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Abstract

This article reports the behaviour of the numerical entropy pro-
duction of the one-and-a-half-dimensional shallow water equations.
The one-and-a-half-dimensional shallow water equations are the one-
dimensional shallow water equations with a passive tracer or transverse
velocity. The studied behaviour is with respect to the choice of numer-
ical fluxes to evolve the mass, momentum, tracer-mass (transverse mo-
mentum), and entropy. When solving the one-and-a-half-dimensional
shallow water equations using a finite volume method, we recommend
the use of a double sided stencil flux for the mass and momentum, and
in addition, a single sided stencil (upwind) flux for the tracer-mass.
Having this recommended combination of fluxes, we use a double sided
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stencil entropy flux to compute the numerical entropy production,
but this flux generates positive overshoots of the numerical entropy
production. Positive overshoots of the numerical entropy production
are avoided by use of a modified entropy flux, which satisfies a discrete
numerical entropy inequality.
Subject class: 65M08, 65M50, 76M12
Keywords: numerical entropy production, smoothness indicator, re-
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1 Introduction

A hyperbolic system of conservation laws satisfies an entropy inequality.
Entropy is a quantity defined based on the conserved quantities. For smooth
solutions, the entropy inequality becomes an equation: the entropy equation.
For nonsmooth solutions, the entropy inequality becomes a strict inequality.
Evolving the entropy numerically leads to a computational error. The local
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truncation error of the entropy is called the numerical entropy production
(nep).

The nep indicates the smoothness of solutions to hyperbolic systems of
conservation laws [4]. One example of conservation laws is the system of one-
and-a-half dimensional shallow water equations (1.5D swe). The 1.5D swe are
the one-dimensional shallow water equations (1D swe) with a passive tracer
or transverse velocity. The conserved quantities of the 1D swe are the mass
and momentum. Therefore, the conserved quantities of the 1.5D swe are the
mass, momentum, and tracer-mass (transverse momentum). The 1.5D swe
admit discontinuous solutions, namely shock and contact discontinuities [2].
The nep indicator detects these discontinuities by producing larger values of
indicators than the values on smooth regions.

By definition, an entropy production is nonpositive. Nevertheless, Puppo and
Semplice [4] proved that positive overshoots of the nep were possible when
conservation laws were solved using a finite volume method with the same
type of numerical fluxes for the evolutions of all conserved quantities. The
numerical flux used by Puppo and Semplice [4] was the Lax–Friedrichs flux,
which is a double sided stencil flux. In their work, shallow water equations
were not particularly considered.

With a finite volume method to solve the 1.5D swe, we could use the same
type of numerical fluxes having a double sided stencil formulation. However,
to get a more accurate solution to the passive tracer or transverse velocity,
the strategy is as follows: for the evolutions of conserved quantities of the
1D swe we use the same type of numerical fluxes having double sided stencil
formulations, but for the evolution of the tracer-mass we use the upwind
numerical flux (single- sided stencil flux), as suggested by Bouchut [1]. The
choice of numerical flux functions to solve the governing equations affects the
accuracy of the numerical solutions. Furthermore, the choice of numerical flux
functions to solve the governing equations and to evolve the entropy affect
the behaviour of the nep.

The goal of this article is to report the behaviour of the nep with respect
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to several combinations of numerical fluxes. With a finite volume method,
the numerical fluxes are used to evolve the mass, momentum, tracer-mass
(transverse momentum), and entropy for the 1.5D swe.

2 Governing equations and the numerical

entropy production

We present the 1.5D swe and how we compute the nep. In the 1.5D swe,
the dynamics of the passive tracer is governed by an additional transport
(advection) equation to the 1D swe. This additional transport equation does
not influence the fluid dynamics of the 1D swe. Note that the concentration of
the passive tracer in the passive tracer framework is in place of the transverse
velocity in the transverse velocity framework.

We limit our discussion to shallow water flows on a horizontal topography
(without source terms). The 1.5D swe are

ht + (hu)x = 0 , (1)

(hu)t +

(
hu2 +

1

2
gh2
)
x

= 0 , (2)

(hv)t + (huv)x = 0 . (3)

Here, x represents the coordinate in one-dimensional space, t represents the
time variable, g is the acceleration due to gravity, h = h(x, t) denotes the
water height, u = u(x, t) denotes the water velocity in the x-direction, and
v(x, t) is the transverse velocity or the concentration of the passive tracer. The
transverse velocity is orthogonal to the x-axis and has a horizontal direction.
The conserved quantities of the 1.5D swe are the mass or water height h,
momentum hu, and tracer-mass or transverse momentum hv. Our discussion
does not include bed drag or viscous or turbulent dissipation.
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The entropy inequality for (1)–(3) is

ηt +ψx 6 0 , (4)

where the entropy (the physical energy) η and the entropy flux (the flux of
the physical energy) ψ are

η (q(x, t)) =
1

2
h(u2 + v2) +

1

2
gh2 , (5)

ψ (q(x, t)) =

[
1

2
h(u2 + v2) + gh2

]
u , (6)

and q(x, t) = (h hu hv)T is the vector of conserved quantities of the 1.5D swe.
Inequality (4) is to be understood in the weak sense. For smooth solutions,
inequality (4) becomes an equation and is called the entropy equation. For
nonsmooth solutions, it becomes a strict inequality. Inequality (4) is described
in further detail by Bouchut [1], amongst others.

