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The existence of annihilator in the ring motivates the emergence of studies on Annihilating Ideal
and Exact Annihilating Ideal Graphs. The purpose of this research is to describe the
characteristics of an (exact) annihilating ideal of ring Z,. The method used in this research is
literature study. The results of this study discuss finiteness, adjacency, connectedness, vertices,
and types of AG(Z,) and EAG(Z,). Furthermore, the number of vertices of an Annihilating
Ideal Graph is determined by the factorization of n. The adjacency of two vertices is determined
by the divisibleness of n. The results also show that EAG(Z,) is a subgraph of AG(Z,).
EAG(Z,,) can be represented as a union of several complete [graphsl
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1. INTRODUCTION

The use of graphs in representing algebraic structures has been carried out since at least 1878 in [1].
This representation starts from representing a group structure into a graph. The vertices of a graph are all
elements of a group and changes to an element due to operations on the group are represented by directed
edges. Furthermore, [2], [3] began to associate graphs with a broader structure, namely rings. Investigation
of the ring structure is carried out through the colored representation of the graph. The representation of an
algebraic structure on a graph opens up opportunities for visual investigation of the properties of a particular
structure. An essential part in the process of representing a particular algebraic structure to a graph is how to
define the connection between the vertices of the graph. Different ways of defining adjacent vertices can lead
to different variations of properties as well.

One of the interesting things in the ring, which is about zero divisor. A non-zero element a is said to
be a zero divisor if it can be found a non-zero element b such that ab = 0. From this structure, [4] proposed
the origin of the zero divisor graph. The vertices of the graph are all zero divisors. Two vertices are adjacent
if and only if the product of the two elements is zero. Many interesting properties result from this concept,
one of which is about the combinatorics of a finite ring [5]-[7].

The concept is similar to zero divisor in the ring is the Annihilator. Badawi has started a study on
annihilator graphs [8]. In its development, annihilating graphs are generalized into annihilating Ideal graphs.
In [9], it is stated that Annihilator is an ideal I, namely Ann(I) = {r € R|rl =0V [ € L}. If Ann(I) is not
a trivial set, then I is called an ideal annilator. In 2011, [10] started to represent a structure consisting of
annihilator ideals into a graph. The graph that is formed is named Annihilating Ideal Graph. In line with the
development of zero divisor graphs, [11] is continuing the study of Exact Annihilating Ideal graphs. The
development of ideal annihilating and exact annihilating properties of graphs is studied separately. The
general relationship between these two graphs began to be investigated by [12].

An integer modulo n, Z,, is a ring that has very interesting properties. This z,, structure is widely used
in graphs, for example in coloring Antimagic graphs [13] and Domination ratio [14]. The factorization
theorem on integers is a motivation for developing graph studies involving a ring of integers modulo n. One
of the graph studies carried out was a study on non-coprime for Z, [15]. Based on this, the study of
annihilating ideal graph for Z,, rings is interesting to do.

2. RESEARCH METHODS

This research is a literature research that examines the properties of annihilating ideal and exact annihilating
ideal graphs on integer rings modulo n, Z,,. The definition of (Exact) Annihilating Ideal based on [10], [11]
is as follows.

Definition 1. Annihilating Ideal [10]

)Anl Ideal I of commutative ring R with identity is a Annihilating Ideal if there exist non zero ideal J of R such
that IJ = 0. The set of all Annihilating Ideal of ring R is denoted by A(R).

Definition 2. Exact Annihilating Ideal [11]
An ideal I of commutative ring R with identity is Exact Annihilating Ideal if there exist non zero ideal J of R
such that Ann(I) = J and Ann(J) = I. The set of all Exact Annihilating Ideal of ring R denoted by EA(R).

Based on the two definitions above, then (Exact) Annihilating Ideal Graph is defined as follows.

Definition 3. Annihilating Ideal Graph [10]

Annihilating Ideal graph of ring R denoted by AG(R) is a graph with vertices A(R)* = A(R)\{(0)} and
(1,])) € E(AG(R)) ifand only if IJ] = (0).

Definition 4. Exact Annihilating Ideal Graph [11]
Exact Annihilating Ideal graph of ring R denoted by EAG(R) is a graph with vertices EA(R)" =
EA(R)\{(0)}and (I,]) € E(EAG(R)) ifand only if Ann(I) = J and Ann(J) = I.

Definition of (Exact) Annihilating Ideal Graph, this article further describes the properties of the graph with
rings z,,. Comparison of the properties of annihilating ideal and exact annihilating ideal graph of ring z,, is
also presented in this article.

Commented [A2]: For every citation, use reference tools such as
Mendeley. If you alreade use it, you may ignore this comment

Commented [A3]: 1.For every separated paragraphs, use line
spacing option : 6 pt
2.You may continue to the other separated paragraphs

[Commented [A4]: Sentences in definition do not to be in italic ]




BAREKENG: J. Math. & App., vol. xx(xx), pp. Xxx - xxx, month, year. 51

3. RESULTS AND DISCUSSION
In this section, we will show some result of Annihilating ideal graph of ring Z,,.

Theorem 1. Lower Bound of Cardinality A(Z,)*

Suppose Z, ring of integer modulo n where n not prime.
1. Ifn = p?, where p is prime then |A(Z,)*| = 1.
2. Ifn = p?, where p is prime then |A(Z,)*| = 2

Proof.

(1) Suppose n = p? then there exists uniquely non zero proper ideal in di Z,,, (p) = {pz|Z € Z,}. If n=
p? its means p2 = 7 = 0 such that (p)(5) = (0). Ideal (5) is an annihilating ideal of Z, by Definition
1. Since ideal (p) is the only one of proper non zero ideal in Z,,, hence A(Z,)" = {(p)} or |[A(Z,)"| = 1.

(2) Suppose n is nonprime, thatisn = ab forsomea,b € Zwhere1 <a<n,1<b <n,anda # b. The
product of two ideal, (a){(b) = {(za)(yb)|a,b € Z,y,z € Z,}. Since n = ab, zy(ab) = zy(n) then
(a)(b) = {zyn|z,y € Z,} = (0). Clearly, (a) # (0) and (b) = (0). Ideals (a) and (b} are annihilating
ideal by Definition 1. Hence, (a), (b) € A(Z,)". That is prove that for any nonprimen, |A(Z,)*| = 2. m

Theorem 2. Cardinality of A(Z,,)"

Suppose Z,, ring of integer modulo n. The number of vertices of annihilating ideal graph AG(Z,,) is ¢(n) —
2, where @ (n) is the number of positive factors of n.

Proof.

Suppose n = (p1)%t(p2)% ... (pn)* is prime factorization of n. If x|n then x = (p)P1(p)%2 ... (pn)Fn
where B; < a; for all i. If x|n, also means that there exists integer y such that xy = n. Suppose y =
1) (P2)"? ... (p)"™ theny = (p)"*(p2)"2 ... (p)"™, Where a; = B; +y; forl < i <n.

We construct principal ideal (x) = {xz|z € Z,} and (y) = {yt|t € Z,} of Z,. The product of these
ideal (x)(y) = {(Z)(¥D)} = {(xy)(2b)}. As xy = n implies (x)(y) = {0}. For all (x), where x is a positive
factor of n, there exists ideal (y) such that (x)(y) = {0}. The number of Ideal (x) that satisfied the condition
is the number of positive factor of n, ¢(n). Suppose the set

I(Z,) = {{x) ideal Z,,|3y € Z such that xy = n}
Based on the process above, we have |I(Z,,)| = ¢(n). All of elements I(Z,,) is the elements of A(Z,,)" except
(1) and (n). Hence |A(Z,)" | = e(n) — 2. m

Theorem 3. Criteria vertex of AG(Z,)

Suppose Z, ring of integer modulo n. If (@) is a vertex of graph AG(Z,,) then a is a factor of n.
Proof.

Assume a isn’t factor of n. We have n = ax + y, where x and y is integerand 0 <y < a.
The product of ideal (a) and (x) is

(@)(x) = {(@r)(Fn)} = {a(rin)} = {@(@Frn)} = {(@x)rn} = {(@)rn}

We have element n = y because n = ax + y. Then (a)(x) = {(ax)rn} = {(axr)n} = (i) = (¥). In means
(@) isn’t a ideal annihilator of Z,,. Hence (a) & A(Z,)". By the contraposition, we have if (a) € A(Z,)" then
a is a factor of n. m

The converse of Theorem 3 is not true. For all n € Z, we have 1|n, but clearly (1) is not an ideal
annihilator of Z,,. It means (1) is not a vertex ini AG(Z,,).

Theorem 4. Adjacency of AG(Z,,)
Suppose (p) and (g) are ideal in Z,,. Vertex (p) and (g) are adjacent in AG(Z,,) if and only if n|pq.
Proof.
Suppose (p) = {pala € Z,} and (q) = {qb|r € Z,}. The product (p)(q) = (pq). If n|pq then (p}q) =
(0) = {0}. Hence (p) and (g) are adjacent in AG(Z,,) by Definition 3.
If (p) and (g) are adjacent then (p)(q) = {0}. It means (pq)(ab) = nk for some integer a, b, and k. The
equation (pq)(ab) = nk implies n|(pq) (ab), especially must be n|pq. m

We will continue to discuss the relation some part of annihilating ideal and exact annihilating ideal
graph of any commutative ring R.
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Lemma 5. Relation Set of All Vertex EAG(R) and AG(R)

For any commutative ring R, EA(R)* = A(R)"

Proof.

Take any ideal I € EA(R)". It means there exist ideal / of R such that Ann(I) =] and Ann(J) = I. Based
on definition of annihilator, the product of ideal IJ] = 0. Hence I € A(R)".

Now, take any ideal I € A(R)". It means there exist nonzero ideal J such that IJ = 0. Ideal I is annihilator
ideal then Ann(l) # 0. Suppose ] = Ann(I) then J is nonzero ideal of R. We have Ann(J) =
Ann(Ann(I)) = I. We conclude Ann(I) =] and Ann(J) = I. Hence I € EA(R)". m

Lemma 6.

For any commutative ring R, EAG(R) is a subgraph of AG(R).

Proof.

Lemma 5 show us that EA(R)* = A(R)*. We will prove that for all (I,)) € E(EAG(R)) then (I,]) €
E(AG(R)). Adjacency of ideal I and J on EAG(R) means that | = Ann(J) and J = Ann(I). Based on
properties of annihilator of ideal, we have IJ = 0. Based on definition of adjacency on AG(R), we have
(1)) € E(AG(R)). m

The converse of Theorem 4 not valid for exact annihilating ideal graph. Figure 1 below show that vertex
(6) and (12) are adjacent in AG(Z,,) but not adjacent in EAG(Z,,) although 24|12 X 6.

<2> <3> <4d> _ _
<2 1

> <3> <
<I2> <8> <
(@) AG(Z,4) (b) EAG(Z24)
Figure 1. Representation of AG(Z,,) and EAG(Z,,)

Based on the situation, we will construct the criteria of adjacency in exact annihilating ideal graph.
Theorem 7. Adjacency of EAG(Z,)

Suppose commutative ring Z,, with identity 1. Ideals (p) and (g) are adjacent vertex of EAG(Z,,) if
and only if n = pq.

Diberikan ring komutatif Z,, dengan satuan 1. (p) dan (g) merupakan simpul yang bertetangga di
EAG(Z,) jika dan hanya jikan = pq.
Proof.
(<). Assume (p) and (g) are not adjacent. We will proof n # pq. We have (p) = {pa|a,p € Z,} and () =
{q_b|l_),(7 € Zn} are not adjacent. It means Ann((p)) # (g) and Ann((g)) # (p) such that (p)(g) # {0}. We
use commutative and associative property of Z,, to get form (p)(g) = {(p_a)(ﬁ)} = {(ﬁ)(%)} + {0} It
imply pq t n. Hence pq # n.
(=). Assume n = pq. We will proof vertex (p) and (g) are not adjacent in graph EAG(Z,,). If n # pq then
n = pq + a with a is non-zero integer. We construct two principal ideal generated by p and g on Z,,. Now,
we have the product of these ideal

(PN) = {@N (@D} = (=D (D} = (=a)

We have ((p),(q)) ¢ E(AG(Z,)). Based on Lemma 6, vertex (p) and (g) are not adjacent in graph
EAG(Zy,).m

>
6>

Theorem 8. Isolated Vertex in EAG(Z,,) B

Suppose commutative ring Z,, with identity 1. If n = 72 then (7) is a isolated vertex in EAG(Z,,).
Proof.
Suppose n = r2 and principal ideal (7) of ring Z,,. We have Ann((F)) = (7). Its means (7) is a vertex of
EAG(Z,). Assume there is a vertex (@) (not equal to (7)) of EAG(Z,) such that (r) and (a) adjacent. The
product of the ideals is (@)(r) # (F){r) = (0). Vertex () and (a) adjacent on EAG(Z,) means that (7'} =
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Ann((a)) and (@) = Ann((F)). Furthermore (7)(a) = (0). Its contradiction with the product ideals () and
(a). Hence there is no vertex adjacent with (7') on EAG(Z,,). m

In [11] showed that diam(EAG(R)) < 1 and g(EAG(R)) < 4 for any commutative ring R. In this
paper, we will show more specific result about diameter, girth, cycle existence of EAG(R).

Theorem 9.

Suppose commutative ring R. If EAG(R) is connected graph then diam(EAG(R)) = 1.
Proof.
Suppose I and J are two different vertex of EAG(R). Assume d(I,]) = 2 > 1, means that exist a vertex A of
EAG(R) such that ] —A —] is a path in EAG(R). Based on Definition 4 we have I = Ann(4),4 =
Ann(I), A = Ann(]),and ] = Ann(A). Itimply I = Ann(4) = Ann(Ann(J)). Based on Lemma 2.1 on [3],
we get Ann(Ann(J)) = J. Two last equation imply / = J. We have a contradiction with ideal I and J must
be different. So, d(1,]) = 1 for all ideal / and J. It proved that diam(EAG(R)) = 1. m

Collorary 10.
Suppose commutative ring R. If EAG(R) contain a cycle then g(EAG(R)) < 3.

Proof.
If graph G contain a cycle then g(G) < 2diam(G)+ 1. Theorem 9 has shown that
diam(EAG(R)) = 1. Finally, we have g(EAG(R)) < 2diam(EAG(R)) +1=3.m

Theorem 3.9 in [11] showed that IEAG(an) where p is prime can be represented as union of some
complete graph. Figure 1 below show that EAG(Z,4) can be represented as union of K, graph, although
24 # p™ for any prime p. Based on this fact, we construct a theorem to generalize properties of representation
of EAG(Zy).

