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 Riccati differential equations have played important roles in the theory and 

practice of control systems engineering. Our goal in this paper is to propose a 

new multistage successive approximation method for solving Riccati 

differential equations. The multistage successive approximation method is 

derived from an existing piecewise variational iteration method for solving 

Riccati differential equations. The multistage successive approximation 

method is simpler in terms of computing implementation in comparison with 

the existing piecewise variational iteration method. Computational tests show 

that the order of accuracy of the multistage successive approximation method 

can be made higher by simply taking more number of successive iterations in 

the multistage evolution. Furthermore, taking small size of each subinterval 

and taking large number of iterations in the multistage evolution lead that our 

proposed method produces small error and becomes high order accurate. 
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1. INTRODUCTION  

Mathematical modelling and simulation have been applied extensively in the areas of 

telecommunication [1], [2], computing [3]-[5], electronics [6], [7] and control [8], [9]. One of important 

models in these areas is the Riccati differential equation. Riccati differential equations occur in control 

systems engineering. Control systems engineering itself has played important roles in electrical engineering 

and related areas [10]. Riccati differential equations are quadratic with respect to the unknown function. 

These equations are named after a Venetian mathematician, Jacopo Francesco Riccati (1676–1754) [11]. The 

term Riccati equation is also used to refer to an analogous matrix equation occuring in quadratic control 

problems. The non-dynamic steady-state version of them is referred to as the algebraic Riccati equation. 

Riccati equations and their properties are applied in recent publications [12]-[15]. A number of 

studies relating to Riccati equations are also reported in the literature [16]-[21]. Due to the importance of 

Riccati equations, we focus on proposing a computing method for solving Riccati differential equations.  

Amongst available methods in the literature, successive approximation and variational iteration 

methods are able to provide accurate solutions near the initial point of the domain. Successive approximation 

methods are successful in solving various problems [22]-[23]. Variational iteration methods are also powerful 

in solving a wide variety of mathematical models [24]-[27]. Interestingly, these two methods (successive 

https://creativecommons.org/licenses/by-sa/4.0/
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approximation and variational iteration methods) are identical for a particular setting, as reported by 

Jafari [28]. 

Our contribution (our goal) in this paper is to propose a new multistage successive approximation 

method for solving Riccati differential equations. We recall an existing piecewise variational iteration 

method due to Geng, et al. [29]. We modify the method of Geng, et al. [29] to obtain the multistage 

successive approximation method. The modification leads to a simpler implementation of the resulting 

method in terms of computation. Riccati differential equations have the following form 

 
𝑑𝑦

𝑑𝑥
= 𝑝(𝑥) + 𝑞(𝑥)𝑦(𝑥) + 𝑟(𝑥)𝑦2(𝑥) (1) 

 

on 0 < 𝑥 ≤ 𝑋, with initial condition 

 

𝑦(0) = 𝑦0 (2) 

 

where 𝑥 is the free variable, 𝑦(𝑥) is the unknown function dependent on 𝑥, 𝑋 is a known positive constant, 

and 𝑦0 is a given constant. We note that if 𝑝(𝑥) = 0, (1) becomes a Bernoulli equation. If 𝑟(𝑥) = 0, (1) 

reduces to a first order linear ordinary differential equation. The Riccati differential equation with the case of 

𝑝(𝑥) = 0 or 𝑟(𝑥) = 0 can be solved using standard methods for ordinary differential equations. In this paper, 

we consider that 𝑝(𝑥) ≠ 0 and 𝑟(𝑥) ≠ 0. Due to the important roles of Riccati differential equations in 

control systems engineering, a simple but accurate solver is desired. Providing a simple and accurate method 

for solving Riccati differential equations is the aim of this paper.  

This paper is organised as follows. We explain the problem that we want to tackle in section 2. We 

propose a multistage successive approximation method for solving Riccati differential equations in section 3. 

Results and discussion are provided in section 4. The paper is concluded in section 5. 

 

 

2. PROBLEM DESCRIPTION 

In this section, we recall an existing piecewise variational iteration method for solving Riccati 

differential equations due to Geng, et al. [29]. The variational iteration method itself, for the general case, 

was originally proposed by He [30]-[32]. 

