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Weak Local Residual in Relation to the Accuracy of Numerical
Solutions to Conservation Laws

Sudi Mungkasi
Department of Mathematics, Faculty of Science and Technology, Sanata Dharma University,

Mrican, Tromol Pos 29, Yogyakarta 55002, lndonesia
e-mail: sudi@usd.ac.id

Abstrod
As the exoct solutions to dilferential equotions dre generolly very difficult to find, numerical

solutions are ofien desired. Numericol solutions ore approximotions to the exoct solutions, so they have
errors. Becouse we do not know the exact solutions, a tool for checking the occuracy of numericol
solutions is needed. ln this poper, we present a formulo os the tool for investigoting the occuracy of
numerical solutions to conservotion lows. The formula is derived from the weok local residual of the
numerical solution. The residual is zero if the solution is exoct. The lorger the residuol meons the less

occurate the approximate solution. We consider two specific conservation laws, namely the advection
equation and the ocoustics equations. With these two problems, our results show thot the weak local
residuol behaves correctly os on occurocy-checking form.ulo of numerical solutions to conservation laws.

Keywords: accurocy-checking formula, conservotion laws, finite volume methods, weak local residuol

l.lntroduction
Differential equations have important roles in mathematical modelling of real problems,

such as fluid flows, wave propagation, weather prediction, etc. Differential equations need to
be solved to find the solution to the real problems. Solving exactly the equations is generally
difficult. Therefore numerically solving the equations is an option that can be considered.

Numerical solutions are approximations of the exact solutions. We are interested in a

way to check the accuracy of numerical solutions to conservation laws, where the exact
solutions are not known due to their difficulty to find. Conservation laws themselves have
many applications in fluid and solid dynamics modelling. Therefore, they are important to
study.

Some numerical techniques for solving conservation laws have been available in the
literature for years. One of them is the finite difference method, which is powerful for smooth
solutions. Conservation laws can be hyperbolic, so they admit discontinuous solutions. This
means that conservative methods are needed for solving conservation laws accurately. One of
conservative methods is the finite volume method which is implemented in this paper to solve
conservation laws. The resulting solutions still have errors, but we do not know the magnitude
of the errors, because once again we do not know the exact solution.

To know the magnitude of the errors, a formula is needed. We propose the use of the
weak local residual formula in order to investigate the accuracy of numerical solutions. Our
formula follows from the work of Constantin and Kurganov [1] as well as Mungkasi et al.121.
The formula is explicit. lt is simple to compute at alltime, but the residual formula is valid only
for conservative numerical methods [3].

This paper is structured as follows. We present the formulation of the weak local
residual in the next section. After that we test the performance of the formula for the
advection equation and the acoustics equations. Concluding remarks are drawn at the end.
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2. Weak local Residual Formulation
Consider the scalar conservation laws in the form

with initial condition

(1)

(2)

acoustics equations. The

(3)

(4)

(s)

aq *a.f!il . 0, _co<x<co
0t 0x

q(x,t):eo(x), t=0.
Here variable x represents the space and variable , denotes the time. The quantity q = q(x,t)

is conserved. The function q(x,O) = Qo(x) is given. The functio n f = .f (q(x,t)) is the flux'

We consider two problems, namely the advection equation and the

advection equation is

dn *an =0.dax
where the conserved quantity q = q(x,t) is transported to the right direction with the unit

velocity. The (constant-coefficient) acoustics equations are

@* nr4=0.
dt Ox

0, *l 0, 
=0.& pAx

Here in the acoustics equations:
. p = p(x,t) represents the Pressure,

. l.t =u(x,t) is the velocity variable,

. p is the density which is assumed to be constant, and

c is the pressure wave propagation speed, which is also assumed to be constant'