Theorem 11. Decomposition of EAG(Z,,)
The number of complete subgraph of Exact annihilating ideal graph of ring Z, is [@ - 1].
Proof.
Lemma 5 showed that EA(R)* = A(R)*. Based on Theorem 2, we have |EA(Z,)*| = ¢(n) — 2.
Theorem 9 showed that diam(EAG(R)) = 1 for any commutative ring R. We conclude that the maximum
number of edges EAG(Zy,) is @ — 1. Its means the maximum complete subgraph of EAG(Z,,) is also

—"’(2") -1
Case 1: n = r2 for some integer r

Based on Theorem 8, () is a isolated vertex in EAG(Z,,). We have ¢ (n) — 3 other vertices of EAG(Z,,).
Obviously there is no positive integer a such thatn = a?. In another word, we just found exactly one isolated
vertex on EAG(Z,,). We can partition EAG(Z,,) to be @ graph K,. Isolated vertex can be represented as

K;. The total of number complete graph that contain in EAG(Z,,) [Rpa U g ‘"("T)“ -1= [@] -1=

2
Case 2: n # r2 for any integer r

If n = r2 for any integer r then n = ab where a # b. Ideal (@) and (b) are vertices in EAG(Z,,). Based on
theorem 7, (@) and (b) adjacent in EAG(Z,,). This condition means there is no isolated vertex in EAG(Zy,).

Graph EAG(Z,,) is fully partition into complete graph K,. Total number of K, is £&=2 =20 _ ¢ —
p (Zy) y p p grapn K, 2 5 5

D) — [ _

[-1=[F-1]
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4. CONCLUSIONS

Factorization on z,, characterizes the (Exact) Annihilating Ideal Graph, especially in 1) the number of vertices
in an annihilating ideal graph, 2) adjacency of the vertices, and 3) decomposition of exact annihilating ideal
graph.

REFERENCES

[1] Cayley, “Desiderata and Suggestions: No. 2. The Theory of Groups: Graphical Representation.”
[2] 1. Beck, “Coloring of Commutative Rings”.

[3] S. Bhavanari, “Prime Graph of a Ring,” Journal of Combinatorics, Information and System Sciences, vol. 35,
no. 1, pp. 27-42, 2010, Accessed: Jan. 16, 2023. [Online]. Available:
https://www.researchgate.net/publication/259007924_Prime_Graph_of_a_Ring/link/00b49529b8fd0da066000
000/download

[4] D. F. Anderson and P. S. Livingston, “The Zero-Divisor Graph of Commutative Ring,” J Algebra, vol. 217,
1999.

[5] ] Premkumar and T. Lalchandani, “Exact Zero-Divisor Graph,” 2016.

[6] P. T. Lalchandani, “Exact Zero-Divisor Graph of a Commutative Ring,” International Journal of Mathematics
and Its Applications, vol. 6, no. 4, pp. 91-98, 2018.

[71 S. Visweswaran and P. T. Lalchandani, “The exact annihilating-ideal graph of a commutative ring,” Journal of
Algebra Combinatorics Discrete Structures and Applications, vol. 8, no. 2, pp. 119-138, 2021, doi:
10.13069/JACODESMATH.938105.

[8] A. Badawi, “On the Annihilator Graph of a Commutative Ring,” Commun Algebra, vol. 42, no. 1, pp. 108
121, Jan. 2014, doi: 10.1080/00927872.2012.707262.

9] D. S. Dummit, “Abstract_algebra_ Dummit_and_Foote,” 2004.

[10] M. Behboodi and Z. Rakeei, “The annihilating-ideal graph of commutative rings I, J Algebra Appl, vol. 10,
no. 4, pp. 727-739, 2011, doi: 10.1142/S0219498811004896.

[11] P.T. Lalchandani, “EXACT ANNIHILATING-IDEAL GRAPH OF COMMUTATIVE RINGS,” 2017.

[12]  S. Visweswaran and P. T. Lalchandani, “The exact zero-divisor graph of a reduced ring,” Indian Journal of
Pure and Applied Mathematics, vol. 52, no. 4, pp. 1123-1144, Dec. 2021, doi: 10.1007/s13226-021-00086-9.

[13] S. Arumugam, K. Premalatha, M. Baca, and A. Semani¢ova-Fenovéikova, “Local Antimagic Vertex Coloring
of a Graph,” Graphs Comb, vol. 33, no. 2, pp. 275-285, Mar. 2017, doi: 10.1007/s00373-017-1758-7.

[14]  J. Huang, “Domination ratio of integer distance digraphs,” Discrete Appl Math (1979), vol. 262, pp. 104-115,
Jun. 2019, doi: 10.1016/j.dam.2019.03.001.

[15] M. Masriani, R. Juliana, A. G. Syarifudin, I. G. A. W. Wardhana, L. Irwansyah, and N. W. Switrayni, “SOME
RESULT OF NON-COPRIME GRAPH OF INTEGERS MODULO n GROUP FOR n A PRIME POWER,”
Journal of Fundamental Mathematics and Applications (JFMA), vol. 3, no. 2, pp. 107-111, Nov. 2020, doi:
10.14710/jfma.v3i2.8713.

C ted [A6]: Is it already using Mendeley, because it
doesn not contain the publication year




Author : Revison 1

BAREKENG: Journal of Mathematics and Its Applications

March 2022  Volume xx Issue xx Page xxx—xxx

B are @'e ng P-ISSN: 1978-7227 E-ISSN: 2615-3017

Tt BB HELETINtIKE dat Tarapan d  https:/doi.org/10.30598/bareken:

ANNIHILATING IDEAL AND EXACT ANNIHILATING IDEAL

GRAPH OF RING Z,,

Anindito Wisnu Susanto !, Dewa Putu Wiadnyana Putra?”

12Department of Mathematics Education, Faculty of Teacher Training and Education, Sanata Dharma University
JI. Affandi, Mrican, Caturtunggal, Depok, Sleman, Yogyakarta, 55281, Indonesia

Corresponding author’s e-mail: 2* dewa@usd.ac.id

ABSTRACT

Article History:

Received: date, month year
Revised: date, month year
Accepted: date, month year

Keywords:

Annihilating Ideal;
Exact Annihilating Ideal;
Graph;

Zero Divisor

The existence of annihilator in the ring motivates the emergence of studies on Annihilating Ideal
and Exact Annihilating Ideal Graphs. The purpose of this research is to describe the
characteristics of an (exact) annihilating ideal of ring Z,,. The method used in this research is
literature study. The results of this study discuss finiteness, adjacency, connectedness, vertices,
and types of AG(Z,) and EAG(Z,). Furthermore, the number of vertices of an Annihilating
Ideal Graph is determined by the factorization of n. The adjacency of two vertices is determined
by the divisibleness of n. The results also show that EAG(Z,) is a subgraph of AG(Z,).
EAG(Z,) can be represented as a union of several complete graphs.

This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution-ShareAlike 4.0 International License.

How to cite this article:

First author, second author, etc., “TITLE OF ARTICLE,” BAREKENG: J. Math. & App., vol. XX, iss. XX, pp. XXX-Xxx, Month, Year.

Copyright © 2022 Author(s)

Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/
Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id

Research Article ¢ Open Access

49



http://creativecommons.org/licenses/by-sa/4.0/
https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id
ASUS
Typewriter
Author : Revison 1


50 Family name of first author, et. al. ~ Writes Some Words of the Title in Arial Narrow, 8pt, italic, Capitalize each words...

1. INTRODUCTION

The use of graphs in representing algebraic structures has been carried out since at least 1878 in [1].
This representation starts from representing a group structure into a graph. The vertices of a graph are all
elements of a group and changes to an element due to operations on the group are represented by directed
edges. Furthermore, [2], [3] began to associate graphs with a broader structure, namely rings. Investigation
of the ring structure is carried out through the colored representation of the graph. The representation of an
algebraic structure on a graph opens up opportunities for visual investigation of the properties of a particular
structure. An essential part in the process of representing a particular algebraic structure to a graph is how to
define the connection between the vertices of the graph. Different ways of defining adjacent vertices can lead
to different variations of properties as well.

One of the interesting things in the ring, which is about zero divisor. A non-zero element a is said to
be a zero divisor if it can be found a non-zero element b such that ab = 0. From this structure, [4] proposed
the origin of the zero divisor graph. The vertices of the graph are all zero divisors. Two vertices are adjacent
if and only if the product of the two elements is zero. Many interesting properties result from this concept,
one of which is about the combinatorics of a finite ring [5]—[7].

The concept is similar to zero divisor in the ring is the Annihilator. Badawi has started a study on
annihilator graphs [8]. In its development, annihilating graphs are generalized into annihilating Ideal graphs.
In [9], itis stated that Annihilator is an ideal I, namely Ann(I) = {r € R|rl =0Vl € L}. If Ann(I) is not
a trivial set, then I is called an ideal annilator. In 2011, [10] started to represent a structure consisting of
annihilator ideals into a graph. The graph that is formed is named Annihilating Ideal Graph. In line with the
development of zero divisor graphs, [11] is continuing the study of Exact Annihilating Ideal graphs. The
development of ideal annihilating and exact annihilating properties of graphs is studied separately. The
general relationship between these two graphs began to be investigated by [12].

An integer modulo n, Z,, is a ring that has very interesting properties. This z,, structure is widely used
in graphs, for example in coloring Antimagic graphs [13] and Domination ratio [14]. The factorization
theorem on integers is a motivation for developing graph studies involving a ring of integers modulo n. One
of the graph studies carried out was a study on non-coprime for Z, [15]. Based on this, the study of
annihilating ideal graph for Z,, rings is interesting to do.

2. RESEARCH METHODS

This research is a literature research that examines the properties of annihilating ideal and exact annihilating
ideal graphs on integer rings modulo n, Z,,. The definition of (Exact) Annihilating Ideal based on [10], [11]
is as follows.

Definition 1. Annihilating Ideal [10]

An Ideal T of commutative ring R with identity is a Annihilating Ideal if there exist non zero ideal ] of R such
that IJ = 0. The set of all Annihilating Ideal of ring R is denoted by A(R).

Definition 2. Exact Annihilating Ideal [11]
An ideal I of commutative ring R with identity is Exact Annihilating Ideal if there exist non zero ideal ] of R
such that Ann(I) = J and Ann(J) = I. The set of all Exact Annihilating Ideal of ring R denoted by EA(R).

Based on the two definitions above, then (Exact) Annihilating Ideal Graph is defined as follows.

Definition 3. Annihilating Ideal Graph [10]

Annihilating Ideal graph of ring R denoted by AG(R) is a graph with vertices A(R)* = A(R)\{(0)} and
(I]) € ECAG(R)) if and only if I] = (0).

Definition 4. Exact Annihilating Ideal Graph [11]
Exact Annihilating Ideal graph of ring R denoted by EAG(R) is a graph with vertices EA(R)" =
EA(R)\{(0)} and (I,]) € E(EAG(R)) if and only if Ann(I) = J and Ann(J) = 1.



BAREKENG: J. Math. & App., vol. xx(xx), pp. xxx - xxx, month, year. 51

Definition of (Exact) Annihilating Ideal Graph, this article further describes the properties of the graph with
rings z,,. Comparison of the properties of annihilating ideal and exact annihilating ideal graph of ring z,, is
also presented in this article.

3. RESULTS AND DISCUSSION
In this section, we will show some result of Annihilating ideal graph of ring Z,,.

Theorem 1. Lower Bound of Cardinality A(Z,,)*

Suppose Z,, ring of integer modulo n where n not prime.
1. Ifn = p?, where p is prime then |A(Z,)*| = 1.
2. Ifn # p?, where p is prime then |A(Z,,)*| > 2

Proof.

(1) Suppose n = p? then there exists uniquely non zero proper ideal in di Z,,, (p) = {pz|Z € Z,}. If n =
p? its means p2 = @1 = 0 such that (5){(5) = (0). Ideal (p) is an annihilating ideal of Z,, by Definition
1. Since ideal (p) is the only one of proper non zero ideal in Z,,, hence A(Z,,)* = {{(p)} or |A(Z,,)*| = 1.

(2) Suppose n is nonprime, thatisn = ab forsomea,b € Zwhere1 <a <n,1<b <n,anda # b. The
product of two ideal, (a){b) = {(za)(yb)|a,b € Z,y,z € Z,}. Since n = ab, zy(ab) = zy(n) then
(aXb) = {zynl|z,y € Z,} = (0). Clearly, {(a) # (0) and (b} = (0). Ideals (a) and (b) are annihilating
ideal by Definition 1. Hence, {a), (b) € A(Z,)*. That is prove that for any nonprime n, |A(Z,)*| = 2. m

Theorem 2. Cardinality of A(Z,)*

Suppose Z,, ring of integer modulo n. The number of vertices of annihilating ideal graph AG(Z,,) is ¢(n) —
2, where ¢(n) is the number of positive factors of n.

Proof.

Suppose n = (p1)%*(p2)% ... (p,)*n is prime factorization of n. If x|n then x = (p1)A1(p,)*?2 ... (p)Pn
where B; < a; for all i. If x|n, also means that there exists integer y such that xy = n. Suppose y =
(@) ()72 ... (pp)" theny = (p )" (p2)"? ... ()", where a; = B +y; for1 < i <n.

We construct principal ideal (x) = {xz|z € Z,,} and (y) = {yt|t € Z,} of Z,,. The product of these
ideal (x)(y) = {(x2)(y©)} = {(xy)(zt)}. As xy = n implies (x){(y) = {0}. For all (x), where x is a positive
factor of n, there exists ideal (y) such that (x){y) = {0}. The number of Ideal (x) that satisfied the condition
is the number of positive factor of n, ¢(n). Suppose the set

I(Z,) = {(x) ideal Z, |3y € Z such that xy = n}
Based on the process above, we have |1(Z,,)| = ¢(n). All of elements [(Z,,) is the elements of A(Z,,)* except
(1) and (n). Hence |A(Z,))*| = p(n) — 2. m

Theorem 3. Criteria vertex of AG(Z,,)

Suppose Z,, ring of integer modulo n. If (@) is a vertex of graph AG(Z,,) then a is a factor of n.
Proof.