Considering Riccati differential (1) with initial condition (2) on domain 0 ≤ 𝑥 ≤ 𝑋, Geng, et al. [29] took the 

correction functional 

 

𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) + ∫ 𝜆(𝜉) [
𝑑𝑦𝑛(𝜉)

𝑑𝜉
− 𝑞(𝜉)𝑦̅𝑛(𝜉) − 𝑟(𝜉)𝑦̅𝑛

2(𝜉) − 𝑝(𝜉)] 𝑑𝜉,
𝑥

0
 (3) 

 

where 𝑦̅𝑛 is a restricted variation, that is, 𝛿𝑦̅𝑛 = 0; 𝜆(𝜉) is a Lagrange multiplier, which should be determined 

optimally. Taking the variation of (3), we obtain 

 

𝛿𝑦𝑛+1(𝑥) = 𝛿𝑦𝑛(𝑥) + 𝛿 ∫ 𝜆(𝜉) [
𝑑𝑦𝑛(𝜉)

𝑑𝜉
− 𝑞(𝜉)𝑦̅𝑛(𝜉) − 𝑟(𝜉)𝑦̅𝑛

2(𝜉) − 𝑝(𝜉)] 𝑑𝜉,
𝑥

0
 (4) 

 

Simplifying (4), we obtain 

 

𝛿𝑦𝑛+1(𝑥) = 𝛿𝑦𝑛(𝑥) + 𝛿 ∫ 𝜆(𝜉) [
𝑑𝑦𝑛(𝜉)

𝑑𝜉
] 𝑑𝜉,

𝑥

0
 (5) 

 

Integrating (5) by parts, we have 

 

𝛿𝑦𝑛+1(𝑥) = 𝛿[(1 + 𝜆(𝑥))𝑦𝑛(𝑥)] + 𝛿 ∫ 𝑦𝑛(𝜉)𝜆′(𝜉)𝑑𝜉,
𝑥

0
 (6) 

 

Considering (6), we come to the following stationary conditions 

 

1 + 𝜆(𝑥) = 0, 𝜆′(𝜉) = 0. (7) 

 

Solving stationary conditions (7), we obtain that the optimal Lagrange multiplier is 

 

𝜆(𝜉) = −1. (8) 
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Therefore, with Lagrange multiplier (8), the variational iteration method due to Geng, et al. [29] is 

 

𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) − ∫ [
𝑑𝑦𝑛(𝜉)

𝑑𝜉
− 𝑞(𝜉)𝑦𝑛(𝜉) − 𝑟(𝜉)𝑦𝑛

2(𝜉) − 𝑝(𝜉)] 𝑑𝜉,
𝑥

0
 (9) 

 

which is for solving Riccati differential (1) with initial condition (2) on domain 0 ≤ 𝑥 ≤ 𝑋. 
Realising that the variational iteration method (9) produces analytical approximate solutions which 

are accurate only for points close enough to the initial position, Geng, et al. [29] implemented the method (9) 

piecewisely. By piecewisely, Geng, et al. [29] meant that the original interval 𝐼 = [0, 𝑋] was subdivided into 

a finite number of subintervals 𝐼𝑗 = [𝑥𝑗−1, 𝑥𝑗], where 𝑗 =  1, 2, 3, . . . , 𝐽 for a positive integer 𝐽. The width of 

each subinterval is assumed to be the same, that is, ∆𝑥 = 𝑥𝑗 − 𝑥𝑗−1 for all 𝑗. With this setting, we have 𝐽 + 1 

discrete points of the original interval 𝐼 = [0, 𝑋], that is, 𝑥0 = 0,  𝑥1 = ∆𝑥,  𝑥2 = 2∆𝑥, … , 𝑥𝑗 = 𝐽∆𝑥 = 𝑋. We 

denote 𝑦𝑗,𝑛(𝑥) the analytical approximate solution on the 𝑗th subinterval at the 𝑛th variational iteration. 

