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PREFACE 
 

 

Sudi Mungkasi 

Chair of ICMAME 2015, Sanata Dharma University,  

Mrican, Tromol Pos 29, Yogyakarta 55002, Indonesia 

 

E-mail: sudi@usd.ac.id 

 
This Proceedings of The 2015 International Conference on Mathematics, its Applications, and 

Mathematics Education (ICMAME 2015) is devoted to some of the accepted papers presented in 

ICMAME 2015. ICMAME 2015 was held by Sanata Dharma University in Yogyakarta, Indonesia, 

on 14-15 September 2015. This Conference was conducted to bring together mathematicians and 

other scientists working on new trends of mathematics, physics, its applications and also on 

mathematics education. 

At least 100 submissions were received by the Committee for oral presentations. Peer-review 

was conducted after the Conference. Each full paper was reviewed by two or three referees. After 

review, 47 papers were accepted for publication. However, based on referees' recommendations, the 

Editors decided that 20 papers were selected for publication in a volume of Journal of Physics: 

Conference Series. The rest (27 papers) are included in this Proceedings Book.  

More than 200 people participated in the Conference. They were from, based on alphabetical 

order, Australia, Brazil, Cambodia, Germany, Indonesia, Malaysia, The Philippines, Timor-Leste, 

and Vietnam. Among them, we had seven keynote/plenary speakers:  

 Prof. Dr. Stephen Roberts (The Australian National University, Australia),  

 Prof. Dr. Lutz Gross (The University of Queensland, Australia), 

 Prof. em. Dr. Elmar Cohors-Fresenborg (The University of Osnabrueck, Germany), 

 Dr. Eka Budiarto (Swiss German University, Indonesia), 

 Dr. Yansen Marpaung (Sanata Dharma University, Indonesia), 

 Dr. Herry Pribawanto Suryawan (Sanata Dharma University, Indonesia), and 

 Dr. Hongki Julie (Sanata Dharma University, Indonesia). 
We thank all of the speakers, participants and organising committee members for their 

contribution. In particular, we also thank our generous sponsor for the financial support to 

ICMAME 2015: 

 

Australia Awards Indonesia Alumni Grant Scheme 2015 under project title “International 

Conference on Science and Education: ANUGA Software for Flood Mitigation in Indonesia”. 

 

 

 

https://www.usd.ac.id/seminar/icmame/wp-content/uploads/2015/05/Australia_Awards.png
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Systems of Max-Plus Linear Equations with More Variables 
than Equations 

Regina Wahyudyah Sonata Ayu1 and Marcellinus Andy Rudhito 1 

1Department of Mathematics Education, Sanata Dharma University, Yogyakarta Indonesia 
 
E-mail: reginawahyudyahayu@gmail.com, rudhito@usd.ac.id 

Abstract. This paper discusses the solution of systems of max-plus linear equations with more variables 
than equations through the reduced discrepancy matrix of the system. Let the entries of each column of 
the coefficient matrix are not all equal to infinite. We show that if there is a zero-row in reduced 
discrepancy matrix of the system, then the systems has no solution. Furthermore, if there is no zero-row 
in reduced discrepancy matrix of the system, then there are infinitely many solutions of the system. 

Key words: Max-Plus algebra, system of linear equations, reduced discrepancy matrix. 

 

1. Introduction 

As in conventional algebra, we can also find system of linear equations in max-plus algebra. 
System of max-plus linear equations can also be represented by a matrix equation that is 
�	⨂	� = �. 

The solution of the system �	⨂	� = � in max-plus algebra through the reduced 
“discrepancy”matrix has been discussed in [1] and [4]. However, they just concern about the 
existence and the uniqueness of the solution to �	⨂	� = � in general. They haven’t concerned 
about the solution of the system of max-plus linear equations with more variables than 
equations in spesific yet. Therefore, in this article, we will discuss about the solution of the 
system of �	⨂	� = � with more variables than equations. 

First, we will review some basic concepts of max-plus algebra, matrices over max-
plus algebra and the solution of the system of �	⨂	� = �. Futher details can be found in [2] 
and [4]. 

Let ℝ� = ℝ ∪ {−∞} where ℝ is a set of all real numbers and � := −∞. Defined  two 
operations ⨁ dan ⨂ on ℝ� such that  

� ⨁ �  : = ���	(�, �)    dan    � ⨂ �  := � + �   , ∀�, � ∈ ℝ�. 