Assume a isn’t factor of n. We have n = ax + y, where x and y is integerand 0 < y < a.
The product of ideal (@) and (x) is

(anx) = {(ar)(xn)} = {a(rxn)} = {a(xrn)} = {(@x)rn} = {(@x)rn}

We have element 7 = ¥ because n = ax + y. Then (@){(x) = {(ax)rn} = {(axr)n} = (1) = (¥). In means
(@) isn’t a ideal annihilator of Z,,. Hence (a) ¢ A(Z,)*. By the contraposition, we have if (a) € A(Z,,)* then
aisafactorofn. m

The converse of Theo_rem 3 is not true. For all n € Z, we have 1|n, but clearly (1) is not an ideal
annihilator of Z,,. It means (1) is not a vertex ini AG(Z,,).

Theorem 4. Adjacency of AG(Z,,)

Suppose (p) and {(g) are ideal in Z,,. Vertex (p) and (g) are adjacent in AG(Z,,) if and only if n|pq.
Proof.

Suppose (p) = {pala € Z,} and (q) = {qblr € Z,}. The product (p)}{q) = (pq). If n|pq then (pXq) =
(0) = {0}. Hence (p) and {g) are adjacent in AG(Z,,) by Definition 3.

If (p) and (g) are adjacent then (p){(gq) = {0}. It means (pq)(ab) = nk for some integer a, b, and k. The
equation (pq)(ab) = nk implies n|(pq)(ab), especially must be n|pq. m
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We will continue to discuss the relation some part of annihilating ideal and exact annihilating ideal
graph of any commutative ring R.

Lemma 5. Relation Set of All Vertex EAG(R) and AG(R)

For any commutative ring R, EA(R)* = A(R)*
Proof.
Take any ideal I € EA(R)*. It means there exist ideal J of R such that Ann(I) = J and Ann(J) = I. Based
on definition of annihilator, the product of ideal IJ = 0. Hence I € A(R)".
Now, take any ideal I € A(R)*. It means there exist nonzero ideal J such that IJ = 0. Ideal I is annihilator
ideal then Ann(I) # 0. Suppose J = Ann(I) then J is nonzero ideal of R. We have Ann(J) =
Ann(Ann(I)) = I. We conclude Ann(I) = J and Ann(J) = I. Hence I € EA(R)". m

Lemma 6.

For any commutative ring R, EAG(R) is a subgraph of AG(R).
Proof.
Lemma 5 show us that EA(R)* = A(R)*. We will prove that for all (1,]) € E(EAG(R)) then (1,]) €
E(AG(R)). Adjacency of ideal I and J on EAG(R) means that I = Ann(J) and | = Ann(Il). Based on
properties of annihilator of ideal, we have IJ = 0. Based on definition of adjacency on AG(R), we have
(I,])) e E(AG(R)). m
The converse of Theorem 4 not valid for exact annihilating ideal graph. Figure 1 below show that vertex
(6) and (12) are adjacent in AG(Z,,) but not adjacent in EAG(Z,,) although 24|12 X 6.

<12> <8> <6>

@) AG(Z,4) (b) EAG(Zz4)
Figure 1. Representation of AG(Z,,) and EAG(Z,,)
Based on the situation, we will construct the criteria of adjacency in exact annihilating ideal graph.
Theorem 7. Adjacency of EAG(Z,,)
Suppose commutative ring Z,, with identity 1. Ideals (p) and (g) are adjacent vertex of EAG(Z,,) if
and only if n = pgq.
Diberikan ring komutatif Z,, dengan satuan 1. (p) dan (g) merupakan simpul yang bertetangga di
EAG(Z,) jika dan hanya jikan = pq.
Proof.
(«). Assume (p) and (g) are not adjacent. We will proof n # pq. We have (p) = {pala,p € Z,} and (g) =
{qb|b,q € Z,,} are not adjacent. It means Ann((p)) # () and Ann({g)) # (p) such that (p)(g) # {0}. We
use commutative and associative property of Z, to get form (pXg) = {(pa)(qb)} = {(®9)(ab)} # {O}. It
imply pq t n. Hence pq # n.
(—=). Assume n # pq. We will proof vertex (p) and (g) are not adjacent in graph EAG(Z,,). If n # pq then
n = pq + a with a is non-zero integer. We construct two principal ideal generated by p and g on Z,,. Now,
we have the product of these ideal
PNy ={(PpM (D)} = {m=a)(rD)} = (=a)
We have ((p),(q)) ¢ E(AG(Zn)). Based on Lemma 6, vertex (p) and (g) are not adjacent in graph
EAG(Z,).m
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Theorem 8. Isolated Vertex in EAG(Z,,)

Suppose commutative ring Z,, with identity 1. If n = 2 then (7) is a isolated vertex in EAG(Z,,).
Proof.
Suppose n = r2 and principal ideal () of ring Z,,. We have Ann({(r)) = (). Its means (7) is a vertex of
EAG(Z,). Assume there is a vertex (@) (not equal to (7)) of EAG(Z,,) such that () and (@) adjacent. The
product of the ideals is (@)(r) # (F){) = (0). Vertex () and (a) adjacent on EAG(Z,) means that () =
Ann({@)) and (@) = Ann((7)). Furthermore (7){@) = (0). Its contradiction with the product ideals () and
(a@). Hence there is no vertex adjacent with () on EAG(Z,). m

In [11] showed that diam(EAG(R)) < 1 and g(EAG(R)) < 4 for any commutative ring R. In this
paper, we will show more specific result about diameter, girth, cycle existence of EAG(R).

Theorem 9.

Suppose commutative ring R. If EAG(R) is connected graph then diam(EAG(R)) = 1.
Proof.
Suppose I and J are two different vertex of EAG(R). Assume d(I,]) = 2 > 1, means that exist a vertex A of
EAG(R) such that I — A —J is a path in EAG(R). Based on Definition 4 we have I = Ann(4),A =
Ann(I),A = Ann(J),and ] = Ann(A). Itimply I = Ann(4) = Ann(Ann(])). Based on Lemma 2.1 on [3],
we get Ann(Ann(])) = J. Two last equation imply I = J. We have a contradiction with ideal I and J must
be different. So, d(1,]) = 1 for all ideal I and J. It proved that diam(EAG(R)) = 1. m

Collorary 10.
Suppose commutative ring R. If EAG(R) contain a cycle then g(EAG(R)) < 3.

Proof.
If graph G contain a cycle then g¢(G) < 2diam(G)+ 1. Theorem 9 has shown that
diam(EAG(R)) = 1. Finally, we have g(EAG(R)) < 2diam(EAG(R))+1=3.m

Theorem 3.9 in [11] showed that IEA(G(an) where p is prime can be represented as union of some
complete graph. Figure 1 below show that EAG(Z,,) can be represented as union of K, graph, although
24 + p™ for any prime p. Based on this fact, we construct a theorem to generalize properties of representation
of EAG(Z,,).

Theorem 11. Decomposition of EAG(Z,,)
The number of complete subgraph of Exact annihilating ideal graph of ring Z, is [(”(n) — 1].

2
Proof.
Lemma 5 showed that EA(R)* = A(R)*. Based on Theorem 2, we have |EA(Z,)*| = ¢(n) — 2.
Theorem 9 showed that diam(EAG(R)) = 1 for any commutative ring R. We conclude that the maximum

number of edges EAG(Z,,) is @ — 1. Its means the maximum complete subgraph of EAG(Z,) is also
Case 1: n = r? for some integer r
Based on Theorem 8, (7) is a isolated vertex in EAG(Z,,). We have ¢(n) — 3 other vertices of EAG(Z,,).

Obviously there is no positive integer a such thatn = a?. In another word, we just found exactly one isolated

vertex on EAG(Z,). We can partition EAG(Z,,) to be (”(nTH graph K. Isolated vertex can be represented as

om=3 | | _ e+t 4 _ [em] _ 4 _

K;. The total of number complete graph that contain in EAG(Z,,) is . . [ 5

)

Case 2: n # r? for any integer r ~
If n = r2 for any integer r then n = ab where a # b. Ideal (@) and (b) are vertices in EAG(Z,). Based on
theorem 7, (@) and (b} adjacent in EAG(Z,,). This condition means there is no isolated vertex in EAG(Z,,).
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Graph EAG(Z,,) is fully partition into complete graph K,. Total number of K, is @ = @— 1=

-

4. CONCLUSIONS

Factorization on z,, characterizes the (Exact) Annihilating Ideal Graph, especially in 1) the number of vertices
in an annihilating ideal graph, 2) adjacency of the vertices, and 3) decomposition of exact annihilating ideal
graph.
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1. INTRODUCTION

The use of graphs in representing algebraic structures has been carried out since at least 1878 in [1].
This representation starts from representing a group structure into a graph. The vertices of a graph are all
elements of a group and changes to an element due to operations on the group are represented by directed
edges. Furthermore, [2], [3] began to associate graphs with a broader structure, namely rings. Investigation
of the ring structure is carried out through the colored representation of the graph. The representation of an
algebraic structure on a graph opens up opportunities for visual investigation of the properties of a particular
structure. An essential part in the process of representing a particular algebraic structure to a graph is how to
define the connection between the vertices of the graph. Different ways of defining adjacent vertices can lead
to different variations of properties as well.

One of the interesting things in the ring, which is about zero divisor. A non-zero element a is said to
be a zero divisor if it can be found a non-zero element b such that ab = 0. From this structure, [4] proposed
the origin of the zero divisor graph. The vertices of the graph are all zero divisors. Two vertices are adjacent
if and only if the product of the two elements is zero. Many interesting properties result from this concept,
one of which is about the combinatorics of a finite [ring[ [5]-[71.

The concept is similar to zero divisor in the ring is the Annihilator. Badawi has started a study on
annihilator graphs [8]. In its development, annihilating graphs are generalized into annihilating Ideal graphs.
In [9], it is stated that Annihilator is an ideal I, namely Ann(I) = {r € R|rl =0V 1l € L}. If Ann(I) is not
a trivial set, then I is called an ideal annilator. In 2011, [10] started to represent a structure consisting of
annihilator ideals into a graph. The graph that is formed is named Annihilating Ideal Graph. In line with the
development of zero divisor graphs, [11] is continuing the study of Exact Annihilating Ideal graphs. The
development of ideal annihilating and exact annihilating properties of graphs is studied separately. The
general relationship between these two graphs began to be investigated by [12].

An integer modulo n, Z,, is a ring that has very interesting properties. This z,, structure is widely used
in graphs, for example in coloring Antimagic graphs [13] and Domination ratio [14]. The factorization
theorem on integers is a motivation for developing graph studies involving a ring of integers modulo n. One
of the graph studies carried out was a study on non-coprime for Z, [15]. Based on this, the study of
annihilating ideal graph for Z,, rings is interesting to do.

2. RESEARCH METHODS

This research is a literature research that examines the properties of annihilating ideal and exact annihilating
ideal graphs on integer rings modulo n, Z,,. The definition of (Exact) Annihilating Ideal based on [10], [11]
is as follows.

Definition 1.|Annihilating Ideal [10]

An Ideal I of commutative ring R with identity is a Annihilating Ideal if there exist non zero ideal ] of R such
that I] = 0. The set of all Annihilating Ideal of ring R is denoted by A(R).

Definition 2. Exact Annihilating Ideal [11]
An ideal I of commutative ring R with identity is Exact Annihilating Ideal if there exist non zero ideal ] of R
buch} that Ann(I) = ] and Ann(]) = I. The set of all Exact Annihilating Ideal of ring R denoted by EA(R).

Based on the two definitions above, then (Exact) Annihilating Ideal Graph is defined as follows.

Definition 3. Annihilating Ideal Graph [10]

Annihilating Ideal graph of ring R denoted by AG(R) is a graph with vertices A(R)* = A(R)\{(0)} and
(L)) € E(AG(R)) if and only if I] = (0).

Definition 4. Exact Annihilating Ideal Graph [11]
Exact Annihilating Ideal graph of ring R denoted by EAG(R) is a graph with vertices EA(R)* =
EA(R)\{(0)} and (I,]) € E(EAG(R)) if and only if Ann(I) =J and Ann(J) = L.
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Definition of (Exact) Annihilating Ideal Graph, this article further describes the properties of the graph with
rings z,,. Comparison of the properties of annihilating ideal and exact annihilating ideal graph of ring z,, is
also presented in this article.

3. RESULTS AND DISCUSSION
In this section, we will show some result of Annihilating ideal graph of ring Z,,.

Theorem [1, Lower Bound of Cardinality A(Z,)*

Suppose Z,, ring of integer modulo n where n not prime.
1. If n = p?, where p is prime then |A(Z,,)*| = 1.
2. Ifn # p?, where p is prime then |A(Z,)*| = 2

Proof.

(1) Suppose n :pj then there exists uniquely non zero proper ideal in di Z,,, (p) = {pz|z € Z,}. If n =
p? its means p2 = 71 = 0 such that (p)(p) = (0). ldeal (p) is an annihilating ideal of Z,, by Definition
1. Since ideal (p) is the only one of proper non zero ideal in Z,,, hence A(Z,)* = {{(p)} or |A(Z,)"| = 1.

(2) Suppose n is nonprime, thatisn = ab forsomea,b € Zwhere1 <a<n,1<b <n,anda # b. The
product of two ideal, (a)(b) = {(za)(yb)|a,b € Z,y,z € Z,}. Since n = ab, zy(ab) = zy(n) then
(a)(b) = {zyn|z,y € Z,} = (0). Clearly, (a) # (0) and (b) = (0). Ideals (a) and (b} are annihilating
ideal by Definition 1. Hence, (a), (b) € A(Z,)". That is prove that for any nonprimen, |A(Z,)*| = 2. m

Theorem 2. Cardinality of A(Z,)*

Suppose Z,, ring of integer modulo n. The number of vertices of annihilating ideal graph AG(Z,,) is ¢(n) —
2, where @ (n) is the number of positive factors of n.

Proof.

Suppose n = (p1)% (p2)% ... (pp)* is prime factorization of n. If x|n then x = (p,)P1(p)Pz ... (pp)Pn
where B; < a; for all i. If x|n, also means that there exists integer y such that xy = n. Suppose y =
P (P2)2 .. (pn)"" theny = (p)V1(P2)"2 ... (p)'™, Where a; = B +y; for 1 < i <n.