We adapt the existing numerical entropy scheme described in our previous
work [3]. The numerical entropy production (nep) in the jth cell at the
nth time step is

Enj =
1

∆t

[
η
(
Qn
j

)
−Θnj

]
, (7)

which is the local truncation error of the entropy at the corresponding cell
and the corresponding time. Here, Θnj is an approximation of the average
of the exact entropy η in the jth cell at the nth time step and calculated
using the numerical entropy scheme with η

(
Qn−1

)
as the input, Qn

j is an
approximation of the average of the exact quantity qj (x, t

n) in the jth cell
at the nth time step (t = tn) and calculated using the numerical conserved
quantity scheme with Qn−1 as the input, and ∆t is the time step used in both
numerical schemes.
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3 Flux functions for finite volume methods

This section provides three combinations of numerical flux functions for finite
volume methods used to solve the 1.5D swe.

Conservation laws
qt + f(q)x = 0 (8)

are solved using a first order finite volume method [2]

Qn+1
j = Qn

j − λ
(
Fn
j+ 1

2
− Fn

j− 1
2

)
. (9)

Here Fj+ 1
2

and Fj− 1
2

are numerical fluxes of the conserved quantities computed

in such a way that the method is stable with λ = ∆t/∆x . Variables ∆t
and ∆x are the time step and cell-width. We assume that the spatial domain is
discretised uniformly into a finite number of cells. The notation Qn

j represents
an approximation of the average of the exact quantity qj (x, t

n) in the jth cell
at the nth time step. In addition, f is the analytical flux function.

For our numerical experiments on the 1.5D swe, we consider a double sided
stencil flux function and a single sided stencil flux function. In particular, we
take the local Lax–Friedrichs flux and the upwind flux functions for numerical
evolutions. As a double sided stencil flux, the local Lax–Friedrichs flux
function is suitable for the evolution of all quantities (mass, momentum,
tracer-mass, and entropy). As a single sided stencil flux, the upwind flux
function is suitable for the evolution of the tracer-mass.

We consider three combinations of flux functions in our numerical schemes,
namely:

A local Lax–Friedrichs flux for the mass, momentum, tracer-mass, and
entropy evolutions;

B local Lax–Friedrichs flux for the mass, momentum, and entropy evolu-
tions, upwind flux for the tracer-mass evolution; and
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C local Lax–Friedrichs flux for the mass and momentum evolutions, upwind
flux for the tracer-mass evolution, modified flux for the entropy evolution.

For our reference, we call these combinations of flux functions Combination A,
Combination B, and Combination C, respectively.

In the evolution of the numerical conserved quantity scheme and the numerical
entropy scheme, we can simply use the same type of flux function (in particular
the local Lax–Friedrichs flux as we mentioned above) for evolving the mass,
momentum, tracer-mass, and entropy. This motivates Combination A.

The local Lax–Friedrichs fluxes used for Combination A are described as
follows. Consider the jth cell, which is the interval (xj− 1

2
, xj+ 1

2
) of the uniformly

discretised spatial domain. The local Lax–Friedrichs flux for the quantity
evolution has the form [2, 4]

Fn
j+ 1

2
= F(Qn

j+1,Q
n
j ) =

1

2

[
f
(
Qn
j+1

)
+ f
(
Qn
j

)
− αn

j+ 1
2

(
Qn
j+1 −Q

n
j

)]
(10)

where αn
j+ 1

2

= max
(
|unj+1|+

√
ghnj+1, |unj |+

√
ghnj

)
is the coefficient of ar-

tificial diffusion, chosen at each time step locally. Notations unj and hnj
represent the numerical velocity and water height, respectively, in the jth cell
at the nth time step. Recall that Qn

j is an approximation of the average
of the exact quantity qj (x, t

n) in the jth cell at the nth time step. The
notation q, or qj for the specific jth cell, represents the mass, momentum,
or tracer-mass. Furthermore, the local Lax–Friedrichs flux for the entropy
evolution is