Suppose that the maximum number of variational iterations is 𝑁, where 𝑁 is a specified positive integer. This 

means that 𝑛 = 0, 1, 2, . . . , 𝑁. 
The piecewise variational iteration method due to Geng, et al. [29] works as follows. As the first 

step, on subinterval 𝐼1 = [𝑥0,  𝑥1], we take the initialization 

 

𝑦1,0(𝑥) = 𝑦(𝑥0) = 𝑦(0) = 𝑦0 (10) 

 

and iterations 

 

𝑦1,𝑛+1(𝑥) = 𝑦1,𝑛(𝑥) − ∫ [
𝑑𝑦1,𝑛(𝜉)

𝑑𝜉
− 𝑞(𝜉)𝑦1,𝑛(𝜉) − 𝑟(𝜉)𝑦1,𝑛

2 (𝜉) − 𝑝(𝜉)] 𝑑𝜉,
𝑥

𝑥0
 (11) 

 

for 𝑛 = 0, 1, 2, … , 𝑁 − 1. As shown in (10) and (11), as the second step, on subinterval 𝐼2 = [𝑥1,  𝑥2], we 

take the initialization 

 

𝑦2,0(𝑥) = 𝑦1,𝑁(𝑥1) (12) 

 

and iterations 

 

𝑦2,𝑛+1(𝑥) = 𝑦2,𝑛(𝑥) − ∫ [
𝑑𝑦2,𝑛(𝜉)

𝑑𝜉
− 𝑞(𝜉)𝑦2,𝑛(𝜉) − 𝑟(𝜉)𝑦2,𝑛

2 (𝜉) − 𝑝(𝜉)] 𝑑𝜉,
𝑥

𝑥1
 (13) 

 

for 𝑛 = 0, 1, 2, … , 𝑁 − 1. As shown in (12) and (13), as the next steps, on subintervals 𝐼𝑗 = [𝑥𝑗−1, 𝑥𝑗], where 

𝑗 = 3, 4, 5, … , 𝐽, we take the initialization 

 

𝑦𝑗,0(𝑥) = 𝑦𝑗−1,𝑁(𝑥𝑗−1) (14) 

 

and iterations 

 

𝑦𝑗,𝑛+1(𝑥) = 𝑦𝑗,𝑛(𝑥) − ∫ [
𝑑𝑦𝑗,𝑛(𝜉)

𝑑𝜉
− 𝑞(𝜉)𝑦𝑗,𝑛(𝜉) − 𝑟(𝜉)𝑦𝑗,𝑛

2 (𝜉) − 𝑝(𝜉)] 𝑑𝜉,
𝑥

𝑥𝑗−1
 (15) 

 

for 𝑛 = 0, 1, 2, … , 𝑁 − 1. Using (10)-(15), we obtain the solution on the whole domain. 

Now, the most expensive computation with the formulation of Geng, et al. [29] above lies on the 

part where we need to calculate the derivative 𝑑𝑦𝑗,𝑛(𝜉)/𝑑𝜉 and integrate the results from 𝑥𝑗−1 to 𝑥 ∈ 𝐼𝑗. 

These tasks are redundant. To obtain a simpler method for solving Riccati differential equations, we need to 

modify this piecewise variational iteration method of Geng, et al. [29]. This is the problem that we aim to 

solve in this paper. 

 

 

3. PROPOSED MULTISTAGE SUCCESSIVE APPROXIMATION METHOD 

In this section, we propose a modification of the piecewise variational iteration method of Geng, et 

al. [29], so that the modified method is simpler in terms of computing implementation, yet its accuracy does 

not change. We reconsider the iterative formula of the variational iteration method (9) and do the integration 

for the term having the derivative of the unknown function, so as shown in (9) becomes 
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𝑦𝑛+1(𝑥) = 𝑦0 + ∫ [𝑞(𝜉)𝑦𝑛(𝜉) + 𝑟(𝜉)𝑦𝑛
2(𝜉) + 𝑝(𝜉)]𝑑𝜉,

𝑥

0
 (16) 

 

where for 𝑛 = 0, 1, 2, … , 𝑁 − 1. Iterative formula (16) is Picard’s successive approximation method for 

Riccati differential (1). The iterative in (16) of the successive approximation method is equivalent to the 

iterative formula of the variational iteration method (9), but in (16) is simpler. 