We construct principal ideal (x) = {xz|z € Z,} and (y) = {yt|t € Z,} of Z,. The product of these
ideal (x)(y) = {(@Z)(¥t)} = {(xy)(2t)}. As xy = n implies (x)(y) = {0}. For all (x), where x is a positive
factor of n, there exists ideal (y) such that (x)(y) = {0}. The number of Ideal (x) that satisfied the condition
is the number of positive factor of n, ¢(n). Suppose the set

I(Z,) = {(x) ideal Z,|3y € Z such that xy = n}
Based on the process above, we have |1(Z,,)| = ¢(n). All of elements [(Z,,) is the elements of A(Z,,)* except
(1) and (n). Hence |A(Z,)" | = () — 2. m

Theorem 3. Criteria vertex of AG(Z,)

Suppose Z,, ring of integer modulo n. If (@) is a vertex of graph AG(Z,,) then a is a factor of ]
Proof.

Assume a isn’t factor of n. We have n = ax + y, where x and y is integerand 0 < y < a.
The product of ideal (@) and (x) is

(@yx) = (@) (En)} = @(ren)} = {@(@rn)} = {@orn} = {@)rn}

We have element n = y because n = ax + y. Then (a)(X) = {(ax)rn} = {(axr)n} = (n) = (¥). In means
(@) isn’t a ideal annihilator of Z,,. Hence (a) & A(Z,)". By the contraposition, we have if (@) € A(Z,)" then
a is a factor of n. m

The converse of Theorem 3 is not true. For all n € Z, we have 1|n, but clearly (1) is not an ideal
annihilator of Z,,. It means (1) is not a vertex ini AG(Z,,).

Theorem 4. Adjacency of AG(Zy,)

Suppose (p) and (q) are ideal in Z,,. Vertex (p) and (g) are adjacent in AG(Z,,) if and only if n|pq.
Proof.

Suppose (p) = {paja € Z,} and (q) = {qb|r € Zy,}. The product (p}q) = (pq). If n|pq then (pXq) =
(0) = {0}. Hence (p) and (g) are adjacent in AG(Z,,) by Definition 3.

If (p) and (g) are adjacent then (p)(q) = {0}. It means (pq)(ab) = nk for some integer a, b, and k. The
equation (pq)(ab) = nk implies n|(pq)(ab), especially must be n|pq. m
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We will continue to discuss the relation some part of annihilating ideal and exact annihilating ideal
graph of any commutative ring R.

Lemma 5. Relation Set of All Vertex EAG(R) and AG(R)

For any commutative ring R, EA(R)* = A(R)"
Proof.
Take any ideal I € EA(R)". It means there exist ideal / of R such that Ann(I) =] and Ann(J) = I. Based
on definition of annihilator, the product of ideal IJ] = 0. Hence I € A(R)".
Now, take any ideal I € A(R)". It means there exist nonzero ideal J such that IJ = 0. Ideal I is annihilator
ideal then Ann(l) # 0. Suppose ] = Ann(I) then J is nonzero ideal of R. We have Ann(J) =
Ann(Ann(I)) = I. We conclude Ann(I) =] and Ann(J) = I. Hence I € EA(R)". m

Lemma 6.

For any commutative ring R, EAG(R) is a subgraph of AG(R).
Proof.
Lemma 5 show us that EA(R)* = A(R)*. We will prove that for all (I,)) € E(EAG(R)) then (I,]) €
E(AG(R)). Adjacency of ideal I and J on EAG(R) means that | = Ann(J) and ] = Ann(I). Based on
properties of annihilator of ideal, we have IJ = 0. Based on definition of adjacency on AG(R), we have
(1)) € E(AG(R)). m
The converse of Theorem 4 not valid for exact annihilating ideal graph. Figure 1 below show that vertex
(6) and (12) are adjacent in AG(Z,,) but not adjacent in EAG(Z,,) although 24|12 X 6.

(@) AG(Z;4) (b) EAG(Zz24)
Figure 1. Representation of AG(Z,,) and EAG(Z,,)

Based on the situation, we will construct the criteria of adjacency in exact annihilating ideal graph.

Theorem 7. Adjacency of EAG(Z,,)

Suppose commutative ring Z, with identity 1. Ideals () and (g) are adjacent vertex of EAG(Z,,) if
and only if n = pq.

Diberikan| ring komutatif Z, dengan satuan 1. (p) dan (g) merupakan simpul yang bertetangga di
EAG(Z,) jika dan hanya jikan = pq.
Proof.
(«). Assume (p) and (g) are not adjacent. We will proof n # pq. We have (p) = {pal|a,p € Z,} and (g) =
{qb|b,q € Z,,} are not adjacent. It means Ann((p)) # () and Ann((g)) # (p) such that (p)(g) # {0}. We
use commutative and associative property of Z, to get form (p)(@) = {(a)(qb)} = {(@q)(ab)} # {0}. It
imply pq 1 n. Hence pq # n.
(=). Assume n # pq. We will proof vertex (p) and (g) are not adjacent in graph EAG(Zy,). If n # pq then
n = pq + a with a is non-zero integer. We construct two principal ideal generated by p and q on Z,,. Now,
we have the product of these ideal

@)@ = (PN} = {(F=a) (D)} = (—a)

We have ((p).(q)) & E(AG(ZH)). Based on Lemma 6, vertex (p) and (g) are not adjacent in graph
EAG(Z,).m
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Theorem 8. Isolated Vertex in EAG(Z,,)

Suppose commutative ring Z,, with identity 1. If n = 72 then (¥) is a isolated vertex in EAG(Z,,).
Proof.
Suppose n = 2 and principal ideal (7 of ring Z,,. We have Ann((¥)) = (7). Its means (7) is a vertex of
EAG(Z,). Assume there is a vertex (a) (not equal to (7)) of EAG(Z,) such that (r) and (@) adjacent. The
product of the ideals is (@)(F) # (F)(F) = (0). Vertex () and (a) adjacent on EAG(Z,) means that (¥) =
Ann((@)) and (@) = Ann((7)). Furthermore (7¥)(a) = (0). lts contradiction with the product ideals (r) and
(a). Hence there is no vertex adjacent with (i) on EAG(Z,,). m

In [11] showed that diam(EAG(R)) < 1 and g(EAG(R)) < 4 for any commutative ring R. In this
paper, we will show more specific result about diameter, girth, cycle existence of EAG(R).

Theorem 9.

Suppose commutative ring R. If EAG(R) is connected graph then diam(EAG(R)) = 1.
Proof.
Suppose I and J are two different vertex of EAG(R). Assume d(I,]) = 2 > 1, means that exist a vertex 4 of
EAG(R) such that I —A —] is a path in EAG(R). Based on Definition 4 we have I = Ann(4),4 =
Ann(I), A = Ann(J),and | = Ann(A). Itimply I = Ann(A) = Ann(Ann(J)). Based on Lemma 2.1 on [3],
we get Ann(Ann(])) = J. Two last equation imply I = J. We have a contradiction with ideal / and J must
be different. So, d(1,/) = 1 for all ideal / and J. It proved that diam(EAG(R)) = 1. m

Collorary 10.

Suppose commutative ring R. If EAG(R) contain a cycle then g(lEAG(R)) <3.

Proof.

If graph G contain a cycle then g(G) < 2diam(G) + 1. Theorem 9 has shown that diam([EAG(R)) =1.
Finally, we have g(EAG(R)) < 2diam(EAG(R))+1=3.m

Theorem 3.9 in [11] showed that IEA(G(an) where p is prime can be represented as union of some
complete graph. Figure 1 below show that EAG(Z,,) can be represented as union of K, graph, although
24 =+ p™ for any prime p. Based on this fact, we construct a theorem to generalize properties of representation
of EAG(Zy).

Theorem 11. Decomposition of EAG(Z,,)
The number of complete subgraph of Exact annihilating ideal graph of ring Z, is [%") - 1].
Proof.

Lemma 5 showed that EA(R)* = A(R)*. Based on Theorem 2, we have |EA(Z,)*| = ¢(n) — 2.
Theorem 9 showed that diam(IEAG(R)) = 1 for any commutative ring R. We conclude that the maximum
number of edges EAG(Z,) is @ — 1. Its means the maximum complete subgraph of EAG(Z,) is also
em g,

2
Case 1: n = r? for some integer r
Based on Theorem 8, (7'} is a isolated vertex in EAG(Z,). We have ¢ (n) — 3 other vertices of EAG(Z,,).
Obviously there is no positive integer a such thatn = a?. In another word, we just found exactly one isolated

vertex on EAG(Z,,). We can partition EAG(Z,,) to be @ graph K,. Isolated vertex can be represented as
K; . The total of number complete graph that contain in EAG(Z,,) is@ +1= @ -1= [@] -1=

Case 2: n = r? for any integer r

If n # r? for any integer r then n = ab where a # b. Ideal () and (b) are vertices in EAG(Z,). Based on
theorem 7, (a) and (b) adjacent in EAG(Z,). This condition means there is no isolated vertex in EAG(Z,,).

Graph EAG(Zy,) is fully partition into complete graph K,. Total number of K, is em=2 _ o™ _ 4 =

2 2
=)
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4. CONCLUSIONS

Factorization on z,, characterizes the (Exact) Annihilating Ideal Graph, especially in 1) the number of vertices
in an annihilating ideal graph, 2) adjacency of the vertices, and 3) decomposition of exact annihilating ideal
graph.
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1. INTRODUCTION

The use of graphs in representing algebraic structures has been carried out since at least 1878 in [1].
This representation starts from representing a group structure into a graph. The vertices of a graph are all
elements of a group and changes to an element due to operations on the group are represented by directed
edges. Furthermore, [2], [3] began to associate graphs with a broader structure, namely rings. Investigation
of the ring structure is carried out through the colored representation of the graph. The representation of an
algebraic structure on a graph opens up opportunities for visual investigation of the properties of a particular
structure. An essential part in the process of representing a particular algebraic structure to a graph is how to
define the connection between the vertices of the graph. Different ways of defining adjacent vertices can lead
to different variations of properties as well.

One of the interesting things in the ring, which is about zero divisor. A non-zero element a is said to
be a zero divisor if it can be found a non-zero element b such that ab = 0. From this structure, [4] proposed
the origin of the zero divisor graph. The vertices of the graph are all zero divisors. Two vertices are adjacent
if and only if the product of the two elements is zero. Many interesting properties result from this concept,
one of which is about the combinatorics of a finite ring [5], [6], [7].

The concept is similar to zero divisor in the ring is the Annihilator. Badawi has started a study on
annihilator graphs [8]. In its development, annihilating graphs are generalized into annihilating Ideal graphs.
In [9], itis stated that Annihilator is an ideal I, namely Ann(I) = {r € R|rl =0Vl € L}. If Ann(I) is not
a trivial set, then I is called an ideal annilator. In 2011, [10] started to represent a structure consisting of
annihilator ideals into a graph. The graph that is formed is named Annihilating Ideal Graph. In line with the
development of zero divisor graphs, [11] is continuing the study of Exact Annihilating Ideal graphs. The
development of ideal annihilating and exact annihilating properties of graphs is studied separately. The
general relationship between these two graphs began to be investigated by [12].

An integer modulo n, Z,, is a ring that has very interesting properties. This z,, structure is widely used
in graphs, for example in coloring Antimagic graphs [13] and Domination ratio [14]. The factorization
theorem on integers is a motivation for developing graph studies involving a ring of integers modulo n. One
of the graph studies carried out was a study on non-coprime for Z, [15]. Based on this, the study of
annihilating ideal graph for Z,, rings is interesting to do.

2. RESEARCH METHODS

This research is a literature research that examines the properties of annihilating ideal and exact annihilating
ideal graphs on integer rings modulo n, Z,,. The definition of (Exact) Annihilating Ideal based on [10], [11]
is as follows.

Definition 1. [10]

An Ideal T of commutative ring R with identity is a Annihilating Ideal if there exist non zero ideal ] of R such
that IJ = 0. The set of all Annihilating Ideal of ring R is denoted by A(R).

Definition 2. [11]
An ideal I of commutative ring R with identity is Exact Annihilating Ideal if there exist non zero ideal ] of R
such that Ann(I) = J and Ann(J) = I. The set of all Exact Annihilating Ideal of ring R denoted by EA(R).

Based on the two definitions above, then (Exact) Annihilating Ideal Graph is defined as follows.

Definition 3. [10]
Annihilating Ideal graph of ring R denoted by AG(R) is a graph with vertices A(R)* = A(R)\{(0)} and
(I]) € ECAG(R)) if and only if I] = (0).

Definition 4. [11]
Exact Annihilating Ideal graph of ring R denoted by EAG(R) is a graph with vertices EA(R)" =
EA(R)\{(0)} and (I,]) € E(EAG(R)) if and only if Ann(I) = J and Ann(]) = 1.
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Definition of (Exact) Annihilating Ideal Graph, this article further describes the properties of the graph with
rings z,,. Comparison of the properties of annihilating ideal and exact annihilating ideal graph of ring z,, is
also presented in this article.

3. RESULTS AND DISCUSSION
In this section, we will show some result of Annihilating ideal graph of ring Z,,.

Theorem 1.

Suppose Z,, ring of integer modulo n where n not prime.
1. Ifn = p?, where p is prime then |A(Z,)*| = 1.
2. Ifn # p?, where p is prime then |A(Z,,)*| > 2

Proof.

(1) Suppose n = p? then there exists uniquely non zero proper ideal in di Z,,, {p) = {pz|Z € Z,}. If n =
p? its means p2 = @1 = 0 such that (5){(5) = (0). Ideal (p) is an annihilating ideal of Z,, by Definition
1. Since ideal (p) is the only one of proper non zero ideal in Z,,, hence A(Z,,)* = {(p)} or |A(Z,,)*| = 1.

(2) Suppose n is nonprime, thatisn = ab forsomea,b € Zwhere1 <a <n,1<b <n,anda # b. The
product of two ideal, (a){b) = {(za)(yb)|a,b € Z,y,z € Z,}. Since n = ab, zy(ab) = zy(n) then
(aXb) = {zynl|z,y € Z,} = (0). Clearly, {(a) # (0) and (b} = (0). Ideals (a) and (b) are annihilating
ideal by Definition 1. Hence, {(a), (b) € A(Z,)*. That is prove that for any nonprime n, |A(Z,)*| = 2. m

Theorem 2.

Suppose Z,, ring of integer modulo n. The number of vertices of annihilating ideal graph AG(Z,,) is ¢(n) —
2, where ¢(n) is the number of positive factors of n.

Proof.