Ψn
j+ 1

2
= Ψ(Qn

j+1, Q
n
j ) =

1

2

{
ψ
(
Qn
j+1

)
+ψ

(
Qn
j

)
− αn

j+ 1
2

[
η
(
Qn
j+1

)
− η

(
Qn
j

)]}
(11)

where Qn
j is an approximation of the average of the exact conserved quan-

tity qj (x, t
n) in the jth cell at the nth time step. To make the notation clear,

we note that Qn
j = [hnj (hu)nj (hv)nj ]

T , where hnj is an approximation of the
average of water height h in the jth cell at the nth time step. The notations
(hu)nj and (hv)nj are understood similarly.
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To get a more accurate solution of the tracer, a natural way is by using the
upwind flux function for the evolution of the tracer-mass [1]. This leads to
Combination B: the local Lax– Friedrichs flux for the mass, momentum, and
entropy; and the upwind flux for the tracer-mass. For Combination B, the
local Lax–Friedrichs flux for the mass and momentum is defined by (10). The
local Lax–Friedrichs flux for the entropy is defined by (11). The upwind
flux Fn,hv

j+ 1
2

for the tracer-mass at the spatial point x = xj+ 1
2

at time t = tn is

Fn,hv
j+ 1

2

=

F
n,h

j+ 1
2

vj if Fn,h
j+ 1

2

> 0 ,

Fn,h
j+ 1

2

vj+1 otherwise .
(12)

Here Fn,h
j+ 1

2

is the mass flux computed using the local Lax–Friedrichs flux (10)

at the spatial point x = xj+ 1
2

at time t = tn .

In our numerical results presented in the next section (Section 4), we see that
Combination B leads to positive overshoots of the nep. To avoid positive
overshoots of the nep, the entropy flux is modified with respect to the local
Lax–Friedrichs and upwind flux functions, because these two fluxes are used
in the numerical conserved quantity scheme. With a particular modification
of the entropy flux, the entropy evolutions satisfy a discrete numerical entropy
inequality as described by Bouchut [1]. This leads to Combination C: the
local Lax–Friedrichs flux for the mass and momentum, the upwind flux for
the tracer-mass, and the modified flux for the entropy. For Combination C,
the local Lax–Friedrichs flux for the mass and momentum is defined by (10).
The upwind flux for the tracer-mass is defined by (12). The modified flux for
the entropy is

Ψn
j+ 1

2
= Ψn,1d

j+ 1
2

+ Ψn,hv
j+ 1

2

. (13)

Here, Ψn,1d
j+ 1

2

is a numerical entropy flux of the 1D swe part at the nth time

step. In our case Ψn,1d
j+ 1

2

is computed using the Lax–Friedrichs entropy flux,

that is, the numerical entropy flux of the form (11) with setting v = 0 . In
addition, Ψn,hv

j+ 1
2

is a numerical entropy flux of the tracer part. In our case
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Ψn,hv
j+ 1

2

is computed using the upwind entropy flux

Ψn,hv
j+ 1

2

=

{
1
2
Fn,h
j+ 1

2

v2j if Fn,h
j+ 1

2

> 0 ,
1
2
Fn,h
j+ 1

2

v2j+1 otherwise .
(14)

This modified numerical entropy flux is adapted from Bouchut [1, equation
(3.88) for more detail].

4 Numerical experiments

This section presents numerical results relating to the behaviour of the nep
of the 1.5D swe. The three combinations, A, B and C, of flux functions are
tested.

For our experiments, the numerical setting is as follows. First order methods
are implemented. All variables are quantified in si units. The acceleration
due to gravity is taken as g = 9.81 . The Courant–Friedrichs–Lewy number
is 1.0. The discrete L1 relative error

EL
1

Q =

∑N
j=1

∣∣q(xj, tn) −Qn
j

∣∣∑N
j=1 |q(xj, t

n)|
(15)

is used to quantify numerical errors, where N is the number of cells, q(xj, t
n) is

the exact quantity at (x, t) = (xj, t
n), and Qn

j is an approximation of the
average of the exact quantity qj(x, t

n) in the jth cell at the nth time step.
The term “quantity” in this case represents the water mass (height) h,
momentum hu, transverse momentum (tracer-mass) hv, velocity u, and
transverse velocity (the concentration of the passive tracer) v. Note that the
notation q(xj, t

n) is different from qj(x, t
n) .

