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Abstract. Clean water is always needed for human living. Due to pollution, we often need to purify water. One way to do 
so is using the reverse osmosis system. A mathematical model for the reverse osmosis system has been obtained. In this 
paper, we show the importance of numerical methods in solving the reverse osmosis model. In particular, we focus on the 
application of numerical integration methods in the process of solving the model. We consider three types of rules in 
numerical integration, namely, the Riemann sums, the trapezoidal rule and the Simpson's rule. We present our research 
results of these three rules relating to the solving process of our reverse osmosis model. The Simpson's rule is the most 
accurate, as it has the highest order of accuracy in comparison to the Riemann sums and the trapezoidal rule. Our main 
point in this research is that the numerical integration has an important role in solving the reverse osmosis model. 

INTRODUCTION 

Water is one source of life for living things on earth. However, some available water has now been heavily polluted 
by various types of waste and garbage from the results of human activities [1]. Therefore, a technique is needed to 
filter existing water. One of the water purification techniques is the reverse osmosis system. The reverse osmosis 
system is the process of separating and removing dissolved, organic, pyrogenic, colloidal submicrons, colors, 
nitrates, and bacteria from water using a semipermeable membrane [2]. In reverse osmosis the high pressure is given 
to the concentrated side of the membrane. When pressure is applied to this side, pure water will flow through the 
semipermeable membrane towards the other side of the lower concentration [3].  

The process of distribution of concentration with space and time is described by parabolic type partial 
differential equations known as advection-diffusion equations. The advection-diffusion equation is a model that can 
be used to simulate the spread of pollutants [4]. This mathematical model for the reverse osmosis system has been 
obtained [5]. 

In this paper, we show the importance of numerical integration in solving the reverse osmosis mathematical 
model. Numerical integration has many applications in the field of applied mathematics, especially in mathematical 
physics and computational chemistry [6]. Numerical integration is a technique for calculating integrals which are 
difficult to solve analytically. We compare three types of rules in numerical integration, the Riemann sums, the 
trapezoidal rule, and Simpson's rules. Three types of Riemann sums are the left Riemann sum, the right Riemann 
sum, and the middle Riemann sum. Some authors (see [7, 8, 9]) have applied some of the three numerical integration 
rules to find solutions to a mathematical model. General formula for the Riemann sum rule is given in [10]: 

� �(�)��
�

�

≈ � �(

�

���

��
∗)∆�. 

(1)
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with ��
∗ = ��  for the right Riemann sum, ��

∗ = ���� for the left Riemann sum, and ��
∗ = (�� + ����) 2⁄  for the middle 

Riemann sum. The general formula for the trapezoidal rule is given by [10]: 

� �(�)��
�

�

 ≈
ℎ

2
��� + 2 � ��

���

���

+ ��� 
(2)

where �� = �(��), �� = �, and �� = �. The general formula for the Simpson's rule is given by [10]: 

� �(�)��
�

�

 ≈  
ℎ

3
��� + 4 � �����

�

���

+ 2 � ���

���

���

+ ���� 
(3)

where � = 2� and � is a positive integer. In this paper, we also calculate errors from the five rules of numerical 
integration.  

The rest of this paper consists of the mathematical model, application of numerical integration, discussion of 
results, and conclusions. 

MATHEMATICAL MODEL 

The mathematical model for predicting the concentration of salt solutions in semipermeable membranes in the 
reverse osmosis system is as follows [5]: 

�
��

��
= �

���

���
, (4)

with � =
��

��
  and the boundary conditions are 

�(0, �) = ��,   �(�, ∞) = �� (5)
and 

−�
��

��
(�, 0) = ��(�, 0) (6)

where � and � are space variables. � = �(�, �) represents the concentration of salt solution in a semipermeable 
membrane at point (�, �). Notations �, �, ℎ, ��, and �� are, respectively, water flow rates in semipermeable 
distribution, salt diffusivity in water, distance from the semipermeable boundary to the center of the channel, 
concentration away from semipermeable membranes, and horizontal velocity measured at a distance ℎ from the 
semipermeable boundary. Here �, �, ℎ, and �� are constants. 
 