Let us consider a conservative numerical method to solve the conservation laws' ln

particular, let us take a standard finite volume method. ln the standard finite volume method,

ih. ,p... domain is discretised into a finite number of cells with the cell width Ax. The time

domain is dicretised into a finite number of time steps ar, where the value of Ar is chosen

suchthatthemethodisstable.Thecentroidsof cellsaredenoted x,,with xi*ti=x,+Ar'The

vertices of cells are denoted xi+t/z1=x,+Lxl2. The discrete time is denoted ,n+t '={ +N '

The notatio n ,n+tt2 means ,n+rt2 '.- t" + Lt /2 '
The weak local residual for the conservation laws (1) with initial condition (2) has been

formulated by Constantin and Kurganov [1] and is given by

*r;i'] =*lni - qi-' + qi-, - qii'f*flr<nr;'t- -f @i\+ f @i,,)- f(q)\' 6)

This formula is derived from the weak formulation of the conservation laws as follows. First we

write the initial value problem (1)-(2) in the weak form 'r

\i_l^.,rUy+ 
f @(x,fi{ff)* o, +iao@)rtx,,) dx=, , (7)

with T(x,t) is a test function. ln this work we take the test function at every point

(xi+ttz,t'-tt2) as

T ( x, t)' = T'i-r|r' (*, t) : B 
i *r r z(x) B"-"' (t),

where
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U-,,r,', = 

1

x-x,,,.
A,

xi+3/z - x
Ar

0

if xr-r12('x 3 xia112 ,

if x,*r,r3x3xi412,

otherwise.

(e)

and

, - ,n-3t 
2

ig gn-3t2 St Stn-r,2 ,

Bn-tt21t1=

Lt

,n+llz _,
i1 ,n-1/2 <rqrn+ttz

Lt

0 otherwise.

Substituting this test function into the weak form (7) of conservation laws, we obtain

Ni',',' = l*[',. ji,',lr*,t){&t9o* r@(*ilryo)*a,, (11)

which results in the Constantin-Kurganov residual formulation (5), as also discussed by
Mungkasi et ol. 121. Note that if the right hand side of equation (1) is not zero, the formulation
of the weak local residual needs to be well'balanced [4].

3. Numerical Tests
ln this section we present our numerical results. We assume that all quantities are

measured in Sl units. We consider three initial conditions as follows for our test cases:
. a non-smooth initialcondition

if 0<x<2tt,
if 2n <x<I0,
if 10<x<15,
if 15<xS40

for the advection equation,

o a smooth initialcondition

./-. ^\_ [O.S(l+cos(x)) if 0< x<Ztt,
4(x'u)=t o it 2n<x340,

for the advection equation,

. an initial condition together with

z('r'0) = 6 '
[1+cos(x-50) if 50-n<x<50+2,

P(x'0) = i
L 0 if OSx <50-t w 50+tr <x<100.

for the acoustics equations.
The numerical methods used for our simulations are first order finite volume
Next, we report four simulations to achieve our goal.

methods [5].

(10)

(12)

(13)

(14)

(1s)
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Figure 1. Results of the advection equation using the upwind finite volume method with the time step is

a half of the cell width. The residual detects the positions of where errors occur.
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Figure 3. Pressure solution of the acoustics equations obtained using the Lax-Friedrichs finite volume

method with the time step equals to the cell width, As the numerical solution is exact, the residual is

zero everywhere up to the machine precision. The magnitude of the residual is in the scale of 2.Oe-17 .
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Tabel 1. Numerical absolute -C 
"rrorr 

and averaged absolute residual for different

numbers of cells with the method of first order in space and first order in time for the

advection equation with drscontinuous lnllel lenqlllen-ll?L
Number of

cells

Absolute

I etrort

Order of

/ etrort

Averaged
absolute
residual

Order of
absolute
residual

100

200

400

800

1600

3200

0.1108
o.o754
0.0501
0.0329

0.02L7
0.0145

0.55s3
0.5898
0.6067

0.5004
0.5816

3.1503e-004
5.8533e-005

1.0098e-005
1.6639e-005

2.6866e-007
4.3441e-008

2.4282
2.5352
2.6014
2.6307
2.6287

Tabel 2. Numerical absolute -C errors and averaged absolute residual for different

