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This paper proposed a control algorithm that guarantees gait tracking performance for quadruped robots. During dynamic gait
motion, such as trotting, the quadruped robot is unstable. In addition to uncertainties of parameters and unmodeled dynamics,
the quadruped robot always faces some disturbances.The uncertainties and disturbances contribute significant perturbation to the
dynamic gait motion control of the quadruped robot. Failing to track the gait pattern properly propagates instability to the whole
system and can cause the robot to fall. To overcome the uncertainties and disturbances, structured specified mixed sensitivity𝐻

∞

robust controller was proposed to control the quadruped robot legs’ joint angle positions. Before application to the real hardware,
the proposed controller was tested on the quadruped robot’s leg planar dynamic model using MATLAB. The proposed controller
can control the robot’s legs efficiently even under uncertainties from a set of model parameter variations. The robot was also able
to maintain its stability even when it was tested under several terrain disturbances.

1. Introduction

Legged robot has the advantage over wheeled robot inmotion
when the surface of workplace is not well structured [1].
Furthermore, the leg locomotion has a unique capability of
obstacles avoiding or surmounting compared to the wheeled
locomotion [2]. Therefore, the research of legged robot still
attracts interest of many researchers worldwide [3]. The
movement of the legged robot relies on the gait pattern being
implemented. Interlimb coordination manages the footfall
pattern that forms the gait pattern [4, 5]. BigDog fromBoston
Dynamics applied robust trotting gait to manage the robot
to walk or trot on any terrains [6]. Good gait tracking has
significant contribution to maintaining the center of mass
(CoM) of the trunk to stay inside the stability margin. In
trotting gait, when the stance or swing diagonal legs do
not follow the gait trajectory, the trunk becomes unstable.
The trunk depends upon the robot’s pitch and roll angles.
Body pitch and roll angle significantly affect the motion

control and overall stability [7]. Golubovic and Hu improved
quadruped robot’s gait through an evolutionary algorithm
[8]. Chung et al. proved that their gait designmethod enabled
a steady hexapod walking even on a rugged terrain [9].
Ugurlu et al. [10] state that, according to some experiments
with their HyQ quadruped robot, considering only sagittal
motion is enough to achieve stable trot walk. Therefore it
does not have to sway in lateral direction following Yoneda
and Hirose method [11] to stabilize the trot. Since it only
incorporates joints in sagittal planar motion then it is clear
that the gait tracking performance is important. Some planar
motion studies in sagittal plane to control quadruped robot
have been conducted also in [12, 13], but no real hardware
implementation has been reported.

This research proposes a robust gait tracking trajectory
control that guarantees robust performance and robust stabil-
ity under uncertainties, such as model dynamics or external
disturbance. The algorithm is then implemented and verified
on AIT quadruped robot.
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Figure 1: (a) AIT quadruped robot. (b) Mechanical frame design.

Table 1: Hardware specification of AIT quadruped robot.

Specification Value
Length 400mm
Width 281mm
Height 285mm
Weight 10,25 kg
Battery 12V × 2
Degree of freedom 12 DoF
DC motor power 18W × 8, 25W × 4

2. Quadruped Robot Mechanical Structure

The quadruped robot is made of steel and aluminium frame.
It has 12 degrees of freedom, where there is 3 degrees of
freedom on each leg. The overall specification is given in
Table 1.

AITquadruped robot and itsmechanical framedesign are
shown in Figure 1. The detail of the kinematic design and the
D-H parameters of the leg is shown in Figure 2.

Based on the reference frames embedded at the joints of
the robot, the D-H parameters are given in Table 2.