Suppose n = (p1)*(p2)% ... (p,)*n is prime factorization of n. If x|n then x = (p1)A1(p,)*?2 ... (p)Pn
where f; < a; for all i. If x|n, also means that there exists integer y such that xy = n. Suppose y =
(@) ()72 ... (pp)" theny = (p )" (p2)"> ... ()", where a; = B +y; for1 < i <n.

We construct principal ideal (x) = {xz|z € Z,} and (y) = {yt|t € Z,} of Z,.. The product of these
ideal (x)(y) = {(x2)(y©)} = {(xy)(zt)}. As xy = n implies (x){(y) = {0}. For all (x), where x is a positive
factor of n, there exists ideal (y) such that (x){y) = {0}. The number of Ideal (x) that satisfied the condition
is the number of positive factor of n, ¢(n). Suppose the set

I(Z,) = {(x) ideal Z, |3y € Z such that xy = n}
Based on the process above, we have |1(Z,,)| = ¢(n). All of elements [(Z,,) is the elements of A(Z,,)* except
(1) and (n). Hence |A(Z,))*| = p(n) — 2. m

Theorem 3.
Suppose Z,, ring of integer modulo n. If (@) is a vertex of graph AG(Z,,) then a is a factor of n.
Proof.

Assume a isn’t factor of n. We have n = ax + y, where x and y is integerand 0 < y < a.
The product of ideal (@) and (x) is

(a)(x) = {(ar)(xn)} = {a(rxn)} = {a(xrn)} = {(ax)rn} = {(@xX)rn}

We have element 7 = ¥ because n = ax + y. Then (@){(x) = {(ax)rn} = {(axr)n} = (1) = (¥). In means
(@) isn’t a ideal annihilator of Z,,. Hence (a) ¢ A(Z,)*. By the contraposition, we have if (a) € A(Z,,)* then
a is afactorof n. m

The converse of Theo_rem 3 is not true. For all n € Z, we have 1|n, but clearly (1) is not an ideal
annihilator of Z,,. It means (1) is not a vertex ini AG(Z,,).

Theorem 4.

Suppose (p) and {(g) are ideal in Z,,. Vertex (p) and (g) are adjacent in AG(Z,,) if and only if n|pq.
Proof.

Suppose (p) = {pala € Z,} and (q) = {qblr € Z,}. The product (p)}q) = (pq). If n|pq then (pXq) =
(0) = {0}. Hence (p) and {g) are adjacent in AG(Z,,) by Definition 3.
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If (p) and (g) are adjacent then (p){gq) = {0}. It means (pq)(ab) = nk for some integer a, b, and k. The
equation (pq)(ab) = nk implies n|(pq) (ab), especially must be n|pq. m

We will continue to discuss the relation some part of annihilating ideal and exact annihilating ideal
graph of any commutative ring R.

Lemma 5.

For any commutative ring R, EA(R)* = A(R)*

Proof.

Take any ideal I € EA(R)*. It means there exist ideal J of R such that Ann(I) = J and Ann(J) = I. Based
on definition of annihilator, the product of ideal IJ = 0. Hence I € A(R)".

Now, take any ideal I € A(R)*. It means there exist nonzero ideal J such that IJ = 0. Ideal I is annihilator
ideal then Ann(I) # 0. Suppose J = Ann(I) then J is nonzero ideal of R. We have Ann(J) =
Ann(Ann(I)) = I. We conclude Ann(I) = J and Ann(J) = I. Hence I € EA(R)". m

Lemma 6.

For any commutative ring R, EAG(R) is a subgraph of AG(R).

Proof.

Lemma 5 show us that EA(R)* = A(R)*. We will prove that for all (1,]) € E(EAG(R)) then (1,]) €
E(AG(R)). Adjacency of ideal I and J on EAG(R) means that I = Ann(J) and | = Ann(Il). Based on
properties of annihilator of ideal, we have IJ = 0. Based on definition of adjacency on AG(R), we have
(1,)) e E(AG(R)). m

The converse of Theorem 4 not valid for exact annihilating ideal graph. Figure 1 below show that vertex
(6) and (12) are adjacent in AG(Z,,) but not adjacent in EAG(Z,,) although 24|12 X 6.

(@ (b)
Figure 1. Representation of Annihilating Ideal and Exact Annihilating Ideal Graph
(DAG(Zz4), (D)EAG(Z24)

Based on the situation, we will construct the criteria of adjacency in exact annihilating ideal graph.
Theorem 7.
Suppose commutative ring Z,, with identity 1. Ideals (p) and (g) are adjacent vertex of EAG(Z,,) if and only
if n = pgq.
Proof.
(). Assume (p) and (g) are not adjacent. We will proof n # pq. We have (p) = {pala,p € Z,} and (g) =
{qb|b,q € Z,,} are not adjacent. It means Ann((p)) # (g) and Ann({g)) # (p) such that (p)(g) # {0}. We
use commutative and associative property of Z, to get form (pXg) = {(pa)(qb)} = {(®9)(ab)} # {0}. It
imply pq t n. Hence pq # n.
(-). Assume n # pq. We will proof vertex (p) and (g) are not adjacent in graph EAG(Z,,). If n # pq then
n = pq + a with a is non-zero integer. We construct two principal ideal generated by p and g on Z,,. Now,
we have the product of these ideal

PN ={(PpM ()} = {m=a)(rD)} = (=a)

We have ((p),(q)) ¢ E(AG(Zn)). Based on Lemma 6, vertex (p) and (g) are not adjacent in graph
EAG(Z,).m
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Theorem 8.

Suppose commutative ring Z,, with identity 1. If n = 72 then (7) is a isolated vertex in EAG(Z,,).

Proof.

Suppose n = r2 and principal ideal () of ring Z,,. We have Ann({(r)) = (). Its means (7) is a vertex of
EAG(Z,). Assume there is a vertex (@) (not equal to (7)) of EAG(Z,,) such that (¥) and (@) adjacent. The
product of the ideals is (@)(r) # (F){¥) = (0). Vertex (¥) and (@) adjacent on EAG(Z,) means that () =
Ann({@)) and (@) = Ann((7)). Furthermore (7){@) = (0). Its contradiction with the product ideals (7) and
(a@). Hence there is no vertex adjacent with () on EAG(Z,). m

In [11] showed that diam(EAG(R)) < 1 and g(EAG(R)) < 4 for any commutative ring R. In this
paper, we will show more specific result about diameter, girth, cycle existence of EAG(R).

Theorem 9.

Suppose commutative ring R. If EAG(R) is connected graph then diam(EAG(R)) = 1.

Proof.

Suppose I and J are two different vertex of EAG(R). Assume d(I,]) = 2 > 1, means that exist a vertex A of
EAG(R) such that I — A —J is a path in EAG(R). Based on Definition 4 we have I = Ann(4),A =
Ann(I),A = Ann(J),and ] = Ann(A). Itimply I = Ann(4) = Ann(Ann(])). Based on Lemma 2.1 on [3],
we get Ann(Ann(])) = J. Two last equation imply I = J. We have a contradiction with ideal I and J must
be different. So, d(1,]) = 1 for all ideal I and J. It proved that diam(EAG(R)) = 1. m

Collorary 10.
Suppose commutative ring R. If EAG(R) contain a cycle then g(EAG(R)) < 3.

Proof.
If graph G contain a cycle then g(G) < 2diam(G) + 1. Theorem 9 has shown that diam(]EA(G(R)) =1.
Finally, we have g(EAG(R)) < 2diam(EAG(R)) +1=3. m

Theorem 3.9 in [11] showed that IEA(G(an) where p is prime can be represented as union of some
complete graph. Figure 1 below show that EAG(Z,,) can be represented as union of K, graph, although
24 + p™ for any prime p. Based on this fact, we construct a theorem to generalize properties of representation
of EAG(Z,,).

Theorem 11.
The number of complete subgraph of Exact annihilating ideal graph of ring Z, is [‘p(n) 1].

Proof.
Lemma 5 showed that EA(R)* = A(R)*. Based on Theorem 2, we have |EA(Z,)*| = ¢(n) — 2. Theorem 9
showed that diam(EAG(R)) = 1 for any commutative ring R. We conclude that the maximum number of

edges EAG(Z,,) is ¢(2n) 1. Its means the maximum complete subgraph of EAG(Z,,) is also £ ‘p(") —1.

Case 1: n = r? for some integer r
Based on Theorem 8, (7) is a isolated vertex in EAG(Z,,). We have ¢(n) — 3 other vertices of EAG(Z,,).
Obviously there is no positive integer a such thatn = a?. In another word, we just found exactly one isolated

vertex on EAG(Z,). We can partition EAG(Z,,) to be —— ‘p(n) -3 graph K,. Isolated vertex can be represented as

<p<n> 3 <p(nz>+1 1= [M 1=

K;. The total of number complete graph that contain in IEA(G(Zn) is +1=

)

Case 2: n # r? for any integer r ~
If n = r2 for any intgger r then n = ab where a # b. ldeal (@) and (b) are vertices in EAG(Z,,). Based on
theorem 7, (@) and (b) adjacent in EAG(Z,,). This condition means there is no isolated vertex in EAG(Z,,).

Graph EAG(Z,) is fully partition into complete graph K,. Total number of K, is &= ‘p(") 2_oMm 4 _
p n yp p grapn K. 2

2] -1 =221} 2
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4. CONCLUSIONS

Factorization on Z,, characterizes the (Exact) Annihilating Ideal Graph, especially in 1) the number of vertices
in an annihilating ideal graph, 2) adjacency of the vertices, and 3) decomposition of exact annihilating ideal
graph.
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1. INTRODUCTION

The use of graphs in representing algebraic structures has been carried out since at least 1878 in [[1]. ]
This representation starts from representing a group structure into a graph. The vertices of a graph are all
elements of a group and changes to an element due to operations on the group are represented by directed
edges. Furthermore, [2], [3] began to associate graphs with a broader structure, namely rings. Investigation
of the ring structure is carried out through the colored representation of the graph. The representation of an
algebraic structure on a graph opens up opportunities for visual investigation of the properties of a particular
structure. An essential part in the process of representing a particular algebraic structure to a graph is how to
define the connection between the vertices of the graph. Different ways of defining adjacent vertices can lead
to different variations of properties as well.

One of the interesting things in the ring, which is about zero divisor. A non-zero element a is said to
be a zero divisor if it can be found a non-zero element b such that ab = 0. From this structure, [4] proposed
the origin of the zero divisor graph. The vertices of the graph are all zero divisors. Two vertices are adjacent
if and only if the product of the two elements is zero. Many interesting properties result from this concept,
one of which is about the combinatorics of a finite ring [5], [6], [7]-

The concept is similar to zero divisor in the ring is the Annihilator. Badawi has started a study on
annihilator graphs [8]. In its development, annihilating graphs are generalized into annihilating Ideal graphs.
In [9], it is stated that Annihilator is an ideal I, namely Ann(I) = {r € R|rl =0V 1l € L}. If Ann(I) is not
a trivial set, then I is called an ideal annilator. In 2011, [10] started to represent a structure consisting of
annihilator ideals into a graph. The graph that is formed is named Annihilating Ideal Graph. In line with the
development of zero divisor graphs, [11] is continuing the study of Exact Annihilating Ideal graphs. The
development of ideal annihilating and exact annihilating properties of graphs is studied separately. The
general relationship between these two graphs began to be investigated by [12].

An integer modulo n, Z,, is a ring that has very interesting properties. This z,, structure is widely used
in graphs, for example in coloring Antimagic graphs [13] and Domination ratio [14]. The factorization
theorem on integers is a motivation for developing graph studies involving a ring of integers modulo n. One
of the graph studies carried out was a study on non-coprime for Z, [15]. Based on this, the study of
annihilating ideal graph for Z,, rings is interesting to do.

2. RESEARCH METHODS

[This research is a literature research that examines the properties of annihilating ideal and exact annihilating
ideal graphs on integer rings modulo n, Z,,. The definition of (Exact) Annihilating Ideal based on [10], [11]
is as follows

Definition 1. [10]

An Ideal I of commutative ring R with identity is a Annihilating Ideal if there exist non zero ideal ] of R such
that I] = 0. The set of all Annihilating Ideal of ring R is denoted by A(R).

Definition 2. [11]
An ideal I of commutative ring R with identity is Exact Annihilating Ideal if there exist non zero ideal ] of R
such that Ann(I) = J and Ann(J) = I. The set of all Exact Annihilating Ideal of ring R denoted by EA(R).

Based on the two definitions above, then (Exact) Annihilating Ideal Graph is defined as follows.

Definition 3. [10]

Annihilating Ideal graph of ring R denoted by AG(R) is a graph with vertices A(R)* = A(R)\{(0)} and
(L)) € E(AG(R)) if and only if I] = (0).

Definition 4. [11]

Exact Annihilating Ideal graph of ring R denoted by EAG(R) is a graph with vertices EA(R)* =
EA(R)\{(0)} and (I,]) € E(EAG(R)) if and only if Ann(I) = ] and Ann(J) = L.
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Definition of (Exact) Annihilating Ideal Graph, this article further describes the properties of the graph with
rings z,,. Comparison of the properties of annihilating ideal and exact annihilating ideal graph of ring z,, is
also presented in this article.

3. RESULTS AND DISCUSSION

[I nlthis section, we will show some result of Annihilating ideal graph of ring Z,,.

Theorem 1.

Suppose Z,, ring of integer modulo n where n not prime.
1. If n = p?, where p is prime then |A(Z,,)*| = 1.
2. Ifn = p?, where p is prime then |A(Z,)*| = 2

Proof.

(1) Suppose n :pj then there exists uniquely non zero proper ideal in di Z,,, (p) = {pz|z € Z,}. If n =
p? its means p2 = 71 = 0 such that (p)(p) = (0). Ideal (p) is an annihilating ideal of Z,, by Definition
1. Since ideal (p) is the only one of proper non zero ideal in Z,,, hence A(Z,)" = {(p)} or |[A(Z,)"| = 1.

(2) Suppose n is nonprime, thatisn = ab forsomea,b € Zwhere1 <a<n,1<b <n,anda # b. The
product of two ideal, (a)(b) = {(za)(yb)|a,b € Z,y,z € Z,}. Since n = ab, zy(ab) = zy(n) then
(a)(b) = {zyn|z,y € Z,} = (0). Clearly, (a) # (0) and (b) = (0). Ideals (a) and (b} are annihilating
ideal by Definition 1. Hence, (a),(b) € A(Z,)". Thatis prove that for any nonprime n, |A(Z,)*| = 2. m

Theorem 2.