APPLICATION OF NUMERICAL INTEGRATION 

The solutions of equations (4), (5), and (6) are as follows [5]: 

�(�, 0) = 3� 
�

����

��
�

�ℎ

��

�
�/�

�
�

�  + ��, (7)

with � = ∫ ����
� ��

�

�
. Equation (7) is an equation that is used to predict the concentration of salt solutions in 

semipermeable membranes in the reverse osmosis system. 
In equation (7) there is a definite integral � which is very difficult to solve analytically. Therefore, we solve the 

definite integral � using the left Riemann sum rule, right Riemann sum rule, and middle Riemann sum rule, 
trapezoidal rule, and Simpson's rule. 

In all calculations the same interval is used, namely [0, 10]. This interval [0, 10] is partitioned into � = 200 

subintervals namely [��, ��], [��, ��], [��, ��], … , [����, ����] with �� = 0 and �� = 10 where ∆� =
����

���
= 0.05 

is uniform, as shown in Fig. 1. 
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FIGURE 1. Graph of function �(�) 
 

Right Riemann Sum 

Based on the right Riemann sum formula, �� = 0.05 is chosen as the right end point of the interval [0,10] with � =
0.05, 0.10, 0.15, … , 200, so that we obtain 

� ����
� ��

��

�

 ≈ � (

����

���.��

����
�
��)(0.05) 

 ≈ �(��
∗)∆� + �(��

∗)∆� + ⋯ + �(��
∗ )∆� 

 ≈ �(0.05)(0.05) + �(0.10)(0.05) + ⋯ + �(10)(0.05) 

 ≈ ����.���
0.05�(0.05) + ����.���

0.10�(0.05) + ⋯ + (������
10)(0.05) 

 ≈ (0.04999375)(0.05) + (0.09990005)(0.05) + ⋯ + (0)(0.05) 
 ≈ (0.002499688) + (0.004995002) + ⋯ + (0) 

� ����
� �� 

��

�

≈ 0.4511643131. 

Thus, the approximation of the � value is obtained using the right Riemann sum rule, which is 0.4511643131. 

 Left Riemann Sum 

Based on the right Riemann sum formula, �� = 0.05 is chosen as the right end point of the interval from each 
subinterval [0,10] with � = 0.05, 0.10, 0.15, … , 200, so that we obtain 

� ����
� �� 

��

�

≈ �(����
�
��)(0.05)

���

���

 

 ≈ �(��
∗)∆� + �(��

∗)∆� + ⋯ + �(����
∗ )∆� 

 ≈ �(0)(0) + �(0.05)(0.05) + ⋯ + �(9.95)(0.05) 

 ≈ �����
. 0�(0.05) + ����.���

0.05�(0.05) + ⋯ + (���.���
9.95)(0.05) 

 ≈ (0)(0.05) + (0.04999375)(0.05) + ⋯ + (0)(0.05) 
 ≈ (0) + (0.002499688) + (0.004995002) + ⋯ + (0) 

� ����
� �� 

��

�

≈  0.4511643131. 

Thus, the approximation of the � value is obtained using the left Riemann sum rule, which is 0.4511643131. 
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 Middle Riemann Sum 

In the middle Riemann sum rule, �̅� is chosen as the midpoint of each subinterval at [0,10] with � = 0, 1, 2, … , 200, 
so that based on the middle Riemann sum we obtain 

� ����
� �� 

��

�

≈ � �(

���

���

�̅�)∆� 

with ∆� = 0.05 and �̅� =
�

�
(���� + ��), as listed in Table 1. 

TABLE 1. Value of  �̅� for summation of middle Riemann  

���� �� ��� 

0 
0.05 
0.10 
… 

9.95 

0.05 
0.10 
0.15 
… 
10 

0.025 
0.075 
0.125 

… 
9.975 

  
Furthermore, the value of �̅� in Table 1 is substituted to the middle Riemann sum formula as follows 

� ����
� �� 

��

�

≈ �(����
�
��)(0.05)

���

���

 

 ≈ �(��
∗)∆� + �(��

∗)∆� + �(��
∗)∆� + ⋯ + �(����

∗ )∆� 
 ≈ �(0.025)(0) + �(0.075)(0.05) + ⋯ + �(9.975)(0.05) 

 ≈ ����.����
0.025�(0.05) + ����.����

0.075�(0.05) + ⋯ + (���.����
9.975)(0.05) 

 ≈ (0.024999609)(0.05) + (0.074968366)(0.05) + ⋯ + (0)(0.05) 
 ≈ (0.00124998) + (0.003748418) + ⋯ + (0) 
 ≈ 0.451476813. 
Thus, the approximation of the � value is obtained using the middle Riemann sum rule, which is 0.451476813. 