The homogenous transformation matrices of the quad-
ruped robot are obtained:
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and 𝑑 = (𝑥, 𝑦, 𝑧)𝑇 is the foot position vector, where

𝑥 = cos 𝜃
1
(𝑎
3
cos (𝜃

2
+ 𝜃
3
) + 𝑎
2
cos 𝜃
2
+ 𝑎
1
) , (3)

𝑦 = sin 𝜃
1
(𝑎
3
cos (𝜃

2
+ 𝜃
3
) + 𝑎
2
cos 𝜃
2
+ 𝑎
1
) , (4)

𝑧 = 𝑎
3
sin (𝜃
2
+ 𝜃
3
) + 𝑎
2
sin 𝜃
2
. (5)

Inverse kinematics of the robot’s leg are analyzed to determine
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From (11) [14],
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Table 2: D-H parameters of AIT quadruped robot.
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Figure 2: D-H parameters of AIT quadruped robot’s leg.

Substitute the value of 𝜑 and 𝑟 in (14):
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There are two solutions. The valid solution depends on the
mechanical constraints.
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3. Quadruped Robot Control Architecture

The quadruped robot control architecture is divided into two
levels: high level control and low level control. The high
level control manages the behavior of the robot including the
gait generation and balancing control. The low level control
is dedicated to controlling the leg’s joint position control.
The low level controller receives commands from the high
level controller to manage the legs positions. The low level
controller is required to track the commanded gait trajectory.
The proposed robust controller will be implemented in
the low level control. The overall control strategy for the
quadruped can be seen in Figure 3.
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Figure 3: Control block diagram of the quadruped robot, where 𝑃
𝑑
, 𝜃
𝑑
, and 𝜃out, respectively, denote foot position reference, joint angle

reference, and actual joint angles.

3.1. Balancing Control. Quadruped robot is supported by
only two legs in some part or whole phase while walking in
dynamic trot gait. The robot starts to fall sideways when the
diagonally paired swinging legs rise. When the quadruped
trots it can be modeled as biped [15]. Figure 4 shows in detail
how it can be modeled as biped. As the diagonally paired leg
always moves at the same time with the same trajectory then
it acts as one of the biped’s legs. The center of mass of the
quadruped trunk becomes the pointmass of the bipedmodel.

Many researchers conduct balancing control of biped
using linear inverted pendulum model (LIPM) [16–18]. In
this research we also use LIPM to balance the quadruped
after being simplified into biped model by employing ZMP
concept.

Suppose Center of Gravity (CG) of a massless legs
compass biped travels horizontally, and a force F and a
moment M act on the CG. According to Yoneda and Hirose
[11], if the friction between the leg and the ground is high,
ZMP is the point on the ground at which the moment
M and the force L acting on the CG can be resisted by
applying a force only without moment. They also introduce
ZMP balancing for quadruped robot by applying dynamic 𝑦-
directional translation of the body [19].They tried to keep the
ZMP staying in the supporting line made by the diagonally
paired legs.

ZMP general equations are
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where 𝑥ZMP and 𝑦ZMP are the coordinates for the ZMP and
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Figure 4: Simplifiedmodel of trotting quadruped into bipedmodel.

where 𝑥cg and 𝑧cg denote the center of gravity position of the
pendulum single mass. In our case the trunk of the robot
is maintained with constant height all the time; then the
equation becomes

𝑥ZMP = 𝑥cg −
�̈�cg𝑧cg

𝑔
,

𝑦ZMP = 𝑦cg −
�̈�cg𝑧cg

𝑔
.

(22)

ZMP criterion is based on its position in a supporting
polygon. In real application of quadruped trot gait, the
supporting line from the diagonally paired legs is not a perfect
thin line segment but a supporting stripe because the foot that
touches the ground has area [20]. The geometry of the AIT
quadruped foot is shown in Figure 5.The width of the shoe is
30mm and the round surface allows the foot to make wider
contact with the ground along its rotation while walking to
about 8mm.

From the geometry of the foot, dimension of the robot,
and trot gait parameters, the supporting stripe of the paired
diagonal legs and the ZMP reference trajectory can be
designed. The detail of the ZMP reference trajectory and the
supporting stripes can be shown in Figure 6.