Now, we shall implement the iterative (16) of the successive approximation method (SAM) 

piecewisely. The resulting method is called multistage successive approximation method (MSAM) for 

solving Riccati differential equations. Our MSAM works as follows. As the first step, on subinterval 𝐼1 =
 [𝑥0;  𝑥1], we take the initialization 

 

𝑦1,0(𝑥) = 𝑦(𝑥0) = 𝑦(0) = 𝑦0 (17) 

 

and iterations 

 

𝑦1,𝑛+1(𝑥) = 𝑦0 + ∫ [𝑞(𝜉)𝑦1,𝑛(𝜉) + 𝑟(𝜉)𝑦1,𝑛
2 (𝜉) + 𝑝(𝜉)]𝑑𝜉,

𝑥

𝑥0
 (18) 

 

for 𝑛 = 0, 1, 2, … , 𝑁 − 1. As shown in (17) and (18), as the second step, on subinterval 𝐼2 =  [𝑥1, 𝑥2], we take 

the initialization 

 

𝑦2,0(𝑥) = 𝑦1,𝑁(𝑥1) (19) 

 

and iterations 

 

𝑦2,𝑛+1(𝑥) = 𝑦2,0(𝑥) + ∫ [𝑞(𝜉)𝑦2,𝑛(𝜉) + 𝑟(𝜉)𝑦2,𝑛
2 (𝜉) + 𝑝(𝜉)]𝑑𝜉,

𝑥

𝑥1
 (20) 

 

for 𝑛 = 0, 1, 2, … , 𝑁 − 1. As shown in (19) and (20), as the second step, on subinterval 𝐼𝑗 =  [𝑥𝑗−1, 𝑥𝑗], we 

take the initialization 

 

𝑦𝑗,0(𝑥) = 𝑦𝑗−1,𝑁(𝑥𝑗−1) (21) 

 

and iterations 

 

𝑦𝑗,𝑛+1(𝑥) = 𝑦𝑗,0(𝑥) + ∫ [𝑞(𝜉)𝑦𝑗,𝑛(𝜉) + 𝑟(𝜉)𝑦𝑗,𝑛
2 (𝜉) + 𝑝(𝜉)]𝑑𝜉,

𝑥

𝑥𝑗−1
 (22) 

 

for 𝑛 = 0, 1, 2, … , 𝑁 − 1. Using (17)-(22), we obtain the solution on the whole domain. 

To optimise our MSAM further, in the computer implementation, we compute the successive 

approximation formula symbolically only once: 

 

𝑦𝑗,𝑛+1(𝑥) = 𝑦𝑗−1,𝑁(𝑥𝑗−1) + ∫ [𝑞(𝜉)𝑦𝑗,𝑛(𝜉) + 𝑟(𝜉)𝑦𝑗,𝑛
2 (𝜉) + 𝑝(𝜉)]𝑑𝜉,

𝑥

𝑥𝑗−1
 (23) 

 

for 𝑛 = 0, 1, 2, … , 𝑁 − 1. Then, the obtained symbolic formula from (23) is used to solve the Riccati 

differential equation on each subinterval 𝐼𝑗 consecutively for 𝑗 = 1, 2, 3, … , 𝐽. Here, we speficy that 

 

𝑦0,𝑛(𝑥0) = 𝑦0 (24) 

 

for all 𝑛. In (24) means that the given initial value is used as the starting point of solution. 

 

 

4. RESULTS AND DISCUSSION 

In this section, we provide research results on the performance tests of our proposed method and 

discuss about them. We take two computational tests, namely, a Riccati differential equation with constant 

coefficients and a Riccati differential equation involving a variable coefficient. Error on the considered 

domain is defined as the average of relative errors at all discrete points on the domain. 

 

4.1.  Riccati differential equation with constant coefficients 
As the first test, we consider the Riccati differential equation with constant coefficients [29]: 
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𝑑𝑦(𝑥)

𝑑𝑥
= 1 + 2𝑦(𝑥) − 𝑦2(𝑥), 0 < 𝑥 ≤ 4, (25) 

 

having initial condition 
 

𝑦(0) = 0 (26) 
 

The exact solution to this problem is 
 

𝑦(𝑥) = 1 + √2 tanh (√2𝑥 +
1

2
log (

−1+√2

1+√2
)). (27) 

 

Our computational experiments show that the standard SAM is not able to solve the problem on 

thewhole domain. In contrast, our proposed MSAM is able to solve the problem on the whole domain 

accurately. These phenomena are shown in Figure 1(a), where SAM and MSAM use 3 successive iterations, 

and in addition, for MSAM we use ∆𝑥 = 0.1. 