Trapezoidal Rule 

Based on the trapezoidal rule formula, at interval [0,10] which is divided into 200 intervals the section [��, ����] as 
wide as ∆� = 0.05 by using a partition point that is equidistant, that is, �� = 0 + �∆�, � = 0, 1, 2, … , 200, we 
obtain 

� ����
� �� 

��

�

≈
∆�

2
��(��) + 2 � �(��) +

���

���

�(����)� 

 ≈
0.05

2
(�(0) + 2�(0.05) + 2�(0.10) + ⋯ + �(10)) 

 ≈
0.05

2
������

0� + 2���.���
0.05 + ⋯ + ������

10�� 

 ≈
0.05

2
�(0) + 2(0.04999375) + ⋯ + (0)� 

 ≈ 0.4511643131. 
Thus, the approximation of the � value is obtained by using the trapezoidal rule of 0.4511643131. 
 

Simpson's Rule 

Based on the Simpson's rule formula 1 3⁄ , for the interval [0,10] is divided into 2� = 200 intervals, the 
section [��, ����] is equal to that of ∆� = 0.05 and uses partition points that are equidistant, that is, �� =

0 + �ℎ, � = 0, 1, 2, … , 2�, then 
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� ����
� �� 

��

�

≈
∆�

3
��� + 4 � �����

�

���

+ 2 � ���

���

���

+ ����� 

 
≈

0.05

3
��� + 4 � �����

���

���

+ 2 � ���

��

���

+ ����� 

 
≈

0.05

3
(�� + 4�� + 2�� + ⋯ + 4���� + ����) 

 
≈

0.05

3
(����

0 + 4���.���
0.05 + ⋯ + 4���.���

9.95 + �����
10) 

 ≈ (0.016666667)(27.08235879) 

� ����
� �� 

��

�

≈ 0.4513726464. 

Thus, the approximation of the � value is obtained using the Simpson 1/3 rule, which is 0.4513726464. 
 

DISCUSSION 

In this section, we discuss the accuracy of calculating the five rules of numerical integration above. The exact value 
of � is obtained using the Maple program, as follows: 

� = � ����
� �� = 0.4513726463.

�

�

 

Based on the results of the calculation of the definite integral � in section 3, the error of the left Riemann sum 
rule, the right Riemann sum rule, the middle Riemann sum rule, the trapezoidal rule, and the Simpson's rule are 
given in Table 2. 

 
TABLE 2. Results of each numerical integration rule 

Integration Rule Exact of Maple Numerical results Error 

Left Riemann sum rule 0.4513726463 0.4511643131 0.0002083332 
Right Riemann sum rule 
Middle Riemann sum rule 

0.4513726463 0.4511643131 0.0002083332 
0.4513726463 0.4514768131 0.0001041668 

Trapezoidal rule 0.4513726463 0.4511643131 0.0002083332 
Simpson's rule 0.4513726463 0.4513726464 0.0000000001 

 
Based on the error calculation in Table 2, the error of the Simpson's rule is smaller than those of the other four 

numerical integration rules. This is because the Simpson's rule has a higher order of accuracy than the other four 
numerical integration rules. Thus, we use the value � of the Simpson's rule as the most accurate � value. This value 
of � is substituted to equation (7), so that we obtain 

�(�, 0)

��

= 1.5361171751 �
�

�
� �

�ℎ

��

�
�/�

�
�

� + 1 . (8)

Equation (8) is a mathematical equation to predict the concentration of salt solutions in semipermeable membranes 
in the reverse osmosis system. 

 

CONCLUSION 

Numerical integration has an important role in solving the reverse osmosis model. The more accurate the the integral 
value that we obtain, the more accurate results of the mathematical model we will get. Based on the calculation of 
the numerical integration, the Simpson's rule is the most accurate rule compared to the left Riemann sum rule, right 
Riemann sum rule, middle Riemann sum rule, and trapezoidal rule. 
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