With the foot stepping area of 30mm × 8mm, it forms
a significant supporting stripe as the supporting polygon for
the ZMP.With stride length of 30mmwe can design the ZMP
trajectory to stay on a straight line along the 𝑥-axis, where 𝑥 is
the axis along the direction ofmoving and𝑦 is the axis parallel
to the lateral motion.
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Figure 5: Foot geometry of AIT quadruped and area contact with the ground.
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Figure 6: Supporting stripe as the supporting polygon for the ZMP. The ZMP trajectory can be made straight along the 𝑥-axis.

Overall balancing is decoupled into transverse and sagit-
tal plane control. The CoM of the robot will be moved in
𝑥-𝑦 plane of the robot to the predefined trajectory. For the
lateral motion in the transverse plane the robot is modeled as
compass biped model.

3.2. Robust Control. As previously stated, trotting control of
a quadruped robot can be done by considering its sagittal
motion only because the diagonally paired legs equally
balance the trunk while walking [10]. Therefore, only joints
on the sagittal plane, that is, hip and knee joints for flex-
ion/extension, will be considered. Therefore, the robot trot-
ting motion is done by controlling each foot to form a certain
planar gait trajectory. Hip joint for abduction/adduction is
not included because it is responsible for lateral motion

only, for example, while balancing and turning. Control
of two-degrees-of-freedom leg with hip and knee joints to
follow such planar gait trajectory is considered as a two-
link manipulator control. Figure 7 shows two-link kinematic
configuration and example trajectory of half-sinusoidal gait
pattern.

Lagrange equation of the two-link manipulator is
expressed in (23) with𝑀, 𝐶, and 𝐺 as the mass, Coriolis, and
gravity matrix, respectively, and 𝜏 is the torque:
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Figure 7: Half-sinusoidal gait pattern and kinematic design of two-
link planar manipulator representing each leg of the robot.
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with𝑚
𝑗
, 𝑙
𝑗
, and 𝜃

𝑗
are the mass, length, and angular position

of link 𝑗th.
The two-linkmanipulator that represents the planar leg in

sagittal plane consists of two DCmotors with potentiometers
as the position sensors. The motors are controlled using
Arduino UNO microcontroller and VNH30SP DC motor
driver Arduino shield circuit. The detailed diagram of the
system is shown in Figure 8(a). Overall electronic circuit
diagram of the quadruped robot is shown in Figure 8(b).

The system is a nonlinear and coupled dynamic system.
It needs to be linearized in order that linear 𝐻

∞
robust

controller can be applied. Feedback linearization using Com-
puted Torque Control method is applied. Computed Torque
Control is a traditional technique for manipulator control
[14, 21–23].Thismethod transforms amultivariable nonlinear
plant into a set of decoupled linear systems and provides good
control performance when there are no uncertainties from
external disturbance and unmodeled dynamics [24]. Block
diagram of the feedback linearization of the quadruped robot
is shown in Figure 9. The linear robust controller is in the
outer loop, while the coupled nonlinear system is in the inner
loop [23].

𝐻
∞

is an optimal controller that works based on the
optimal condition among the bonded uncertainties that may
happen. In an ideal condition, a simple PD controller may
have better performance than the robust controller. However,
in reality the robot does not always work in ideal condition.
In other words, the robust controller does not provide the
best performance of the system but provides the optimal
performance in the range of uncertainties [25].

4. Structure Specified Mixed Sensitivity 𝐻
∞

Robust Control

Feedback linearization is applied to decouple the system.The
leg in planar motion acts as a two-link manipulator system.

Each link is actuated by a DC motor. Total inertia of the
DC motor system is the combination of inertia from the
rotor and load attached to the motor shaft. Likewise, model
uncertainties of the hip motor and the knee motor are also
different. The hip joint has more load as it carries the whole
leg and foot as its load.Therefore, the two joints have different
transfer functions. Figure 10 shows the equivalent electrical
and mechanical model of a DC motor.

