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Abstract 

 

We study the significance of the spatial reconstruction when solving the one 

dimensional shallow water equations using a finite volume method. For that aim, 

we implement the explicit forward Euler method for temporal integration while 

the spatial discretization is performed by finite volume method. We compare the 

results of constant spatial reconstruction with those of linear spatial reconstruction. 

The numerical tests include the steady state of a lake at rest, the steady state of 

moving water and an unsteady state of dam break problem. It is shown that the 

spatial reconstruction has a significant role in the accuracy of the finite volume 

method. 
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1 Introduction 
 

The free surface, unsteady water flow is modeled by the well-known 

Saint-Venant equations. This model is also called the shallow water (wave) 

equations. Accurately solving these equations is important, because it can help 

simulations of natural events, such as floods, tsunamis, dam breaks, tides, etc. To 

get numerical solutions of these equations, there are many numerical methods 

available in the literatures [8, 9, 12, 15], for examples finite difference and finite 

volume methods. Finite difference methods are based on the differential form of 

the equations. They may lead to some difficulties when we want to resolve 

discontinuities, because differential equations assume that solutions are smooth. 

In contrast, finite volume methods are based on the integral form of the equations. 

Integral equations do not assume smoothness of their solutions, and hence finite 

volume methods are able to resolve smooth and nonsmooth solutions (see [2, 6, 7, 

8, 13]). However the accuracy of those numerical methods will be dependent on 

the integration with respect to both time (temporal) and space (spatial).  

In this paper we investigate the significance of spatial reconstruction in 

finite volume methods when solving the shallow water equations. We show that a 

higher order reconstruction of the spatial domain can improve the accuracy of the 

numerical methods. To do so we use one type of temporal integration. We then 

compare the performance of two types (that is, constant and linear) of spatial 

reconstructions. 

This paper is organized as follows. Shallow water equations are recalled in 

Section 2. We present the finite volume method that we use to solve the shallow 

water equations in Section 3. Numerical results are presented in Section 4. We 

draw some concluding remarks in Section 5. 

 

 

2 Shallow Water Equations 
 

We consider the following one dimensional shallow water equations  

           (1) 

      (    
 

 
    )

 
       (2) 

where   denotes the time variable,   denotes the space variable,          is 

water height or depth,          is velocity,        represents the bottom 

elevation or topography, and   is the acceleration due to gravity. The absolute 

water level (stage) is defined as                   . Equations (1) and (2) 

can be written in vector form as 
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We refer to [5] for these forms of shallow water equations. 

 

 

 

3 Finite Volume Methods 
 

In this section, we recall a finite volume method proposed in [5, 7], which 

was developed for steady state problems. The finite volume method can then be 

used to solve steady and unsteady state problems. Here we assume that the space 

is discretized into a finite number of cells uniformly with cell width    and that 

time is also discretized uniformly with size of time step is   . Then equation (3) 

can be solved using the finite volume method 
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Here subscript   represents the  th cell and superscript   denotes the time level 

at     . This means     
 
    

  

 
 is the right vertex of the  th cell. The 

variable   
  is an approximation of the analytical source    

At a vertex of a cell, we use approximations for both sides 
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in which the superscript “-” is for the left side approximation and the superscript 

“+” is for the right side approximation of that vertex. Both approximations at left 

and right sides of the vertex is obtained from polynomial reconstructions  

        ∑   
           ,  (9) 

where   
     is a polynomial supported on the interval [ 

  
 

 

  
  

 

 

]  which is 

centered at the midpoint       , and is defined at time     ,       is the 

characteristic function. Note that for the first order space discretization we only 

require constant polynomials, while for the second order we need piecewise linear  
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polynomials. Let the linear functions are  

  
         

    
 (    )  

  
 
 
    

  
 
 
 (10) 

where   
  is the slope. This slope must be chosen with care so that numerical 

solutions of the shallow water equations are non oscillatory. This requires that the 

value of the slope must be limited. A well-known type of that limiter is the 

minmod slope. The minmod limiter was used by a number of authors for their 

work, such as in [1, 4, 5, 10, 11, 16]. In this paper, we use the following minmod 

limiter as in [5]:  
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) , (11) 

where             
 

 
(sgn( )+sgn( ) )    | | | | . Note that if   

    for 

all  , then the space discretization becomes first order. 

In order that the finite volume method is able to solve the steady state 

problems (as well as unsteady state problems), we use the central semi discrete 

scheme. Here we implement a numerical flux,  
  

 

 

     as in [7] and numerical 

source terms,  ̅ 
 , as given in [5]. This scheme is then  
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(13) 

For simplicity, we apply the forward Euler method to solve equation (12). 

 

 

4 Numerical Results 

 
In this section we present numerical results for three test cases, namely  
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(a) the steady state of a lake at rest, (b) the steady state of moving water and (c) an 

unsteady state of dam break problem. We compare the results of first order 

discretization in space (Method I) and those of second order spatial discretization 

(Method II).  

Our numerical setting is as follows. We test the finite volume method for 

the following three cases using the uniform cells. The number of cells (   are 

chosen to be 100, 200, 400, 800, 1600, 3200. For the time step, we take uniform 

          . We calculate the numerical error and the convergence rate. To 

quantify numerical errors    , we use the    absolute error  

  
 

 
 ∑ |        |

 
     (14) 

where       and    are the exact and numerical solution at   , respectively. To 

compute the convergence rate, we use the following formula [14]  

Rate   
 

   
∑   

   
  (15) 

where 
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   (
   

     
)
.  (16) 

Here    is the error at the  th cell. All quantities are measured in SI units. 

