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order of Accuracy of Numerical Methods for Fluid Dynamics

Sudi Mungkasi
Department of Mathematics, Faculty of Science and Technology, Sanata Dharma University,

Mrican, Tromol pos 29, yogyakarta 55002, lndonesia
E-mail: sudi@usd.ac.id

Abstroct
This poper presents research results obout order of occurocy of numericol methods for fluid

dynomics. High order occurote numerical methods are often desired. One could think that higher order
occurote numerical methods would olways leod to smoller numerical errors. However, this is misleoding.
A hiqh order occurote method does not meqn thot it is olways more accurote than a lower order
occurote method for ony discretized domain. The truth of this cloim is demonstrated in this poper. We
consider finite volume methods used to solve the shqllow woter equotions. These equotions form a
mathemoticol model of fluid dynomics governing shallow woter wqves or flows. Two types of finite
volume methods are implemented. The first is a finite volume method which is second order occurate in
spoce but first order dccurote in time. The second is a finite volume method which is second order
occurote in space as well as in time. One would hope that the second finite volume method shoutd
always produce smaller errors than the first. However, that is untrue, The first finite volume method is
sometimes more accurqte thqn the second regordless of the quolity of the numericql solution.

Keywords: finite volume methods, fluid dynomics, order of accurocy, domain discretizotion

1. lntroduction
Some mathematical models for fluid flows are available in the literatures, such as the

Saint-Venant model, the Boussinesq model, the Kortewig de Vries model, etc. To the author's
knowledge, the most common in use for simulations of shallow water flows is the first, that is,
the Saint-Venant model which was developed since 1892. This model is named after A.J.C.
Barre de Saint-Venant (see the References t1-7]).

The Saint-Venant model or as known as the shallow water equations can be used to
model and simulate flows in open channels. For example, we can simulate tsunami, flood, dam
breaks, etc. using this model, as long as the flow or the wave is relatively shallow with respect
to the wave length. ln practice, researchers can now use either some software packages like
ANUGA or Delf3D as an aid in the simulation, or code the numerical solver themselves.

A well-known numerical solver for the shallow water equations is finite volume
method. This method is derived based on the integral equation rather than the differential
equation of the model. Because integral equations do not need the assumption that solutions
must be smooth, the finite volume method is able to handle smooth and nonsmooth solutions
of the shallow water equations. This motivates the choice of finite volume method to be used
in the present paper, as a numerical method in interest. We use the Matlab programming
language to code the finite volume method of our work.

This paper shows that a lower order accurate method does not mean that it is always
less accurate than a higher order one in any condition. This claim was stated by LeVeque [g, 9]
without proof. We consider in this paper two types of finite volume methods to support the
truth of this claim numerically. The first method is second order accurate in space but first
order accurate in time. The second method is second order accurate in space and in time. We
shall see that that the second method is actually less accurate in our simulations presented in
this paper.
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The rest of this paper is organized as follows. Section 2 provides the numerical method

that we implement for simulations of water flows. Section 3 contains numerical results. Finally

some concluding remarks are drawn in Section 4.

2. Research Method
ln this section we consider the one-dimensional shallow water equations that preserve

the steady state solutions to water motion. We refer to the work of Kurganov and Levy [5] and

others [10, 11, L4-161for these equations. Assume that we are given a domain with space

variable x and time variable l. Both are free variables. We consider a bottom elevation given

bV B(r). Water depth above the bottom is denoted by h(x,t). Water velocity is represented

by u(x,t). We denote the free surface of water by wi= h + B .ln addition the acceleration due to

gravity is g. The one-dimensional shallow water equations that preserve the steady state

solutions to water motion are then given by the following system of two simultaneous

equations

w, * (hu)* =0,

(hu\, +l% + 
)s@ -u,' 

]. 
= -s(w - B)B.'

Again we refer to the work of Kurganov and Levy [K12002] for the discretization of equations

(1) and (2).

It is described as follows. We first consider the following general system of balance

laws
(3)

e,*Y *' f (q) = S(q,x,t)

where xe Rd and 4€Rilsubject to the initial condition 4(x,0) = qo(x).We then take a

uniform cell-grid x, : iLrc where Ax is the cellwidth. The cellaverage of q(',t) overthe 7

th cell is denoted bV qiQ) and is

| *** (4)

Q 1(t) :: :*[,", r 
q@,t) & .

The system of balance laws can now be written as 
(5)

fia,at. W : *f: s(q(x,t),x,t) &.

Further, the corresponding central-upw,rnd semi-discrete scheme for the system of balance

laws is 
(G)

d = ,,, Hr.r,!D-H-,-rJ}-+S,(r),

*Ai\t) Ar ,. )'
with the numerical fluxes follows the formulation of Kurganov, Noelle and Petrova IKNP2001]

and are given by

H,.,(t),= W . ** (q.,.+ - q, -+).
-'i*i - i-i t+i t-i

Here q1*, := pi*r(xi*,,1) and ei*tr:= pi(xr*rr,t) are the right and the left values at the cell

interface x = X ,. , of a conservative non-oscillatory piecewise polynomial interpolant
l+i

q(x,t):)n/x,t) x,.
I

(1)

(2)
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This polynomial interpolant is reconstructed at each time step from the previously
computed cell averages, {qiQ)}. The notation pr(.,t) represents a polynomial of a specified

degree. The notation y, denotes the characteristic function over the 7th cell. ln addition,

variables aj*rare the one-sided local speeds of wave propagation, which are determined by

oi.i = ^*{^(#(r;)),^.(#*,.u,), o}, (s)