Suppose Z, ring of integer modulo n. The number of vertices of annihilating ideal graph AG(Z,,) is ¢(n) —
2, where ¢(n) is the number of positive factors of n.

Proof.

Suppose n = (p1)% (p2)% ... (pp)* is prime factorization of n. If x|n then x = (p)P1(p,)P2 ... (pn)Pn
where B; < a; for all i. If x|n, also means that there exists integer y such that xy = n. Suppose y =
@) ®2)"? . (pn)" theny = (p1)"1(P2)"2 ... (pn)"", Where a; = B; +y; for1 <i < n.

We construct principal ideal (x) = {xz|z € Z,} and (y) = {yt|t € Z,} of Z,. The product of these
ideal (x)(y) = {(@Z)(yt)} = {(xy)(zt)}. As xy = n implies (x)(y) = {0}. For all (x), where x is a positive
factor of n, there exists ideal (y) such that (x)(y) = {0}. The number of Ideal (x) that satisfied the condition
is the number of positive factor of n, ¢(n). Suppose the set

I(Zy) = {(x) ideal Zy,|3y € Z such that xy = n}
Based on the process above, we have |I(Z,,)| = ¢(n). All of elements [(Z,,) is the elements of A(Z,,)" except
(1) and (n). Hence |A(Z)* | = ¢(n) —2. m

Theorem 3.
Suppose Z, ring of integer modulo n. If (@) is a vertex of graph AG(Z,,) then a is a factor of n.
Proof.

Assume a isn’t factor of n. We have n = ax + y, where x and y is integerand 0 <y < a.
The product of ideal (a) and (i) is

(@) = {(@r)(Fn)} = {a(rin)} = {@(@Frn)} = {(@x)rn} = {(@)rn}

We have element i = y because n = ax + y. Then (a)(x) = {(ax)rn} = {(axr)n} = (1) = (¥). In means
(a) isn’t a ideal annihilator of Z,,. Hence (a) & A(Zy)". By the contraposition, we have if (a) € A(Z,)" then
a is a factor of n. m

The converse of Theorem 3 is not true. For all n € Z, we have 1|n, but clearly (1) is not an ideal
annihilator of Z,,. It means (1) is not a vertex ini AG(Z,,).

Theorem 4.
Suppose (p) and (g) are ideal in Z,,. Vertex (p) and (g) are adjacent in AG(Z,,) if and only if n|pgq.
Proof.

Suppose {p) = {pala € Z,} and {q) = {qb|r € Z,}. The product (p)(q) = (pq). If n|pq then (p)(q) =
(0) = {0}. Hence (p) and (g) are adjacent in AG(Z,,) by Definition 3.
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If (p) and (g) are adjacent then (p)(q) = {0}. It means (pq)(ab) = nk for some integer a, b, and k. The
equation (pq)(ab) = nk implies n|(pq) (ab), especially must be n|pq. m

We will continue to discuss the relation some part of annihilating ideal and exact annihilating ideal
graph of any commutative ring R.

Lemma 5.

For any commutative ring R, EA(R)* = A(R)"

Proof.

Take any ideal I € EA(R)*. It means there exist ideal J of R such that Ann(I) =] and Ann(J) = I. Based
on definition of annihilator, the product of ideal IJ] = 0. Hence I € A(R)".

Now, take any ideal I € A(R)". It means there exist nonzero ideal J such that IJ = 0. Ideal I is annihilator
ideal then Ann(l) # 0. Suppose ] = Ann(I) then J is nonzero ideal of R. We have Ann(J) =
Ann(Ann(I)) = I. We conclude Ann(I) =] and Ann(J) = I. Hence I € EA(R)". m

Lemma 6.

For any commutative ring R, EAG(R) is a subgraph of AG(R).

Proof.

Lemma 5 show us that EA(R)* = A(R)*. We will prove that for all (I,]) € E(EAG(R)) then (I,]) €
E(AG(R)). Adjacency of ideal I and J on EAG(R) means that I = Ann(J) and J = Ann(I). Based on
properties of annihilator of ideal, we have IJ = 0. Based on definition of adjacency on AG(R), we have
(1)) € E(AG(R)). m

The converse of Theorem 4 not valid for exact annihilating ideal graph. Figure 1 below show that vertex
(6) and (12) are adjacent in AG(Z,,) but not adjacent in EAG(Z,,) although 24|12 X 6.

(®)
Figure 1. Representation of Annihilating Ideal and Exact Annihilating Ideal Graph
()AG(Zz4), (D)EAG(Z,4)

Based on the situation, we will construct the criteria of adjacency in exact annihilating ideal graph.
Theorem 7.
Suppose commutative ring Z, with identity 1. Ideals (p) and (g) are adjacent vertex of EAG(Z,,) if and only
ifn = pq.
Proof.
(<). Assume (p) and (g) are not adjacent. We will proof n # pq. We have (p) = {pa|a,p € Z,} and () =
{q_b|l_),(7 € Zn} are not adjacent. It means Ann((p)) # (g) and Ann((g)) # (p) such that (p)(g) # {0}. We
use commutative and associative property of Z,, to get form (p)(g) = {(p_a)(ﬁ)} = {(ﬁ)(%)} + {0} It
imply pq t n. Hence pq # n.
(=). Assume n = pq. We will proof vertex (p) and (g) are not adjacent in graph EAG(Zy,). If n # pq then
n = pq + a with a is non-zero integer. We construct two principal ideal generated by p and g on Z,,. Now,
we have the product of these ideal

P)@) = (PN} = (F=a) (7))} = (=a)

We have ((p),(9)) ¢ E(AG(Z,)). Based on Lemma 6, vertex (p) and (g) are not adjacent in graph
EAG(Zy).m
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Theorem 8.

Suppose commutative ring Z,, with identity 1. If n = r2 then (7) is a isolated vertex in EAG(Z,,).

Proof.

Suppose n = 2 and principal ideal (7) of ring Z,,. We have Ann((7)) = (7). Its means (7) is a vertex of
EAG(Zy,). Assume there is a vertex (a) (not equal to ()) of EAG(Z,) such that (') and (a) adjacent. The
product of the ideals is (@)(r) # (F)(F) = (0). Vertex () and (a) adjacent on EAG(Z,) means that (¥) =
Ann((@)) and (@) = Ann((¥)). Furthermore (¥)(a@) = (0). lts contradiction with the product ideals (') and
(a). Hence there is no vertex adjacent with (i) on EAG(Z,,). m

In [11] showed that diam(EAG(R)) < 1 and g(EAG(R)) < 4 for any commutative ring R. In this
paper, we will show more specific result about diameter, girth, cycle existence of EAG(R).

Theorem 9.

Suppose commutative ring R. If EAG(R) is connected graph then diam(EAG(R)) = 1.

Proof.

Suppose I and J are two different vertex of EAG(R). Assume d(I,]) = 2 > 1, means that exist a vertex 4 of
EAG(R) such that I —A —] is a path in EAG(R). Based on Definition 4 we have I = Ann(4),4 =
Ann(I), A = Ann(J),and ] = Ann(A). Itimply I = Ann(A) = Ann(Ann(J)). Based on Lemma 2.1 on [3],
we get Ann(Ann(])) = J. Two last equation imply I = J. We have a contradiction with ideal / and J must
be different. So, d(1,/) = 1 for all ideal / and J. It proved that diam(EAG(R)) = 1. m

Collorary 10.
Suppose commutative ring R. If EAG(R) contain a cycle then g(EAG(R)) < 3.

Proof.
If graph G contain a cycle then g(G) < 2diam(G) + 1. Theorem 9 has shown that diam(EAG(R)) = 1.
Finally, we have g(EAG(R)) < 2diam(EAG(R))+1=3.m

Theorem 3.9 in [11] showed that EAG(Z,n) where p is prime can be represented as union of some
complete graph. Figure 1 below show that EAG(Z,,) can be represented as union of K, graph, although
24 =+ p™ for any prime p. Based on this fact, we construct a theorem to generalize properties of representation
of EAG(Zy).

Theorem 11.

The number of complete subgraph of Exact annihilating ideal graph of ring Z, is [@ - 1].

Proof.

Lemma 5 showed that EA(R)" = A(R)". Based on Theorem 2, we have |EA(Z,)"| = ¢(n) — 2. Theorem 9
showed that diam(EAG(R)) = 1 for any commutative ring R. We conclude that the maximum number of
edges EAG(Zy,) is @ — 1. Its means the maximum complete subgraph of EAG(Z,,) is also @ - 1.
Case 1: n = r? for some integer r

Based on Theorem 8, (7'} is a isolated vertex in EAG(Z,). We have ¢ (n) — 3 other vertices of EAG(Z,,).
Obviously there is no positive integer a such thatn = a2. In another word, we just found exactly one isolated

vertex on EAG(Z,,). We can partition EAG(Z,,) to be % graph K, . Isolated vertex can be represented as
K;. The total of number complete graph that contain in EAG(Z,,) is% +1= @ -1= [%")] -1=

[ - 1]
Case 2: n # r? for any integer r _

If n = r2 for any integer r then n = ab where a # b. Ideal (@) and (b) are vertices in EAG(Z,). Based on
theorem 7, (a) and (b) adjacent in EAG(Z,). This condition means there is no isolated vertex in EAG(Z,,).

Graph EAG(Z,) is fully partition into complete graph K,. Total number of K, is @ = %ﬂ)— 1=

]
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4. CONCLUSIONS
[Factorization|on Z,, characterizes the (Exact) Annihilating Ideal Graph, especially in 1) the number of vertices
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in an annihilating ideal graph, 2) adjacency of the vertices, and 3) decomposition of exact annihilating ideal
graph.
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1. INTRODUCTION

The use of graphs in representing algebraic structures has been carried out since at least 1878 in [1].
This representation starts from representing a group structure into a graph. The vertices of a graph are all
elements of a group and changes to an element due to operations on the group are represented by directed
edges. Furthermore, [2], [3] began to associate graphs with a broader structure, namely rings. Investigation
of the ring structure is carried out through the colored representation of the graph. The representation of an
algebraic structure on a graph opens up opportunities for visual investigation of the properties of a particular
structure. An essential part in the process of representing a particular algebraic structure to a graph is how to
define the connection between the vertices of the graph. Different ways of defining adjacent vertices can lead
to different variations of properties as well.

One of the interesting things in the ring, which is about zero divisor. A non-zero element a is said to
be a zero divisor if it can be found a non-zero element b such that ab = 0. From this structure, [4] proposed
the origin of the zero divisor graph. The vertices of the graph are all zero divisors. Two vertices are adjacent
if and only if the product of the two elements is zero. Many interesting properties result from this concept,
one of which is about the combinatorics of a finite ring [5], [6], [7].

The concept is similar to zero divisor in the ring is the Annihilator. Badawi has started a study on
annihilator graphs [8]. In its development, annihilating graphs are generalized into annihilating Ideal graphs.
In [9], itis stated that Annihilator is an ideal I, namely Ann(I) = {r € R|rl =0Vl € L}. If Ann(I) is not
a trivial set, then I is called an ideal annilator. In 2011, [10] started to represent a structure consisting of
annihilator ideals into a graph. The graph that is formed is named Annihilating Ideal Graph. In line with the
development of zero divisor graphs, [11] is continuing the study of Exact Annihilating Ideal graphs. The
development of ideal annihilating and exact annihilating properties of graphs is studied separately. The
general relationship between these two graphs began to be investigated by [12].

An integer modulo n, Z,, is a ring that has very interesting properties. This z,, structure is widely used
in graphs, for example in coloring Antimagic graphs [13] and Domination ratio [14]. The factorization
theorem on integers is a motivation for developing graph studies involving a ring of integers modulo n. One
of the graph studies carried out was a study on non-coprime for Z, [15]. Based on this, the study of
annihilating ideal graph for Z,, rings is interesting to do.

2. RESEARCH METHODS

This research is a literature research that examines the properties of annihilating ideal and exact annihilating
ideal graphs on integer rings modulo n, Z,. The properties studied are the relationship between the
factorization of integer n and the vertex of an ideal annihilating graph, the adjacency of vertices, and the
relationship between integer decomposition and graph decomposition. The definition of (Exact) Annihilating
Ideal based on [10], [11] is as follows.
[10]

An Ideal T of commutative ring R with identity is a Annihilating Ideal if there exist non zero ideal ] of R such
that IJ = 0. The set of all Annihilating Ideal of ring R is denoted by A(R).

[11]
An ideal I of commutative ring R with identity is Exact Annihilating Ideal if there exist non zero ideal ] of R
such that Ann(I) = J and Ann(J) = 1. The set of all Exact Annihilating Ideal of ring R denoted by EA(R).

Based on the two definitions above, then (Exact) Annihilating Ideal Graph is defined as follows.

[10]
Annihilating Ideal graph of ring R denoted by AG(R) is a graph with vertices A(R)* = A(R)\{(0)} and
(I]) € ECAG(R)) if and only if I] = (0).

[11]

Exact Annihilating Ideal graph of ring R denoted by EAG(R) is a graph with vertices EA(R)" =
EA(R)\{(0)} and (I,]) € E(EAG(R)) if and only if Ann(I) = J and Ann(J) = L.
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Definition of (Exact) Annihilating Ideal Graph, this article further describes the properties of the graph with
rings z,,. Comparison of the properties of annihilating ideal and exact annihilating ideal graph of ring z,, is
also presented in this article.

3. RESULTS AND DISCUSSION

Integers are partitioned into prime numbers and composite numbers. Integer factorization affects the
cardinality of the set of all vertices of an ideal annihilating graph. Conversely, can also be observed from the
ideal annihilating graph, the characteristics of these integers can be determined. The following theorem shows
the relationship between integer factorization and vertex cardinality of an ideal annihilating graph.

Suppose Z,, ring of integer modulo n where n not prime.
1. Ifn = p?, where p is prime then |A(Z,)*| = 1.
2. Ifn # p?, where p is prime then |A(Z,,)*| > 2

Proof.

(1) Suppose n = p? then there exists uniquely non zero proper ideal in di Z,,, (p) = {pz|Z € Z,}. If n =
p? its means p2 = @1 = 0 such that (5){(5) = (0). Ideal (p) is an annihilating ideal of Z,, by Definition
1. Since ideal (p) is the only one of proper non zero ideal in Z,,, hence A(Z,,)* = {(p)} or |A(Z,,)*| = 1.