Themotor torque is proportional to the armature current:

𝑇 = 𝐾𝑖. (25)

The back emf is proportional to the angular velocity of the
rotor:

𝑒 = 𝐾�̇�. (26)

From Figure 10 and by considering (25) and (26), transfer
function of the DC motor can be derived as

𝐽�̈� + 𝑏�̇� = 𝐾𝑖,

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑉 − 𝐾�̇�,

(27)

where 𝑇 is motor torque, 𝐾 is motor constant, 𝑖 is motor
current, 𝑒 is back emf constant, 𝑅 is armature resistance,
𝐿 is armature inductance, 𝐽 is rotor inertia, 𝑏 is viscous
friction constant, 𝜃 is rotor angular position, �̇� is rotor angular
velocity, and 𝑉 is input voltage.

The transfers function of the system with input voltage
𝑉(𝑠) and output angular position Θ(𝑠) becomes

Θ (𝑠)

𝑉 (𝑠)
=
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(𝑠 ((𝐽 + 𝑏) (𝐿 + 𝑅) + 𝐾
2))

. (28)

After substitution of hip motor parameters into (28), the
nominal transfer function of the hip motor attached with
thigh structure, shank structure, and knee motor as the load
is obtained as

Θ (𝑠)

𝑉 (𝑠)

=
0.0197

1.935 exp−11𝑠3 + 1.547 exp− 05𝑠2 + 0.0003938𝑠
.

(29)

After substitution of knee motor parameters into (28), the
nominal transfer function of the knee motor attached with
the shank structure as the load is obtained as

Θ (𝑠)

𝑉 (𝑠)

=
0.0197

9.687 exp−12𝑠3 + 7.743 exp− 06𝑠2 + 0.0003938𝑠
.

(30)

4.1. Model Uncertainty. Figure 11 shows multiplicative uncer-
tainty affecting a single-input single-output system. 𝐺

𝑛
(𝑠) is

the nominal system,Δ𝐺(𝑠) is the system perturbation,𝐾(𝑠) is
the controller, 𝑟(𝑡) is the reference input, 𝑒(𝑡) is the tracking
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(5) Gait generator
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Figure 8: Controller architecture of the quadruped robot. (a) Hip and knee controller block diagram. (b) Overall quadruped robot controller
block diagram.
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Figure 9: Feedback linearization block diagram of the gait trajectory control.

error, 𝑑(𝑡) is the external disturbance, and 𝑦(𝑡) is the output
of the system.

The perturbed system is expressed by

�̃� (𝑠) = 𝐺
𝑛
(𝑠) (1 + Δ (𝑠)) . (31)

Thus, the multiplicative system perturbation is determined
from

Δ (𝑠) = (
�̃� (𝑠)

𝐺
𝑛
(𝑠)

− 1) . (32)
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a DC motor.
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Figure 11: Single-input single-output controlled systemwith pertur-
bation.

Model uncertainty exists due to inaccuracy and variation of
inertial and noninertial matrices of the manipulator model
during system identification process [24]. The controller
synthesis includes ±30% of load inertia and motor armature
resistance variation as the model uncertainties in the form
of multiplicative perturbation. Singular plot of model uncer-
tainty Δ(𝑠) for the hip joint control is depicted in Figure 12,
while singular plot of model uncertainty Δ(𝑠) for the knee
joint control is shown in Figure 13.

4.2. Mixed Sensitivity 𝐻
∞

Control. If a controller, 𝐾(𝑠), is
designed so that the nominal closed loop system (Δ(𝑠) = 0

and 𝑑(𝑡) = 0) is asymptotically stable, the robust stability per-
formance against external disturbance satisfies the following
inequality [25]:

𝐽
∞,𝑎

=
𝑊𝑠 (𝑠) 𝑆 (𝑠)

∞
< 1. (33)

A known stable function 𝑊
𝑠
(𝑠) is used to attenuate exter-

nal disturbance. The multiplicative perturbation is upper
bounded by a known stable function𝑊

𝑡
(𝑠):