To investigate further about the performance of MSAM, we record the errors and their orders of 

convergence in Tables 1-4. We obtain that the number of successive iterations in the MSAM evolution 

determines the order of convergence of the solution. One successive iteration in the MSAM evolution leads 

that MSAM is a first order method. This is observed as ∆𝑥 approaches to zero, the order of convergence 

tends to one, as recorded in Table 1. Two successive iterations in the MSAM evolution leads that MSAM is a 

second order method, because as ∆𝑥 approaches to zero, the order of convergence tends to two, as recorded 

in Table 2. Three successive iterations in the MSAM evolution leads that MSAM is a third order method, 

because as ∆𝑥 approaches to zero, the order of convergence tends to three, as recorded in Table 3. Similarly, 

four successive iterations in the MSAM evolution leads that MSAM is a fourth order method, because as ∆𝑥 

approaches to zero, the order of convergence tends to four, as recorded in Table 4. In general, smaller ∆𝑥 

results in smaller error. Furthermore, more successive iterations results in higher order accurate method. 
 

 

Table 1. Error and order of convergence of MSAM solution for Riccati differential equation with constant 

coefficients, in which we use 1 iteration in the MSAM evolution. Error is computed on interval [0,4] 
∆𝑥 Average of Relative Error Order of Convergence 

0.25 4.420E-02 – 
0.125 2.425E-02 0.87 

0.0625 1.274E-02 0.93 
0.03125 6.536E-03 0.96 
0.015625 3.311E-03 0.98 

 

 

Table 2. Error and order of convergence of MSAM solution for Riccati differential equation with constant 

coefficients, in which we use 2 iterations in the MSAM evolution. Error is computed on interval [0,4] 
∆𝑥 Average of Relative Error Order of Convergence 

0.25 7.393E-03 – 
0.125 2.022E-03 1.87 

0.0625 5.395E-04 1.91 
0.03125 1.399E-04 1.95 
0.015625 3.565E-05 1.97 

 

 

Table 3. Error and order of convergence of MSAM solution for Riccati differential equation with constant 

coefficients, in which we use 3 iterations in the MSAM evolution. Error is computed on interval [0, 4] 
∆𝑥 Average of Relative Error Order of Convergence 

0.25 6.674E-04 – 
0.125 9.271E-05 2.85 

0.0625 1.252E-05 2.89 
0.03125 1.636E-06 2.94 
0.015625 2.094E-07 2.97 

 
 

Table 4. Error and order of convergence of MSAM solution for Riccati differential equation with constant 

coefficients, in which we use 4 iterations in the MSAM evolution. Error is computed on interval [0,4] 
∆𝑥 Average of Relative Error Order of Convergence 

0.25 7.349E-05 – 
0.125 5.049E-06 3.86 

0.0625 3.388E-07 3.90 
0.03125 2.205E-08 3.94 
0.015625 1.407E-09 3.97 
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4.2.  Riccati differential equation involving a variable coefficient 
As the second test, let us consider the Riccati differential equation with a variable coefficient [29]: 

 
𝑑𝑦(𝑥)

𝑑𝑥
= 1 + 𝑥2 − 𝑦2(𝑥), 0 < 𝑥 ≤ 4, (28) 

 

with initial condition 

 

𝑦(0) = 1 (29) 

 

The exact solution to this problem is 

 

𝑦(𝑥) = 𝑥 + 
𝑒−𝑥2

1+∫ 𝑒−𝜉2𝑑𝜉𝑥
0

 (30) 

 

For this second test, the standard SAM is not able to solve the problem, even for the first half [0,2] 
of the given domain [0,4], as shown in Figure 1(b). In contrast, our proposed MSAM is able to solve the 

problem on the whole domain [0,4] accurately. For this Figure 1(b), SAM and MSAM use 3 successive 

iterations, and in addition, for MSAM we take ∆𝑥 = 0.1. 
To investigate further about the performance of MSAM in solving this second test case, we record 

the errors and their orders of convergence in Tables 5-8. The behaviour of MSAM in this test case is 

consistent with that of MSAM in the previous test case. We obtain that the number of successive iterations in 

the MSAM evolution determines the order of convergence of the solution. One successive iteration in the 