,i*t:,"i,{a (#r,.rr),0(#r,.,,),oi (10)

discretizations of the source term.
Now coming back to the shallow water equations (1) and (2), we have

' 
:l;,]' r@) =l%.!'r*-r,'], s(q,*,') : 

[- g(*0- Du.f (11)

Therefore, the one-sided local speeds ofwave propagation are

,,:*j=t *t ,).+* rfi,,ui*i+ rW, o .j, $21

oi*i=mini 'i, - @,,ui*i- rW, o .}' 
(13)

Note that for our shallow water equations, a second order discretization of the source term is

given by S---(')(/) = Q for the first component of the source vector and

ilediaTeknika ISSN: 1412-5641 r73

for the second component of the source vector.
As in this paper we implement a second order finite volume method, a limiter is used

to suppress artificial oscillation in numerical solution. We use the minmod limiter

(14)

oi =*nrn*(,#,L#) (1s)

(16)

where

minmod(a,b) :: j(s*f"l +sgn(b))min( a l, I b D.

This minmod limiter is implemented at every time step of the numerical evolution of finite
volume methods.

3. NumericalResults
ln this section we provide a numerical demonstration for our claim that the method

which is second order accurate in space and in time may actually less accurate than the one
which is second order accurate in space but first order in time.

As a test case, we considera dam break problem with the spatial domain -1<x<1.
lnitially there is dam wall at the point x:0. Note that in this paper all quantities are
measured in Systeme lntenational (Sl) units, so we omit the writings of units for simplicity. The
initial water depth on the left of the wall is 10, while on the right of the wall is 4. the
acceleration due to gravity is 9.81 .

Order of accuracy of numerical methods for fluid dynamics (5. Mungkasi)
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Figure 1. lnitial condition of water surface for the dam break problem at time / = 0.0 . Here the solid line

shows the analytical solution, whereas the dotted line shows the numerical solution using 100 cells.

Tabel 1. Numerical absolute .C errors for different numbers of

cells with second order in space and/irst order in time'

Number of Error of
cells stage

Error of
discharge

Error of

velocity

100

200

400

800

1600

0.0478594 0,3738300

0,0243614 0,203973L

0.0109585 0.0868951

0.0053363 0.0425737

0.0026519 0,0215230

0.0600871

0.0296580

0.0135623

0.0055963

0.0032709

Tabel 2. Numerical absolute .C errors for different numbers of

cells with second order in space and second order in time.

Number of

cells

Error of
stage

Error of
discharge

Error of
velocity

100

200

400

800

1600

0.0569322 0.4526225

0.0296662 0.2343232

0.0140053 0.1138955

0.0070051 0.0571872

0.0035362 0.0291737

0.0705843

0.0373933

0.0171898

0.0085543

o.0042862

As we run the simulations, absolute D errors are quantified at time I = 0.05. Those

errors are summarized in Table 1 and Table 2 for various numbers of cells. Table 1 contains

errors for different numbers of cells with second order in space and first order in time. ln

addition Table 2 presents errors for numbers of cells with second order in space and second

orderin time. Note that the analytical solution of this dam break problem has been derived by

Stoker[17] and extended by MungkasilLz,13l. This test case is also used by Goutal and

Maurel[3].

tedlaTeknlka Vol.9, No. 2, Juni 2014: 71-76
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Figure 2. Water surface for the breach of the dam at time I = 0.01, t = 0.04,1 = 0.08 . Here solid lines

show analytical solutions, whereas dotted lines show numerical solutions. The numerical solutions are
produced using the method which is second order in space and second order in time using 100 cells.

Slage ddambreat r.iet al I'me tso 025

75I

0.6o?o2

Figure 3. Water surface for the breach of the dam at time t =0.025. Here solid lines show analytical
solutions, whereas dotted lines show numerical solutions. The numerical solutions are produced using
the method which is second order in space but first order in time using 400 cells. Here the discontinuity
is accurately resolved, but artificial oscillation occurs.

Representatives of numerical results of the second method are shown in Figure 1 and
Figure 2. Here Figure L illustrates the initial condition both for analytical and numerical
solution. Then as time evolves, the water surface is shown in Figure 2. ln this Figure 2 we see

the propagation of water waves or flows at time I : 0.01, t :0.04, / : 0.08 . ln this Figure 2

we have used the second finite volume method which is second order accurate in space as well
as in time with 100 cells. We can see here some diffusion occurs around the corners of the
solutions. This diffusion can be minimized using more number of cells involved in the
computation.

Order of accuracy of numerical methods for fluid dynamics (5. Mungkasi)
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ln comparison Figure 3 shows water surface for the breach of the dam at time

t =0.025. ln this Figure3 the numerical solutions are produced using the method which is

second order in space but first order in time using 400 cells. As we use more number of cells

than those in Figure 2, here in Figure 3 the discontinuity is more accurately resolved. The

drawback of this method is that artificial oscillation occurs (see the water surface around the

point .r: 0 ).

From Figure 2 and Figure 3 we see that the first method which is formally less accurate

is actually more accurate than the second method in the numerical experiments. However the

minmod limiter in the first method does not work well, as artificial oscillation still occurs. That

is, the suppression of the artificial oscillation in the first method has not been successful.

4. Conctusion
Numerical experiments about order of accuracy of finite volume methods used to

solve the shallow water equations have been conducted. We find that the formally low.order

finite volume method may actually more accurate than the formally higher order method

regardless of the quality of the numerical solution. Further research could be taken in the

direction of the numerical analysis of these results.
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