Δ (𝑠)
∞
≤ 𝑊
𝑡
(𝑠)
∞
. (34)

The robust stability against system perturbation satisfies the
following inequality:

𝐽
∞,𝑏

=
𝑊𝑡 (𝑠) 𝑇 (𝑠)

∞
< 1, (35)

where𝑊
𝑠
(𝑠) is sensitivity weight,𝑊

𝑡
(𝑠) is transmissibility or

the complementary sensitivity weight, 𝑆(𝑠) is the sensitivity
function, and 𝑇(𝑠) is the complementary sensitivity function.
Structure of the controlled system is shown in Figure 14.
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Figure 12: Model uncertainty of hip motor and its load singular
plots.
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Figure 16: Complementary sensitivity weight𝑊
𝑡
(𝑠) and the system

uncertainty of the hip joint control.

Following Skogestad’s method [25], after parameters sub-
stitution, the sensitivity weights (𝑊

𝑠
(𝑠)) for the hip and knee

motors are

𝑊
𝑠
(𝑠) =

0.5𝑠 + 1

𝑠 + 0.001
. (36)

Singular value plot of inverse of the sensitivity weight is
shown in Figure 15.

The plot of the complementary sensitivity weight and the
system uncertainty singular value is shown in Figure 16. The
complementary sensitivity weight 𝑊

𝑡
(𝑠) of the hip control

system is obtained as

𝑊
𝑡
(𝑠) =

5.006𝑠
2

+ 24.14𝑠 + 3.02

𝑠2 + 102.4𝑠 + 250.5
. (37)
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Figure 17: Complementary sensitivity weight𝑊
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(𝑠) and the system

uncertainty of the knee joint control.
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Figure 18: The sensitivity, complementary sensitivity, and their
inverse of the weight singular values of the hip joint.

Meanwhile complementary sensitivity weight 𝑊
𝑡
(𝑠) of the

knee control system is obtained as

𝑊
𝑡
(𝑠) =

2.996𝑠
2

+ 363.3𝑠 + 190.8

𝑠2 + 259.9𝑠 + 15040
. (38)

The plot of the complementary sensitivity weight and the
system uncertainty singular value is shown in Figure 17.

Figures 18 and 19 show that the singular values of the
inverse of the weight functions on the hip and the knee
joints are larger than the sensitivity and the complementary
sensitivity singular values which confirm |𝑊

𝑠
𝑆| < 1 and

|𝑊
𝑡
𝑇| < 1.
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Figure 19: The sensitivity, complementary sensitivity, and their
inverse of the weight singular values of the knee joint.

In this research, a PID controller structure is selected as
the structure of the proposed controller:

𝐾 (𝑠) = 𝐾
𝑝
+
𝐾
𝑖

𝑠
+ 𝐾
𝑑
⋅ 𝑠, (39)

where 𝐾
𝑝
is proportional constant, 𝐾

𝑖
is integral constant,

and𝐾
𝑑
is derivative constant.

4.3. Differential Evolution. Differential Evolution (DE) is an
evolutionary based optimization algorithm [26].The optimal
controller gains for the structure specified 𝐻

∞
controller

are obtained by using DE [27]. Parameters of DE are set as
follows: number of population = 20, differential weight = 0.8,
and crossover probability = 0.7. Figures 20 and 21 show the
evolution of the hip and knee controller parameters during
the optimization of 𝐽

∞,𝑎
and 𝐽
∞,𝑏

by using DE.
Derived from the result, equation of controller for the hip

motor is expressed by

𝐾 (𝑠) = 0.3424 +
0.0246

𝑠
+ 0.0133𝑠. (40)

Derived from the result, equation of controller for the knee
motor is expressed by

𝐾 (𝑠) = 0.9986 +
0.029

𝑠
+ 0.0309𝑠. (41)

5. Simulation and Experimental Results

Figure 22 shows the simulation result of the hip joint
controlled by the proposed controller with a step input
under uncertainty. The controller provided efficient control
of the system. Settling times of the system response under
uncertainty were still admissible even though almost half of
the responses have overshoot. The maximum overshoots are

around 10%.Themagnitude of the overshoots and the settling
times are small compared to the gait cycle period.