MSAM evolution leads that MSAM is a first order method. This is observed as ∆𝑥 approaches to zero, the 

order of convergence tends to one, as recorded in Table 5. Two successive iterations in the MSAM evolution 

leads that MSAM is a second order method. This is observed as ∆𝑥 approaches to zero, the order of 

convergence tends to two, as recorded in Table 6. Three successive iterations in the MSAM evolution leads 

that MSAM is a third order method. This is observed as ∆𝑥 approaches to zero, the order of convergence 

tends to three, as recorded in Table 7. Similarly, four successive iterations in the MSAM evolution leads that 

MSAM is a fourth order method, because as ∆𝑥 approaches to zero, the order of convergence tends to four, 

as recorded in Table 8. Again, in general, smaller ∆𝑥 results in a more accurate method. Furthermore, more 

number of successive iterations makes MSAM to be higher order accurate. 

With our accurate results in this paper, we are confident that MSAM is a reliable method to be used 

for other kinds of initial value problems. The idea of MSAM could be adapted for continuous versions of 

discrete problems in computing [33], and it could be extended to be analysed using advanced mathematical 

tools, such as, algebraic geometry and conformal mapping. 
 
 

  
 

(a) 

 

(b) 

 

Figure 1. Exact, SAM, and MSAM solutions on interval [0, 4]. SAM solution is accurate only at points close 

to the initial condition. MSAM solution coincides graphically with the exact solution, (a) Results of the first 

test case, (b) Results of the second test case 
 

 

Table 5. Error and order of convergence of MSAM solution for Riccati differential equation involving a 

variable coefficient, in which we use 1 iteration in the MSAM evolution on interval [0,4] 
∆𝑥 Average of Relative Error Order of Convergence 

0.25 3.544E-02 – 
0.125 1.764E-02 1.01 

0.0625 8.802E-03 1.00 
0.03125 4.396E-03 1.00 
0.015625 2.197E-03 1.00 
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Table 6. Error and order of convergence of MSAM solution for Riccati differential equation involving a 

variable coefficient, in which we use 2 iterations in the MSAM evolution on interval [0,4] 
∆𝑥 Average of Relative Error Order of Convergence 

0.25 3.408E-02 – 
0.125 4.625E-03 2.88 

0.0625 9.436E-04 2.29 
0.03125 2.165E-04 2.12 
0.015625 5.202E-05 2.06 

 

 

Table 7. Error and order of convergence of MSAM solution for Riccati differential equation involving a 

variable coefficient, in which we use 3 iterations in the MSAM evolution on interval [0,4] 
∆𝑥 Average of Relative Error Order of Convergence 

0.25 6.406E-03 – 
0.125 6.894E-04 3.22 

0.0625 7.439E-05 3.21 
0.03125 8.555E-06 3.12 
0.015625 1.024E-06 3.06 

 

 

Table 8. Error and order of convergence of MSAM solution for Riccati differential equation involving a 

variable coefficient, in which we use 4 iterations in the MSAM evolution on interval [0,4] 
∆𝑥 Average of Relative Error Order of Convergence 

0.25 2.393E-03 – 
0.125 1.019E-04 4.55 

0.0625 5.294E-06 4.27 
0.03125 3.007E-07 4.14 
0.015625 1.790E-08 4.07 

 

 

5. CONCLUSION 

We have proposed successfully a new multistage successive approximation method for solving 

Riccati differential equations. The main advantage of the proposed method is that it is simpler than the 

existing variational iteration method for solving Riccati differential equations. The proposed method is 

analytically equivalent to the existing method, but simpler in terms of computing implementation. We have 

tested the performance of the multistage successive approximation method in cases that their exact solutions 

are known. The order of accuracy of the proposed method can be made higher by simply taking more number 

of successive iterations in the multistage evolution. Obviously, taking smaller size of each subinterval and 

taking more number of iterations in the multistage evolution lead that our proposed method produces smaller 

error and it becomes higher order accurate. With these results, in cases that the exact solutions to Riccati 

differential equations are not known, we are confident to propose the use of the multistage successive 

approximation method for solving them to obtain accurate approximate solutions. 
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