(2) Suppose n is nonprime, thatisn = ab forsomea,b € Zwhere1 <a <n,1<b <n,anda # b. The
product of two ideal, (a){b) = {(za)(yb)|a,b € Z,y,z € Z,}. Since n = ab, zy(ab) = zy(n) then
(a)b) = {zynl|z,y € Z,} = (0). Clearly, {(a) # (0) and (b} = (0). Ideals (a) and (b) are annihilating
ideal by Definition 1. Hence, {(a), (b) € A(Z,)*. That is prove that for any nonprime n, |A(Z,)*| = 2. m

Suppose Z,, ring of integer modulo n. The number of vertices of annihilating ideal graph AG(Z,,) is ¢(n) —
2, where ¢(n) is the number of positive factors of n.

Proof.

Suppose n = (p1)*(p,)%2 ... (p,)% is prime factorization of n. If x|n then x = (p,)P1(p,)P2 ... (p,)Pn
where f; < a; for all i. If x|n, also means that there exists integer y such that xy = n. Suppose y =
(@) (P72 ... (pp)" theny = (p )" (p2)"> ... ()", where a; = B +y; for1 < i <n.

We construct principal ideal (x) = {xz|z € Z,} and (y) = {yt|t € Z,} of Z,,. The product of these
ideal (x)(y) = {(x2)(y©)} = {(xy)(zt)}. As xy = n implies (x){(y) = {0}. For all {x), where x is a positive
factor of n, there exists ideal (y) such that (x){y) = {0}. The number of Ideal (x) that satisfied the condition
is the number of positive factor of n, ¢(n). Suppose the set

I(Z,) = {(x) ideal Z, |3y € Z such that xy = n}
Based on the process above, we have |1(Z,,)| = ¢(n). All of elements [(Z,,) is the elements of A(Z,,)* except
(1) and (n). Hence |A(Z,))*| = p(n) — 2. m

Suppose Z,, ring of integer modulo n. If (@) is a vertex of graph AG(Z,,) then a is a factor of n.
Proof.

Assume a isn’t factor of n. We have n = ax + y, where x and y is integerand 0 < y < a.
The product of ideal (@) and (x) is

(a)x) = {(ar)(xn)} = {a(rxn)} = {a(xrn)} = {(ax)rn} = {(@xX)rn}

We have element 7 = ¥y because n = ax + y. Then (@){(x) = {(ax)rn} = {(axr)n} = (1) = (¥). In means
(@) isn’t a ideal annihilator of Z,,. Hence (a) ¢ A(Z,)*. By the contraposition, we have if (a) € A(Z,,)* then
a is afactorof n. m

The converse of Theorem 3 is not true. For all n € Z, we have 1|n, but clearly (1) is not an ideal

annihilator of Z,,. It means (1) is not a vertex ini AG(Z,,).

Suppose (p) and (g) are ideal in Z,,. Vertex (p) and (g) are adjacent in AG(Z,,) if and only if n|pq.
Proof.
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Suppose (p) = {pala € Z,} and (q) = {qblr € Z,}. The product (p)}q) = (pq). If n|pq then (pXq) =
(0) = {0}. Hence (p) and (g) are adjacent in AG(Z,,) by Definition 3.
If (p) and (g) are adjacent then (p){q) = {0}. It means (pq)(ab) = nk for some integer a, b, and k. The
equation (pq)(ab) = nk implies n|(pq) (ab), especially must be n|pq. m

We will continue to discuss the relation some part of annihilating ideal and exact annihilating ideal
graph of any commutative ring R.

For any commutative ring R, EA(R)* = A(R)*

Proof.

Take any ideal I € EA(R)*. It means there exist ideal J of R such that Ann(I) = J and Ann(J) = I. Based
on definition of annihilator, the product of ideal IJ = 0. Hence I € A(R)".

Now, take any ideal I € A(R)*. It means there exist nonzero ideal J such that IJ = 0. Ideal I is annihilator
ideal then Ann(I) # 0. Suppose J = Ann(I) then J is nonzero ideal of R. We have Ann(J) =
Ann(Ann(I)) = I. We conclude Ann(I) = J and Ann(J) = I. Hence I € EA(R)". m

For any commutative ring R, EAG(R) is a subgraph of AG(R).

Proof.

Lemma 5 show us that EA(R)* = A(R)*. We will prove that for all (I,]) € E(EAG(R)) then (I,]) €
E(AG(R)). Adjacency of ideal I and J on EAG(R) means that I = Ann(J) and | = Ann(I). Based on
properties of annihilator of ideal, we have IJ = 0. Based on definition of adjacency on AG(R), we have
(1,)) e E(AG(R)). m

The converse of Theorem 4 not valid for exact annihilating ideal graph. Figure 1 below show that vertex
(6) and (12) are adjacent in AG(Z,,) but not adjacent in EAG(Z,,) although 24|12 X 6.

(@ (b)
Representation of Annihilating Ideal and Exact Annihilating Ideal Graph
(DAG(Zz4), (D)EAG(Z24)

Based on the situation, we will construct the criteria of adjacency in exact annihilating ideal graph.

Suppose commutative ring Z,, with identity 1. Ideals (p) and (g) are adjacent vertex of EAG(Z,,) if and only
if n = pgq.
Proof.
(«). Assume (p) and (g) are not adjacent. We will proof n # pq. We have (p) = {pala,p € Z,} and (g) =
{qb|b,q € Z,,} are not adjacent. It means Ann((p)) # (g) and Ann({g)) # (p) such that (p)(g) # {0}. We
use commutative and associative property of Z, to get form (pXg) = {(pa)(qb)} = {(Pg)(ab)} # {O}. It
imply pq t n. Hence pq # n.
(-). Assume n # pq. We will proof vertex (p) and (g) are not adjacent in graph EAG(Z,,). If n # pq then
n = pq + a with a is non-zero integer. We construct two principal ideal generated by p and g on Z,,. Now,
we have the product of these ideal

PN ={(PM ()} = {m=a)(rD)} = (=a)
We have ((p),(q)) ¢ E(AG(Zn)). Based on Lemma 6, vertex (p) and (g) are not adjacent in graph
EAG(Z,).m
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Suppose commutative ring Z,, with identity 1. If n = 72 then (7) is a isolated vertex in EAG(Z,,).

Proof.

Suppose n = r2 and principal ideal () of ring Z,,. We have Ann({(¥)) = (). Its means (7) is a vertex of
EAG(Z,). Assume there is a vertex (@) (not equal to (7)) of EAG(Z,,) such that () and (@) adjacent. The
product of the ideals is (@)(r) # (F){) = (0). Vertex (¥) and (a) adjacent on EAG(Z,) means that () =
Ann({@)) and (@) = Ann((7)). Furthermore (7){@) = (0). Its contradiction with the product ideals (7) and
(a@). Hence there is no vertex adjacent with () on EAG(Z,). m

In [11] showed that diam(EAG(R)) < 1 and g(EAG(R)) < 4 for any commutative ring R. In this
paper, we will show more specific result about diameter, girth, cycle existence of EAG(R).

Suppose commutative ring R. If EAG(R) is connected graph then diam(EAG(R)) = 1.

Proof.

Suppose I and J are two different vertex of EAG(R). Assume d(I,]) = 2 > 1, means that exist a vertex A of
EAG(R) such that I — A —J is a path in EAG(R). Based on Definition 4 we have I = Ann(4),A =
Ann(I),A = Ann(J),and ] = Ann(A). Itimply I = Ann(4) = Ann(Ann(])). Based on Lemma 2.1 on [3],
we get Ann(Ann(])) = J. Two last equation imply I = J. We have a contradiction with ideal I and J must
be different. So, d(1,]) = 1 for all ideal I and J. It proved that diam(EAG(R)) = 1. m

Suppose commutative ring R. If EAG(R) contain a cycle then g(EAG(R)) < 3.

Proof.
If graph G contain a cycle then g(G) < 2diam(G) + 1. Theorem 9 has shown that diam(]EA(G(R)) =1.
Finally, we have g(EAG(R)) < 2diam(EAG(R)) +1=3. m

Theorem 3.9 in [11] showed that IEA(G(an) where p is prime can be represented as union of some

complete graph. Figure 1 below show that EAG(Z,,) can be represented as union of K, graph, although
24 + p™ for any prime p. Based on this fact, we construct a theorem to generalize properties of representation
of EAG(Z,,).

The number of complete subgraph of Exact annihilating ideal graph of ring Z, is [ o) 1].
Proof.
Lemma 5 showed that EA(R)* = A(R)*. Based on Theorem 2, we have |EA(Z,)*| = ¢(n) — 2. Theorem 9

showed that diam(EAG(R)) = 1 for any commutative ring R. We conclude that the maximum number of

edges EAG(Z,) is ¢(2n) 1. Its means the maximum complete subgraph of EAG(Z,,) is also £ ‘p(") —1.

Case 1: n = r? for some integer r

Based on Theorem 8, (7) is a isolated vertex in EAG(Z,,). We have ¢(n) — 3 other vertices of EAG(Z,,).
Obviously there is no positive integer a such thatn = a?. In another word, we just found exactly one isolated
vertex on EAG(Z,). We can partition EAG(Z,,) to be —— q’(n) =3 graph K. Isolated vertex can be represented as
<p<n> 3 <p(nz)+1 1= [M 1=

K; . The total of number complete graph that contain in IEA(G(Zn) is +1=

%521}

Case 2: n # r? for any integer r ~
If n = r2 for any integer r then n = ab where a # b. Ideal (@) and (b) are vertices in EAG(Z,). Based on
theorem 7, (@) and (b} adjacent in EAG(Z,,). This condition means there is no isolated vertex in EAG(Z,,).
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Graph EAG(Z,,) is fully partition into complete graph K,. Total number of K, is @ = @— 1=

22—
4. CONCLUSIONS

Factorization on Z,, characterizes the (Exact) Annihilating Ideal Graph, especially in 1) the number of vertices
in an annihilating ideal graph, 2) adjacency of the vertices, and 3) decomposition of exact annihilating ideal
graph.
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1. INTRODUCTION

The use of graphs in representing algebraic structures has been carried out since at least 1878 fin [1].
This representation starts from representing a group structure into a graph. The vertices of a graph are all
elements of a group and changes to an element due to operations on the group are represented by directed
edges. Furthermore, [2], [3] began to associate graphs with a broader structure, namely rings. Investigation
of the ring structure is carried out through the colored representation of the graph. The representation of an
algebraic structure on a graph opens up opportunities for visual investigation of the properties of a particular
structure. An essential part in the process of representing a particular algebraic structure to a graph is how to
define the connection between the vertices of the graph. Different ways of defining adjacent vertices can lead
to different variations of properties as well.

One of the interesting things in the ring, which is about zero divisor. A non-zero element a is said to
be a zero divisor if it can be found a non-zero element b such that ab = 0. From this structure, [4] proposed
the origin of the zero divisor graph. The vertices of the graph are all zero divisors. Two vertices are adjacent
if and only if the product of the two elements is zero. Many interesting properties result from this concept,
one of which is about the combinatorics of a finite ring [5], [6], [7]-

The concept is similar to zero divisor in the ring is the Annihilator. Badawi has started a study on
annihilator graphs [8]. In its development, annihilating graphs are generalized into annihilating Ideal graphs.
In [9], it is stated that Annihilator is an ideal I, namely Ann(I) = {r € R|rl =0V 1l € L}. If Ann(I) is not
a trivial set, then I is called an ideal annilator. In 2011, [10] started to represent a structure consisting of
annihilator ideals into a graph. The graph that is formed is named Annihilating Ideal Graph. In line with the
development of zero divisor graphs, [11] is continuing the study of Exact Annihilating Ideal graphs. The
development of ideal annihilating and exact annihilating properties of graphs is studied separately. The
general relationship between these two graphs began to be investigated by [12].

An integer modulo n, Z,, is a ring that has very interesting properties. This z,, structure is widely used
in graphs, for example in coloring Antimagic graphs [13] and Domination ratio [14]. The factorization
theorem on integers is a motivation for developing graph studies involving a ring of integers modulo n. One
of the graph studies carried out was a study on non-coprime for Z, [15]. Based |on| this, the study of
annihilating ideal graph for Z,, rings is interesting to do.

2. RESEARCH METHODS

This research is a literature research that examines the properties of annihilating ideal and exact annihilating
ideal graphs on integer rings modulo n, Z,. The properties studied are the relationship between the
factorization of integer n and the vertex of an ideal annihilating graph, the adjacency of vertices, and the
relationship between integer decomposition and graph decomposition. The definition of (Exact) Annihilating
Ideal based on [10], [11] is as follows.
[10]

An Ideal I of commutative ring R with identity is a Annihilating Ideal if there exist non zero ideal ] of R such
that I = 0. The set of all Annihilating Ideal of ring R is denoted by A(R).

[11]
An ideal I of commutative ring R with identity is Exact Annihilating Ideal if there exist non zero ideal ] of R
such that Ann(I) = J and Ann(J) = I. The set of all Exact Annihilating Ideal of ring R denoted by EA(R).
Based on the two definitions above, then (Exact) Annihilating Ideal Graph is defined as follows.

[10]
Annihilating Ideal graph of ring R denoted by AG(R) is a graph with vertices A(R)* = A(R)\{(0)} and
(1)) € E(AG(R)) if and only if I = (0).

[11]
Exact Annihilating Ideal graph of ring R denoted by EAG(R) is a graph with vertices EA(R)" =
EA(R)\{(0)} and (1,]) € E(EAG(R)) if and only if Ann(I) =J and Ann(J) = I.
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Definition of (Exact) Annihilating Ideal Graph, this article further describes the properties of the graph with
rings z,,. Comparison of the properties of annihilating ideal and exact annihilating ideal graph of ring z,, is
also presented in this article.

3. RESULTS AND DISCUSSION

Integers are partitioned into prime numbers and composite numbers. Integer factorization affects the
cardinality of the set of all vertices of an ideal annihilating graph. Conversely, can also be observed from the
ideal annihilating graph, the characteristics of these integers can be determined. The following theorem shows
the relationship between integer factorization and vertex cardinality of an ideal annihilating graph.

Suppose Z,, ring of integer modulo n where n not prime.
1. Ifn = p?, where p is prime then |A(Z,,)*| = 1.
2. Ifn =+ p?, where p is prime then |A(Z,)*| = 2

Proof.

(1) Suppose n = p? then there exists uniquely non zero proper ideal in di Z,, (p) = {pz|Z € Z,}. If n =
p? its means ;7 =7 = 0 such that (p)(p) = (0). Ideal (p) is an annihilating ideal of Z,, by Definition
1. Since ideal (p) is the only one of proper non zero ideal in Z,,, hence A(Z,)" = {(p)} or |[A(Z,)"| = 1.