As previously explained, without uncertainty, even a PD
controller can be optimally set to obtain better response than
any robust controllers. Figure 23 shows the response of the
hip nominal model without uncertainty controlled by a well-
tuned PID controller. It shows that the system is able to
follow the step input much better than the robust controller.
However, Figure 24 shows various responses of the system
with a well-tuned PID controller under uncertainty. Some
graphs show better responses than the proposed controller.
However, in some conditions, the system has significant
steady-state error. For the worst condition, the well-tuned
PID controller cannot handle the uncertainty.

Figure 25 shows the simulation result of the proposed
controller in controlling knee joint. The result shows better
performance in terms of settling time and overshoot com-
pared to the hip joint because of lower value of the shank
load compared to the hip load. However, similar to the hip
system, Figure 26 shows that the well-tuned PID controller
obtains better performance than the proposed controller on
the nominalmodel. However, Figure 27 shows that, under the
same range of uncertainty, the proposed controller performs
better than the well-tuned PID. Similar to the hip joint, it has
steady-state error under some model uncertainty.

To verify the simulation result, we conducted three
experiments:

(1) In the first experiment, individual leg was tested
using both the proposed controller and well-tuned
PID controller following a step trajectory input. To
observe robustness to model uncertainty, inertia of
the leg was varied.

(2) In the second experiment, hip and knee joint angles
were measured while trotting forward to see the
performance of the proposed controller tracking the
gait trajectory pattern. To observe robustness to the
environment uncertainty, walking surface for the
quadruped was varied.

(3) To see the contribution of the gait improvement
control to the overall robot stability, the third experi-
mentwas conducted bymeasuring the trunk behavior
when the quadruped trotted using the proposed
controller combined with the balancing algorithm.
The measurements were done using Inertial Mea-
surement Unit (IMU) and visual inspection using
camera recorder. The quadruped robot walked in
three different surfaces during the test.

Inertia parameter as one of the system model parameters
was varied into three values: nominal, minimum, and max-
imum value. For the maximum value, the tip of the shank
or the shoe was added with a point mass so the inertia will
increase around 30% similar to the value on the simulation
test. The additional inertia on the tip is considered as a
point mass inertia with amount of𝑚𝑟2.Theminimum inertia
cannot be set similar to the simulation which is reduction of
30% inertia. Minimum inertia was set by replacing the metal
shoe with light nonmetal shoe to get the mass reduction.
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Figure 20: Evolution of parameters during optimization.

By assuming inertia reduction of a point mass on the tip
of the shank, 10% reduction was set on the leg. Nominal
inertia means that there is no addition or reduction of mass
to the leg. To limit the consideration just to the mass addition
and reduction uncertainty only, the individual leg tests were
conducted on the leg maximum stretch position. This fixed
orientation was chosen because, during the trot, different
configuration of thigh and shank along the trajectory will
generate inertia variation to the hip.

Figures 28 and 29 show the comparison of the proposed
controller and well-tuned PID controller performance con-
trolling hip and knee joint position, respectively. Reference
signal was set as a step function with the amount of 30
degrees’ angle. The experiment was conducted under three
different values of leg inertia. Both Figures 28 and 29 consist
of three subparts. Part (a), part (b), and part (c) represent the
experiment test on the nominal leg inertia value, minimum
leg inertia value, andmaximum leg inertia value, respectively.

Figure 28 shows system responses of hip joint control
using the proposed controller and well-tuned PID controller.