numbers of cells with the method of first order in space and first order in time for the

advection equation with srnooth initial condition (13

Number of
cells

Absolute

-C 
"rrort

Order of

/ etrott

Averaged

absolute
residual

Order of
absolute
residual

100

200

400

800

1600

3200

o.0423
0.0269
0.0157
0.008s
0.0045
0.0023

0.6531

0.7768
0.8852
0.9175
0.9683

1.3844e-004
2.6189e-005
4.3589e-006
6.4767e-007
8.8863e-008
1.1644e-008

z.iozz
2.s869
2.7506
2.8656
2.9320

The first simulation is solving the advection equation with the upwind flux. The initial

condition is as given by (12). We consider the space domain [0, 40]. We take uniform cell-

width Ax = 0.05 and the time step A/ = 0.5 Ax . The simulation is stopped at time / : 15 . The

analytical solution of this problem can be found from the work of LeVeque [5]. We find that

the largest errors occur at around discontinuities, as shown in Figure 1. ln Figure 1 we can also

observe that the residual values are at around discontinuities. This means that the residual

concludes the same behaviour as the error.

ln the second simulation, we modify the time step of the first one' Now we take the

time step to be Af = Ax. Based on the characteristics method, the finite volume method with

the upwind flux formulation results in the exact solution. lndeed, we find the exact solution.

That is, our numerical solution matches exactly with the analytical solution, as plotted in

Figure 2. As shown in Figure 2, we also observe that the residual values are zero everywhere.

This means that the residual behaves the same as the error.

The third simulation is about solving the acoustics equations. We consider the initial

condition (14)-(15).We consider the space domain [0,100]. We take uniform cell-width

Ax:0.1 and the time step N = Lx. We use the finite volume method with the Lax-Friedrichs

flux. Based on the characteristics theory [5], the method results in the exact (analytical)

solution. However, we do not know the explicit form of the analytical solution. This is a good

test case if the residual for:mula can give the correct indication of the exact solution- At time

t=lO,the simulation results are given in Figure 3. ln this figure there are two waves, that is,

one moves to the left and one moves to the right. The residual values are below the machine

precision (less than 2xl0"r7l, as shown in Figure 3. This means that our numerical solution is

actually the exact solution up to the machine precision.

MediaTeknika Vol. 10, No. 2, Desember 2015: 65 -71
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The fourth simulation is similar to the third one, but in this fourth simulation we change
the time step to A/ = 0.5 Ar. Of course we shall not obtain the exact solution in this case. The
point of this simulation is to make sure that the residual can still detect where the positions
have errors in the numerical solution. As shown in Figure 4, the residual indicates that the
largest errors occur at positions around large wave amplitudes. The error gets larger as time
evolves. This is because the amplitudes of waves, both moving to the left and right, dampen.

To complete our work, we investigate the behaviour of the residual as the grids are
refined. Firstly we consider the advection equation with initial condition (12) solved using the
upwind finite volume method with & = 0.5 Ax. The order of accuracy (order of error) is about
0.6, whereas the order of the residual is about 2.6 , as recorded in Table 1. Secondly we
consider the advection equation with initial condition (13) solved using the upwind finite
volume method with A/ = 0.5 Ax, the same time step value as before. The order of accuracy

(order of error) is about 1, whereas the order of the residual is about 3, as recorded in
Table 2. The order of error is larger for Table 2 than for Table 1, because of the difference in
their initial conditions. The smoother the solution gives the larger the order of error. This
phenomena is also reflected in the residual results, shown in Tables 1 and 2.

4. Conclusion
Weak local residual has been shown to be powerful in checking the accuracy of

numerical solutions where the exact solutions are not known. The behaviour of the residual
mimics that of the error. These results may help in the construction of smoothness indicator or
discontinuity detector of numerical solutions. Regions of where numerical solutions are
accurate and not accurate can be identified using a smoothness indicator or discontinuity
detector.
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