As the benchmark test case, we set up a dam break problem with a passive
tracer as follows. A horizontal topography on the interval [−2000, 2000] is
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considered. The initial condition is

u(x, 0) = 0 , (16)

v(x, 0) =

{
3 if − 2000 < x < 0 ,

0 if 0 < x < 2000 ,
(17)

h(x, 0) =

{
10 if − 2000 < x < 0 ,

4 if 0 < x < 2000 .
(18)

This initial water height h(x, 0) is chosen in such a way that we clearly see
a rarefaction, a contact discontinuity (a discontinuity between two different
concentrations of the passive tracer), and a shock wave propagate at time
t > 0 . We could take a much smaller initial water height for 0 < x < 2000 ,
but the contact discontinuity and the shock wave would not be clearly seen,
because the rarefaction would dominate the water motion at time t > 0 . The
exact analytical solution of the dam break problem was derived by Stoker [5].
LeVeque [2] reviewed shallow flows with a passive tracer. .

A comparison of numerical errors is given in Table 1. From Table 1, Combina-
tions A, B and C lead to exactly the same results (and hence the same errors)
in h and u. Combinations B and C lead to exactly the same results in v,
while Combination A leads to larger errors of v than the errors of v produced
by Combinations B and C. As the cells are uniformly refined, the errors get
smaller and the numerical solutions better approximate the exact solution.
Even though we use first order methods, the convergence is not of order of
one, but less than one. This convergence is due to discontinuities occurring
in the numerical solutions. We summarise in Table 1, Combinations B and C
generate more accurate results and they have the same performance.

Some simulation results using Combinations A, B and C are illustrated
in Figures 1, 2 and 3, respectively. In Figure 1, the numerical solution
approximates the exact water surface (stage) and the exact velocity quite
well. However, large errors occur around the contact discontinuity of the
concentration v(x, t) of the tracer. There are no positive overshoots of the
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Table 1: Errors of h, u and v resulting from a finite volume method with
fluxes using Combinations A, B and C for various numbers of cells. The
errors are quantified at t = 100 .

number h error u error v error v error
of cells A, B, C A, B, C A B, C
100 0.019 0.108 0.070 0.037
200 0.012 0.066 0.050 0.026
400 0.007 0.038 0.035 0.019
800 0.004 0.022 0.025 0.013
1600 0.002 0.013 0.018 0.009

nep in Figure 1. We restate that Combinations A and B lead to the same
results in h and u, but Combination B gives more accurate results in v (see
Table 1). However, Combination B produces positive overshoots and an
oscillation of the nep around the contact discontinuity, as shown in Figure 2.
Furthermore, Combinations B and C produce the same errors in h, u and v,
but no positive overshoots of the nep are generated by Combination C as
shown in Figure 3. In addition, Figure 2 suggests that Combination B results
in a solution which does not satisfy a discrete entropy inequality, whereas
Figures 1 and 3 suggest that Combinations A and C result in solutions which
satisfy a discrete entropy inequality.

5 Conclusions

The use of a double sided stencil flux for the mass and momentum together
with a single sided stencil (upwind) flux for the tracer-mass results in a
more accurate solution than the solution produced by the use of the double
sided stencil flux for all conserved quantity. This combination (double sided
stencil flux for the mass and momentum, and upwind flux for the tracer-mass)
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Figure 1: Results of a simulation using Combination A with 1600 cells at
time t = 100 . The nep (7) is nonpositive everywhere. “Ana sol” and “Num
sol” stand for analytical solution and numerical solution, respectively.

is recommended for solving the one- and-a-half dimensional shallow water
equations in general. Note that the dam break problem with a passive tracer
simulated is only an example to show the validity of our recommendation.
The recommended combination of fluxes may or may not generate positive
overshoots of the numerical entropy production, depending on the numerical
flux function used in the entropy evolution. With the recommended combi-
nation, if we use the double sided stencil flux for the entropy, then we have
positive overshoots and an oscillation of the numerical entropy production
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Figure 2: The nep (7) resulting from Combination B with 1600 cells at
t = 100 . Positive overshoots of the nep are generated around the contact
discontinuity.

around a contact discontinuity. If we use a flux modified in such a way that a
discrete numerical entropy inequality is satisfied, then no positive overshoots
of the numerical entropy production are produced.

Positive overshoots and an oscillation of the numerical entropy production
around a contact discontinuity are not completely bad. It is well-known
that discontinuous solutions are difficult to resolve. Moreover, a contact
discontinuity is much more difficult to resolve than a shock [4], and this is
shown in our numerical experiments. When the numerical entropy production
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Figure 3: The nep (7) resulting from Combination C with 1600 cells at
t = 100 . The nep is nonpositive everywhere.

is implemented in an adaptive-mesh finite volume method as the refinement
(smoothness) indicator, these positive overshoots and the oscillation of numer-
ical entropy production might help in maintaining mesh refinement around
the contact discontinuity. This maintenance in refinement is because, for the
entropy around the contact discontinuity, the positive overshoots and the
oscillation of the numerical entropy production are larger in magnitude than
the numerical entropy production without positive overshoots produced by
the modified flux.
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