Figure 28(a) shows that, on the nominal model, well-tuned
PID controller provides a good response as it has no over-
shoot, short settling time, and no steady-state error. It even
has better response than the proposed controller. In this
case, the well-tuned PID controller works better because
the controller constants have been properly tuned with the
nominal model (without uncertainties). Figure 28(b) shows
that the well-tuned PID controller has higher overshoot but
better settling time than the proposed controller. It might
be because the 10% of mass reducing did not significantly
disturb the system as it happened on the simulation where
therewas 30%ofmass reducing.However, Figure 28(c) shows
that addition of 30% of inertia made the well-tuned PID have
lower settling time than the proposed controller. We can see
from the three graphs that there are no big variances, for
example, on the rise time and overshoot in the proposed
controller output response. The settling time became longer
when the leg inertia was in the maximum value. However,
there were no steady state errors in all of the three inertia
variation experiments.
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Figure 21: Evolution of parameters during optimization.
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Figure 23: Simulation result of a well-tuned PID controller on hip
nominal model.
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Figure 24: Simulation result of a well-tuned PID controller on hip
model under uncertainty.

Figure 29 shows system responses of knee joint control
using the proposed controller and well-tuned PID controller.
Figure 29(a) shows that, on the nominal model, well-tuned
PID controller and the proposed algorithm both perform
well and only the well-tuned PID slightly has smaller settling
time. Figure 29(b) shows that in the second case, where the
system has theminimumvalue of inertia, well-tuned PID and
the proposed controller have almost the same settling time.
However, the proposed controller has smaller overshoot.
Figure 29(c) shows that the knee joint control system of
the well-tuned PID has steady-state error when the inertia
is in the maximum value. The proposed controller gives a
satisfactory result where there is no steady-state error, short
rise time without overshoot, and short settling time.

Overall experiment shows that the proposed controller
has less response fluctuation compared to the well-tuned PID
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Figure 25: Simulation result of the proposed controller on the knee
joint under uncertainty.
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Figure 26: Simulation result of a well-tuned PID controller on the
nominal model of the knee joint.
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Figure 27: Simulation result of a well-tuned PID controller on the
knee joint under uncertainty.
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Figure 28: Comparison of hip joint position control performance using the proposed controller and well-tuned PID controller. (a)
Comparison on nominal inertia value. (b) Comparison on minimum inertia value. (c) Comparison on maximum inertia value.

controller and always gives satisfactory result in all conditions
of model parameter change.

Hip and knee joint angles as the inverse kinematic result
of half-sinusoidal foot trajectory pattern were sent to the
controller to achieve trotting gait of the quadruped. Trot gait
parameters were set as follows: duty factor 𝛽 set at 50% with
stride length of 30mm, CG height constant set at 220mm,
swing height 30mm, and trot frequency at 2Hz. Besides
inertia uncertainty from the dynamics of the body, external

disturbance also arises from three different walking surfaces
which are hard tiles floor,medium soft carpet, and grass.Hard
tile floor provides hard landing impact on the legs. Grass floor
provides more damping to the legs while trotting but more
friction while swinging. Carpet floor is softer and has more
friction compared to the tile floor.

Figure 30 shows performance of the proposed controller
to control hip and knee joint angles in the presence of those
uncertainties. Set points are set of angles generated from the
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Figure 29: Comparison of knee joint position control performance using the proposed controller and well-tuned PID controller. (a)
Comparison on nominal inertia value. (b) Comparison on minimum inertia value. (c) Comparison on maximum inertia value.

gait generator block that the joints should follow. Hip joint
control has better performance in terms of response time
in tracking the trajectory compared to knee joint control.
It is because they have different set point pattern. Hip has
fewer sudden changes of the angle command unlike on the
knee set point. Yet, the knee joint settling time actually is
still considerably small because the gait frequency is 2Hz. It
means that completing one single gait needs 0.5 seconds; then

the longest settling time is around 0.2 seconds. However, the
knee joint control responses have better tracking result as the
graphs stay close to each other along the trajectory. Overall,
the output angle patterns are consistent along the repetition;
it means that the gait pattern tracking is also consistent. The
graphs also show that the three outputs from three different
walking surface tests have almost the same trajectories. It
indicates that the gait trajectory tracking is well maintained
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Figure 30: Gait trajectory tracking performance when trotting on
three different surfaces: hard tiles, grass, and carpet.
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Figure 31: Trunk attitudes when quadruped robot trots on hard tile
floor.

by the proposed controller even in the presence of previously
mentioned uncertainties.