ℝ��� =	(ℝ�, ⨁, ⨂)  is a commutative idempotent semiring. Furthermore, ℝ��� is a 
semifield. Then, ℝ��� is called as max-plus algebra. The relation " ≤��� " on ℝ��� defined 
by  � ≤��� � ⇔ �	⨁	� = � is a partial order on ℝ���. 
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 The operations ⨁ dan ⨂ on ℝ��� can be extended to set ℝ���
�×� where ℝ���

�×� =

�� = ���│��� ∈ ℝ���, for	� = 1, 2, … ,�	and		� = 1, 2, … , ��. Let �,� ∈ ℝ���
�×�

 and 

� ∈ ℝ���
�×�

  then   

[�	⨁�]�� = ��� 	⨁ ���	and  [�	⨂�]�� =	⊕
�

�=1
���⨂	���.  

The relation " ≤��� " defined in ℝ���
�×� where � ≤��� � ⇔ �	⨁	� = � is a partial order on 

ℝ���
�×�. 

 Defined ℝ���
� = �� = ���, ��, … , ���

�
│�� ∈ ℝ���, � = 1,2,… , ��. The element of 

ℝ���
�  is called vector over ℝ���. 

 
Definition 1.1. Given � ∈ ℝ���

�×� and � ∈ ℝ���
� . Subsolution of the system of max-plus linear 

equations �	⨂	� = � is a vector �′ ∈ ℝ���
�   that satisfies �	⨂	�′ ≤��� �. 

Definition 1.2. A subsolution  �∗ of the system �	⨂	� = � is called the greatest subsolution of 
the system �	⨂	� = �	if �′ ≤��� �

∗ for every subsolution �′ of the system �	⨂	� = �. 

Theorem 1.1. [4] Given � ∈ ℝ���
�×� with the entries of each column are not all equal � and 

� ∈ ℝ�, then −�∗� = max��−�� + ���� for every � ∈ {1,2,… ,�} and � ∈ {1,2,… , �}. 

Theorem 1.2. [3]  Given � ∈ ℝ���
�×� with the entries of each column are not all equal � and 

� ∈ ℝ�.  �	⨂	� = � has a solution if and only if �∗ is a solution. 

 

2. Main Result 

Base on Theorem 1.2, we can conclude that the existence of the solution of the system of 
max-plus linear equation �	⨂	� = � is determined by the greatest subsolution. Let � ∈ ℝ���

�×� 
with the entries of each column are not all equal � and � ∈ ℝ�. The case that we’ll discuss is 
the solution of the system of max-plus linear equations �	⨂	� = � with more variables than 
more equations or � < �. The greatest subsolution is a candidate solution of the system 
�	⨂	� = � that is vector �∗ where 

 

−�∗ = �

−�∗�
−�∗�
⋮

−�∗�

� =

⎣
⎢
⎢
⎢
⎡
max
�
(−�� + ���)

max
�
(−�� + ���)

⋮
max
�
(−�� + ���)⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
max
�
(��� − ��)

max
�
(��� − ��)

⋮
max
�
(��� − ��)⎦

⎥
⎥
⎥
⎤

 

                                                       = �

max{��� − ��, ��� − ��,… , ��� − ��}

max{��� − ��, ��� − ��,… , ��� − ��}
⋮

max{��� − ��, ��� − ��,… , ��� − ��}

�  

Then, we define discrepancy matrix denoted by ��,� as folows 
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��,� = �

��� − �� ��� − �� … ��� − ��
��� − �� ��� − �� … ��� − ��
⋮

��� − ��

⋮
��� − ��

		⋱
		…

⋮
��� − ��

� 

Note that every −�∗� can be determined by taking the maximum of  each column of ��,� . 

In order to predict the number of solutions of system�	⨂	� = �, we define matrix  
��,� that is reduced from ��,�   as follows: 

 ��,� = ����� where ��� = �
1,					if	��� = maximum	of	column	�

0,					otherwise																																						
 

Next, we will give the examples of the solution of the max-plus linear equations 
�	⨂	� = � for  � < �. 

Example 2.1. Solve �	⨂	� = � if � = �
1 0 3
� 4 2

�, � = �

��
��
��

�, and � = �
1
6
� 

A quick calculation gives ��,� = �
0 −1 2
� −2 −4

� and ��,� = �
1 1 1
0 0 0

�. Base on matrix ��,�  

we get �∗ = [0, 1,−2]�. However, there is a row in ��,� that all entries are 0. It is the second 
row which means that there is no maximum in that row. It indicates that the system �	⨂	� =
� has no solution. We can verify that through the calculation as follows: 

�	⨂	�∗ = �
1 0 3
� 4 2

�⨂ �
0

1

−2

� = �
max{1,1,1}

max{�, 5 ,0}
� = �

1
5
� ≤ �

1
6
� = � 

So, �∗ is just the greates subsolution of the system �	⨂	� = � but not the solution. 