Therefore, any omitted units should be noted to have SI units.  

 

 

(a). The steady state of a lake at rest 

The test of a lake at rest problem is intended to see if the above finite 

volume method is able to resolve the steady state of still water. We follow the test 

presented in [3]. Consider a lake with 1500 m of length. At the downstream 

boundary the water level is imposed to be 12 m and at the upstream there is no 

discharge. The initial condition is water at rest at the level of 12 m. The analytical 

solution is obviously 

 water at rest: discharge and flow velocity are zero, 

 flat free surface: water level stays at the initial level of 12 m. 

We consider the geometry as given in Figure 1 and the complete description of this 

geometry (see [3]) is given in the following Table 1.  

 

Table 1. Complete description of the geometry. Here x is abscissa of B and B(x) is 

value of B function at x point. Both x and B(x) are measured in meters. 

 
x 0 50 100 150 250 300 350 400 425 435 450 470 475 500 505 

     0 0 2.5 5 5 3 5 5 7.5 8 9 9 9 9.1 9 

x 530 550 565 575 600 650 700 750 800 820 900 950 1000 1500 

     9 6 5.5 5.5 5 4 3 3 2.3 2 1.2 0.4 0 0 
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Figure 1. The geometry profile of the lake at rest. 

 

 
Figure 2. Stage, momentum and velocity of lake at rest problem by Method I. 

Here we use 400 cells and final time 10 seconds. 

 

We confirm that both methods are well-balanced, that is, the steady state of 

the lake at rest is preserved up to discrete level, see Figure 2 for the stage, 

momentum and velocity produced by Method I. We note that for that scale, Method 

II generates the same plots. These results are calculated using 400 cells with final 

time 10 seconds.   

(b). The steady state of moving water over a bump 

This test of steady flow over a bump is intended to verify if the numerical  
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method can resolve the steady state of moving water. We use the following data 

geometry [3]. The channel length is 25 m (meter) and the bottom equation is    

     {
 

               
     
     

                      
       

 (17) 

The boundary and initial conditions are as follow. At downstream, the water 

level is imposed to be 2 m. At upstream, the water discharge is imposed to be 4.42 

m
3
/s (s= second). Initially, we have a constant water level which is equal to the level 

imposed downstream with discharge equals to zero. The stage, momentum and 

velocity obtained by Method II at final time 30 seconds are plotted in Figure 2. It is 

seen that the numerical solutions agree very well with the exact solution. We note 

that Method I also generates the same plot. However, detail analysis shows that 

Method II has much better accuracy as shown in Table 2. 

 
Figure 3. Stage and momentum on flow of obstruction by Method II. 

Here we use 400 cells and final time 30 seconds. 

 

Table 2. The error of obstruction problems by Method I and II.  
  Method I  Method II 

N Error_w CR_w Error_Q CR_Q Error_w CR_w Error_Q CR_Q 

100 0.0053  0.0102  0.0025  0.0020  

200 0.0030 0.8210 0.0060 0.7655 0.0011 1.1844 5.3031e-004 1.9151 

400 0.0015 1 0.0032 0.9069 5.0682e-004 1.1180 1.3496e-004 1.9743 

800 7.8534e-004 0.9336 0.0016 1 2.4255e-004 1.0632 3.4005e-005 1.9887 

1600 3.9488e-004 0.9919 8.2664e-004 0.9527 1.1855e-004 1.0328 8.5320e-006 1.9948 

Rate 0.9366  0.9063 Rate 1.0996  1.9682 

 

(c). An unsteady state of dam break problem 

The dam break problem is intended to test if the numerical method can  
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resolve unsteady flows. The topography is given by a horizontal bottom         
where       . The initial water height is given by 

        {
      

       
   (18) 

The analytical solution of this problem has been found in [17] and extended 

in [13]. The simulation results using 400 cells and final time 0.05 seconds are 

shown in Table 3 for errors and Figure 4 for stage and momentum. It is seen from 

Table 3 that Method II gives more accurate results and higher convergence rate.  

 

 

Table 3. Error of dam-break problems by Method I and II.  
 Method I Method II 

N Error_w CR_w Error_Q CR_Q Error_w CR_w Error_Q CR_Q 

100 0.1562  1.2520 0.6894 0.0479  0.3738  

200 0.0960 0.7023 0.7764 0.7773 0.0244 0.9731 0.2040 0.8737 

400 0.0571 0.7495 0.4530 0.7795 0.0110 1.1494 0.0869 1.2311 

800 0.0334 0.7736 0.2639 0.7940 0.0053 1.0534 0.0426 1.0285 

1600 0.0194 0.7838 0.1522 0.8036 0.0027 0.9730 0.0215 0.9865 

3200 0.0111 0.8055 0.0872 0.7688 0.0014 0.9475 0.0122 0.8175 

Rate 0.7629  0.7688  1.0193  0.9875 

 

 
Figure 4. Stage and momentum on simulation of dam-break problem by Method I 

and II. Here we use 400 cells and final time 0.05 seconds. 

5 Conclusions 
 

The influence of spatial reconstruction in finite volume methods when 

solving the shallow water equations has been investigated. The constant 

reconstruction for the space domain is simple and cheap to compute. However, we  
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find that linear reconstruction of the space domain has a great improvement to the 

accuracy of the methods. We conclude that the accuracy of the spatial 

reconstruction has a significant role in the accuracy of the numerical methods. 
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