The last experiment is to test the gait tracking control
combined with the balancing algorithmwhen the quadruped
also trots in different types of terrain including hard tile floor,
grass, and carpet floor. Figures 31–33 show the experimental
results of trunk attitude when the quadruped robot walks
on different types of terrain. The result shows that the trunk
attitude is not affected much by the variation of the terrains.
Figure 31 shows that the fluctuation of the pitch and roll
angle is around ±5 and ±6.5 degrees, respectively. But, on the
grass, the robot has smaller fluctuation both of pitch and of
roll angle of the trunk. Figure 32 shows around ±4 and ±5
degrees’ angle fluctuation of pitch and roll angle, respectively,
when the robot trots on the grass. Figure 33 shows different
case when the quadruped trots on carpet surface. It has ±4.5
degrees of pitch angle fluctuation and around ±5.5 degrees of
roll angle fluctuation. When the surface is hard such as tiles,
the leg landing impact force is propagated through the entire
structure that caused bigger disturbance to the robot. Grass
damped the vibration from the leg landing impact and stance
legs transition during the trot. In between those characteris-
tics is the carpet, which is soft but the floor underneath is also
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Figure 32: Trunk attitudes when quadruped robot trots on grass.
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Figure 33: Trunk attitudes when quadruped robot trots on carpet
floor.

hard. Considering those surface characteristics and resulting
behavior, the quadruped is considered to be able to walk
stably using the proposed robust gait controller combined
with the balancing algorithm.

Figure 34 shows snapshot images of the trunk attitude
when the robot was trotting on the hard tile floor. A cross
mark was placed on the trunk. The robot was recorded by a
camera to get a fixed height of the reference cross mark as
indicated by a solid line in the images.The dashed line shows
the trunk attitude in vertical direction monitored from the
cross mark position. Here we did not have magnitude of the
tracking error. However, it was shown visually that there is no
significant oscilation on the trunk during the trot.

6. Conclusion

The proposed structure specified mixed sensitivity 𝐻
∞

con-
troller was able to track the gait trajectory of the quadruped
robot with unmodeled dynamics, uncertainty, and distur-
bance. MATLAB simulation showed that the system con-
trolled by the proposed controller could be tracked following
the step input without steady-state error with satisfactory rise
time and settling time. Most of the responses had less than
0.5 s settling time and less than 10% overshoot. The settling
times and the overshoots periods were considerably short
compared to the gait cycle period.

Individual leg test with inertia variation of 10% reduc-
tion (minimum inertia), nominal value, and 30% addition
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Figure 34: Snapshot images of the trunk attitude.

(maximum inertia) showed that, on the nominal cases, both
controllers provided satisfactory performances. When the
inertia was set to minimum, the well-tuned PID controller
had longer settling time compared to the proposed controller,
while, in the maximum inertia experiment, the well-tuned
PID had 5% of steady-state error while the proposed con-
troller performed satisfactorily with small rise time but no
overshoot and short settling time without steady-state error.

Furthermore, the proposed controller also worked well
to control the legs when the quadruped robot trotted on
different terrains, such as hard tile floor, grass, and carpet.The
proposed controller was able to track the gait trajectory over
the three types of those walking surfaces. The trunk attitude
was maintained in small range of variation. With roll angle
variation in average around ±5 degrees, the quadruped robot
still could perform a good shape of trotting and was far from
the critical angle that made the robot tip over. The variation
of the quadruped robot’s trunk pitch angle was less than that
in the trunk roll angle.

It was proved that the structure specified 𝐻
∞

controller
is a good controller especially for industrial usage because
it simplifies the high order controller into familiar controller
structure, such as PID, but still provides its robust character-
istic.
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