Example 2.2. Solve �	⨂	� = � if � = �
2 2 1
4 7 8

�, � = �

��
��
��
�, dan � = �

4
6
� 

A quick calculation gives ��,� = �
−2 −2 −3
−2 1 2

� and ��,� = �
1 0 0
1 1 1

�. Base on matrix 

��,� we get �∗ = [2,−1,−2]�. Next, we will verify whether �∗ is a solution or not. 

 �	⨂	�∗ = �
2 2 1
4 7 8

�⨂ �
2
−1

−2

� = �
max{4 ,1,−1}

max{6,6,6}								
� = �

4
6
� = �  

We can see that �∗ is indeed the solution of �	⨂	� = �. But, there is more than one 1 in the 
second row of ��,�. In other words, there is more than one maximum in that row. It indicates 
that the system �	⨂	� = � has an infinite number of solutions. Base on Definition 1.2, we 
know that the elements of �∗ are the upper bounds. So, the elements of vector � in this 
example must satisfy �� ≤ 2, �� ≤ −1 and �� ≤ −2. On the first row of ��,�, the maximum 
is in the first column then �� = 2. On the second row, the maximum is in the first, second and 
third column then there are three possible ways with either �� = 2, �� = −1 or �� = −2. If 
we change the value of �� then it will change the equation in the first row. So now as long as 
�� ≤ −1 and �� ≤ −2, the first and second equation will always be true. Therefore, every 
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vector � = [2, �, �]� where � ≤ −1 and � ≤ −2 is also a solution. So, the system of 
�	⨂	� = � in this example has an infinite number of solutions. 

Matrix ��,� and ��,� play role in determining the characteristics of the system 

�	⨂	� = �. Now, we will give the theorem about the exixtence of the solution of the system 
of max-plus linear equations �	⨂	� = �. 

Theorem 2.1. [1] Given the system	�	⨂	� = � where � ∈ ℝ���
�×� with the entries of each 

column are not all equal � and � ∈ ℝ�. 
1. If there is a zero-row in matrix ��,� then the system has no solution. 

2. If there is at least one 1 in each row of ��,�, then �∗	is the solution of the system �	⨂	� =

�. 

Proof. 
1. Without lost of generality, suppose the zero-row of ��,�  is the �th and let �∗ is the solution 

of the system �	⨂	� = �, then −�∗� ≥ max��−�� + ���� > −�� + ��� . Thus, −�∗� >

−�� + ��� ⇔ ��� + �
∗
� 	< ��	, ∀�. Hence, �∗ does not satisfy the �th equation. It 

contradicts with �∗ is the solution of the system �	⨂	� = �. So, the system �	⨂	� = � has 
no solution. 

2. We will proof the contrapositive. Suppose �∗ is not the solution of the system �	⨂	� = �. 
By Teorema 1.1,  −�∗� ≥ −�� + ���		, ∀�, �. Thus, max����� + �

∗
�� ≤ ��. If �∗ is not the 

solution of the system �	⨂	� = � then there is k such that max����� + �
∗
�� < �� . This is 

equivalent to −�∗� > −�� + ���		, ∀�. Since −�∗� = max�−�� + ���� for some �, then 

there is no element in the �th row of ��,� thas is 1.                                                    ∎   
                       

In order to determine the uniqueness of the solution of system of max-plus linear 
equations, we give the definition as follows 

Definition 2.1. The 1 in a row of ��,� is a variable-fixing entry if either 
1. It is the only 1 in that row ( a lone-one), or 
2. It is in the same column as a  lone-one. 
The remaining 1s are called slack entries. 

The 1s that are circled in the above examples are the variable-fixing entries. 

Theorem 2.2. [4]  Given the system	�	⨂	� = � where � ∈ ℝ���
�×� with the entries of each 

column are not all equal � and � ∈ ℝ� and the solution to the system exist. 
1. If each row of ��,� has a lone one, then the solution of the systemis unique 
2. If there are slack entries in ��,�, then the system has infinite solutions. 

Corollary 2.1. Given the system	�	⨂	� = � where � ∈ ℝ���
�×� with the entries of each column 

are not all equal � and � ∈ ℝ� and � < �. If there is no zero-row in ��,�  then there are 
infinite solutions of the system. 

Proof. Matrix ��,� has no zero-row so there is at least one 1 in each row of ��,� . Suppose that  

the solution of the system is unique then there is a lone one in each row of ��,�. Meanwhile, 

� < � which means that there are more variables than more equations in that system. Hence, 
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there must be slack entries in ��,�. This contradicts with the solution of the system is unique. 

So,  there are infinite solutions of the system.                              ∎
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