0.0025 1.157 0.282
0.000125 0.00125 1.093 0.285

We consider the initial condition

q(x, t = 0) =







(5, 0, 15)t if x < 0,

(1, 0, 5)t if x > 0.
(25)

We solve the Ripa model on the domain [−2, 2]. The acceleration due to gravity is set to
be 1. Uniform space discretisation is used. At time t > 0 we obtain three waves, namely the
rarefaction, contact, and shock waves.

For the first test we take uniform space grids with 500 cells with the CFL number is 1. We
obtain that both NEP and CK indicators detect where rough regions are. However, NEP is
better in this case, as CK is oscillatory at around the contact wave. An implementation of CK
indicator for this case may give incorrect action when an adaptive method is used to recover
the accuracy at around the contact wave. Representative plots of numerical results are given in
Figure 1 for the Rusanov method and Figure 2 for the central-upwind method. These Figures 1
and 2 show the water surface and the smoothness indicators at time t = 0.2 simulated using the
coarse grids (500 cells), where the smoothness indicators are plotted as their absolute values.

For the second test we take finer uniform space grids with 5000 cells with the CFL number
is 1. Again both NEP and CK indicators indicate where rough positions are. However the
NEP still performs better in this second case. The CK indicator decays very fast at around the
contact wave, whereas the NEP is still able to give a clearer indication where the position of the
contact wave is. These results are shown in Figure 3 for the Rusanov method and Figure 4 for
the central-upwind method. These Figures 3 and 4 show the water surface and the smoothness
indicators at time t = 0.2 simulated using the fine grids (5000 cells), where the smoothness
indicators are plotted as their absolute values.

Next we discuss the behaviour of the NEP and CK indicators when the number of cells
varies. We consider the same space domain and initial condition as before. We take the mesh
ratio ∆t/∆x = 0.1 and consider an increasing number of cells: 100, 200, 400, 800, 1600 and 3200.
Then we have different values of ∆t and ∆x. We find that the NEP has a stable behaviour and
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the value of ∆x · max |NEP| is (about) constant. These results are consistent with the results
of Puppo and Semplice [21]. We also find that the CK has a stable behaviour and the value
of max |NEP|/∆x is (about) constant. This behaviour of CK indicator is a new finding; to
the authors’ knowledge, this behaviour has not been researched before. Therefore, this CK
behaviour is open to research further. These results are obtained from simulations using the
Rusanov as well as central-upwind methods. This means that the behaviour of the NEP and
CK indicators are independent of the numerical method, as shown in Table 1 and Table 2.

Furthermore we discuss about the performance of the solving methods of the Ripa model.
The central-upwind method is less diffusive than the Rusanov method. This is reflected in our
simulations. Figure 2 has a sharper shock and a sharper contact wave than those in Figure 1.
Furthermore, Figure 4 has a sharper shock and a sharper contact wave than those in Figure 3.

In this paper we have considered horizontal topography. Special numerical treatment is
needed to deal with non-horizontal topography cases. To compute the NEP for the case of
non-horizontal topography, we need to modify the numerical flux formulations, which can be
adapted from the work of Mungkasi [9]. To compute the CK indicator for the case of non-
horizontal topography, we need to have a well-balanced computation so that the CK indicator
behaves correctly, as researched by Mungkasi and Roberts [17].

5. Conclusions
We have proposed the numerical entropy production as a smoothness indicator for numerical
solutions to the one-dimensional Ripa model. Numerical results confirm that the performance
of the numerical entropy production is better than that of a weak local residual. This suggests
that the numerical entropy production is a good candidate for an adaptive indicator to be used
in adaptive numerical methods to solve the Ripa model. For future direction, we will implement
the numerical entropy production as the refinement indicator in an adaptive mesh finite volume
method.
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