(2) Suppose n is nonprime, thatisn = ab forsomea,b € Zwhere1l <a<n,1<b <n,anda # b. The
product of two ideal, (a)(b) = {(za)(yb)|a,b €Z,y,z € Z,}. Since n = ab, zy(ab) = zy(n) then
(a)(b) = {zyn|z,y € Z,} = (0). Clearly, (a) # (0) and (b) # (0). Ideals (a) and (b} are annihilating
ideal by Definition 1. Hence, (a),(b) € A(Z,)". Thatis prove that for any nonprime n, |A(Z,)*| = 2. m

Suppose Z,, ring of integer modulo n. The number of vertices of annihilating ideal graph AG(Z,,) is ¢(n) —
2, where ¢ (n) is the number of positive factors of n.

Proof.

Suppose n = (p1)% (p2)% ... (pp)® is prime factorization of n. If x|n then x = (p,)P1(p,)Pz ... (pp)Pn
where B; < a; for all i. If x|n, also means that there exists integer y such that xy = n. Suppose y =
P (P2)2 .. (pn)" theny = ()V1(P2)"2 ... (p)'™, Where a; = B +y; for 1 < i <n.

We construct principal ideal (x) = {xz|z € Z,} and (y) = {yt|t € Z,} of Z,. The product of these
ideal (x)(y) = {(@Z)(¥D)} = {(xy)(2b)}. As xy = n implies (x)(y) = {0}. For all (x), where x is a positive
factor of n, there exists ideal (y) such that (x)(y) = {0}. The number of Ideal (x) that satisfied the condition
is the number of positive factor of n, ¢(n). Suppose the set

I(Z,) = {(x) ideal Z,|3y € Z such that xy = n}
Based on the process above, we have |1(Z,,)| = ¢(n). All of elements I(Z,,) is the elements of A(Z,,)* except
(1) and (n). Hence |A(Z,)*| = @(n) — 2. m

Suppose Z,, ring of integer modulo n. If (@) is a vertex of graph AG(Z,,) then a is a factor of n.
Proof.

Assume a isn’t factor of n. We have n = ax + y, where x and y is integerand 0 < y < a.
The product of ideal (a) and (i) is

(@y(x) = {(@n)(Fn)} = {a(rin)} = {@(@m)} = ((@xrn} = {(@rn}

We have element n = y because n = ax + y. Then (a)(X) = {(ax)rn} = {(axr)n} = (n) = (¥). In means
(a) isn’t a ideal annihilator of Z,,. Hence (a) ¢ A(Z,)". By the contraposition, we have if (@) € A(Z,)" then
a isafactorof n. m

The converse of Theorem 3 is not true. For all n € Z, we have 1|n, but clearly (1) is not an ideal

annihilator of Z,. It means (1) is not a vertex ini AG(Zy,).

Suppose (p) and (g) are ideal in Z,. Vertex (p) and (g) are adjacent in AG(Z,) if and only if n|pgq.
Proof.
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Suppose (p) = {pala € Z,} and (q) = {qb|r € Z,}. The product (p)(q) = (pq). If n|pq then (p)q) =
(0) = {0}. Hence (p) and (g) are adjacent in AG(Z,,) by Definition 3.
If (p) and (g) are adjacent then (p)(q) = {0}. It means (pq)(ab) = nk for some integer a, b, and k. The
equation (pq)(ab) = nk implies n|(pq) (ab), especially must be n|pq. m

We will continue to discuss the relation some part of annihilating ideal and exact annihilating ideal
graph of any commutative ring R.

For any commutative ring R, EA(R)* = A(R)"

Proof.

Take any ideal I € EA(R)". It means there exist ideal J of R such that Ann(I) = J and Ann(J) = I. Based
on definition of annihilator, the product of ideal IJ] = 0. Hence I € A(R)".

Now, take any ideal I € A(R)*. It means there exist nonzero ideal J such that IJ = 0. Ideal I is annihilator
ideal then Ann(l) # 0. Suppose ] = Ann(I) then J is nonzero ideal of R. We have Ann(J) =
Ann(Ann(I)) = 1. We conclude Ann(I) = J and Ann(J) = I. Hence I € EA(R)". m

For any commutative ring R, EAG(R) is a subgraph of AG(R).

Proof.

Lemma 5 show us that EA(R)" = A(R)*. We will prove that for all (I,]) € E(]EA(G(R)) then (1,]) €
E(AG(R)). Adjacency of ideal I and /] on EAG(R) means that I = Ann(J) and J = Ann(I). Based on
properties of annihilator of ideal, we have IJ = 0. Based on definition of adjacency on AG(R), we have
(1,]) e E(AG(R)). m

The converse of Theorem 4 not valid for exact annihilating ideal graph. Figure 1 below show that vertex
(6) and (12) are adjacent in AG(Z,,) but not adjacent in EAG(Z,,) although 24|12 X 6.

<2> <3> <4d>

Representation of Annihilating Ideal and Exact Annihilating Ideal Graph
(0)AG(Z24), (D)EAG(Z,4)

Based on the situation, we will construct the criteria of adjacency in exact annihilating ideal graph.

Suppose commutative ring Z, with identity 1. Ideals () and (g) are adjacent vertex of EAG(Z,,) if and only
ifn = pq.
Proof.
(«). Assume (p) and (g) are not adjacent. We will proof n # pq. We have (p) = {pal|a,p € Z,} and (g) =
{qb|b,q € Z,,} are not adjacent. It means Ann((p)) # () and Ann((g)) # (p) such that (p)(g) # {0}. We
use commutative and associative property of Z, to get form ()(@) = {(Pa)(qb)} = {(q)(ab)} # {0}. It
imply pq t n. Hence pq # n.
(=). Assume n # pq. We will proof vertex (p) and (g) are not adjacent in graph EAG(Z,,). If n # pq then
n = pq + a with a is non-zero integer. We construct two principal ideal generated by p and q on Z,,. Now,
we have the product of these ideal

PUD = {FT)(@D)} = (=D (D)} = (—a)
We have ((p),(q)) ¢ E(AG(ZH)). Based on Lemma 6, vertex (p) and (g) are not adjacent in graph
EAG(Z,).m
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Suppose commutative ring Z,, with identity 1. If n = r2 then (7) is a isolated vertex in EAG(Z,,).

Proof.

Suppose n = 2 and principal ideal (7 of ring Z,,. We have Ann((¥)) = (7). Its means (7) is a vertex of
EAG(Zy). Assume there is a vertex (a) (not equal to (7)) of EAG(Z,) such that (r) and (a) adjacent. The
product of the ideals is (@)(F) # (F)(F) = (0). Vertex (¥} and (@) adjacent on EAG(Z,) means that () =
Ann((a)) and (@) = Ann((F)). Furthermore (¥)(a@) = (0). Its contradiction with the product ideals () and
(a). Hence there is no vertex adjacent with (7') on EAG(Z,,). m

In [11] showed that diam(EAG(R)) < 1 and g(EAG(R)) < 4 for any commutative ring R. In this
paper, we will show more specific result about diameter, girth, cycle existence of EAG(R).

Suppose commutative ring R. If EAG(R) is connected graph then diam([EAG(R)) =1.

Proof.

Suppose I and J are two different vertex of EAG(R). Assume d(I,]) = 2 > 1, means that exist a vertex A of
EAG(R) such that I —A —] is a path in EAG(R). Based on Definition 4 we have I = Ann(4),A =
Ann(I),A = Ann(J),and J = Ann(A4). Itimply I = Ann(A) = Ann(Ann(J)). Based on Lemma 2.1 on [3],
we get Ann(Ann(J)) = J. Two last equation imply I = J. We have a contradiction with ideal I and J must
be different. So, d(I,J) = 1 for all ideal / and J. It proved that diam(EAG(R)) = 1. m

Suppose commutative ring R. If EAG(R) contain a cycle then g(EAG(R)) < 3.

Proof.
If graph G contain a cycle then g(G) < 2diam(G) + 1. Theorem 9 has shown that diam(EAG(R)) = 1.
Finally, we have g(EAG(R)) < 2diam(EAG(R))+1=3.m

Theorem 3.9 in [11] showed that IEA(G(an) where p is prime can be represented as union of some
complete graph. Figure 1 below show that EAG(Z,,) can be represented as union of K, graph, although
24 # p™ for any prime p. Based on this fact, we construct a theorem to generalize properties of representation
of EAG(Zy).

The number of complete subgraph of Exact annihilating ideal graph of ring Z, is I%") - 1].

Proof.

Lemma 5 showed that EA(R)* = A(R)". Based on Theorem 2, we have |EA(Z,)*| = ¢(n) — 2. Theorem 9
showed that diam([EAG(R)) = 1 for any commutative ring R. We conclude that the maximum number of
edges EAG(Z,) is @ — 1. Its means the maximum complete subgraph of EAG(Z,,) is also %’” -1
Case 1: n = r2 for some integer r

Based on Theorem 8, () is a isolated vertex in EAG(Z,). We have ¢ (n) — 3 other vertices of EAG(Z,,).
Obviously there is no positive integer a such thatn = a?. In another word, we just found exactly one isolated
vertex on EAG(Zy,). We can partition EAG(Z,,) to be @ graph K. Isolated vertex can be represented as

K, . The total of number complete graph that contain in EAG(Z,) is@ +1= ‘”("T)“ —-1= [@] —1=

[M -1
5 .
Case 2: n # r2 for any integer r _

If n = r2 for any integer r then n = ab where a # b. Ideal (@) and (b) are vertices in EAG(Z,). Based on
theorem 7, (@) and (b) adjacent in EAG(Z,,). This condition means there is no isolated vertex in EAG(Zy,).
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pm=z _ oM _ 1 _

Graph EAG(Z,,) is fully partition into complete graph K,. Total number of K, is 2 5

[Z2]-1=[%"-1] =
4. CONCLUSIONS

Factorization on Z,, characterizes the (Exact) Annihilating Ideal Graph, especially in 1) the number of vertices
in an annihilating ideal graph, 2) adjacency of the vertices, and 3) decomposition of exact annihilating ideal
graph.
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1. INTRODUCTION

The use of graphs in representing algebraic structures has been carried out since at least 1878 in [1].
This representation starts from representing a group structure into a graph. The vertices of a graph are all
elements of a group and changes to an element due to operations on the group are represented by directed
edges. Furthermore, [2], [3] began to associate graphs with a broader structure, namely rings. Investigation
of the ring structure is carried out through the colored representation of the graph. The representation of an
algebraic structure on a graph opens up opportunities for visual investigation of the properties of a particular
structure. An essential part in the process of representing a particular algebraic structure to a graph is how to
define the connection between the vertices of the graph. Different ways of defining adjacent vertices can lead
to different variations of properties as well.

One of the interesting things in the ring, which is about zero divisor. A non-zero element a is said to
be a zero divisor if it can be found a non-zero element b such that ab = 0. From this structure, [4] proposed
the origin of the zero divisor graph. The vertices of the graph are all zero divisors. Two vertices are adjacent
if and only if the product of the two elements is zero. Many interesting properties result from this concept,
one of which is about the combinatorics of a finite ring [5], [6], [7].

The concept is similar to zero divisor in the ring is the Annihilator. Badawi has started a study on
annihilator graphs [8]. In its development, annihilating graphs are generalized into annihilating Ideal graphs.
In [9], itis stated that Annihilator is an ideal I, namely Ann(I) = {r € R|rl =0Vl € L}. If Ann(I) is not
a trivial set, then I is called an ideal annilator. In 2011, [10] started to represent a structure consisting of
annihilator ideals into a graph. The graph that is formed is named Annihilating Ideal Graph. In line with the
development of zero divisor graphs, [11] is continuing the study of Exact Annihilating Ideal graphs. The
development of ideal annihilating and exact annihilating properties of graphs is studied separately. The
general relationship between these two graphs began to be investigated by [12].

An integer modulo n, Z,, is a ring that has very interesting properties. This z,, structure is widely used
in graphs, for example in coloring Antimagic graphs [13] and Domination ratio [14]. The factorization
theorem on integers is a motivation for developing graph studies involving a ring of integers modulo n. One
of the graph studies carried out was a study on non-coprime for Z,, [15]. In this research, we combine the
properties of (Exact) Annihilating Ideal Graph of arbitrary ring with factorization of ring integer modulo n.
These properties will be used to represent integer factors in a graph.

2. RESEARCH METHODS

This research is a literature research that examines the properties of annihilating ideal and exact annihilating
ideal graphs on integer rings modulo n, Z,. The properties studied are the relationship between the
factorization of integer n and the vertex of an ideal annihilating graph, the adjacency of vertices, and the
relationship between integer decomposition and graph decomposition. The definition of (Exact) Annihilating
Ideal based on [10], [11] is as follows.

Definition 1. [10]

An Ideal T of commutative ring R with identity is a Annihilating Ideal if there exist non zero ideal ] of R such
that IJ = 0. The set of all Annihilating Ideal of ring R is denoted by A(R).

Definition 2. [11]
An ideal I of commutative ring R with identity is Exact Annihilating Ideal if there exist non zero ideal ] of R
such that Ann(I) = J and Ann(J) = 1. The set of all Exact Annihilating Ideal of ring R denoted by EA(R).

Based on the two definitions above, then (Exact) Annihilating Ideal Graph is defined as follows.

Definition 3. [10]
Annihilating Ideal graph of ring R denoted by AG(R) is a graph with vertices A(R)* = A(R)\{(0)} and
(I]) € ECAG(R)) if and only if I] = (0).

Definition 4. [11]
Exact Annihilating Ideal graph of ring R denoted by EAG(R) is a graph with vertices EA(R)" =
EA(R)\{(0)} and (I,]) € E(EAG(R)) if and only if Ann(I) = J and Ann(J) = L.
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Definition of (Exact) Annihilating Ideal Graph, this article further describes the properties of the graph with
rings z,,. Comparison of the properties of annihilating ideal and exact annihilating ideal graph of ring z,, is
also presented in this article.

3. RESULTS AND DISCUSSION

Integers are partitioned into prime numbers and composite numbers. Integer factorization affects the
cardinality of the set of all vertices of an ideal annihilating graph. Conversely, can also be observed from the
ideal annihilating graph, the characteristics of these integers can be determined. The following theorem shows
the relationship between integer factorization and vertex cardinality of an ideal annihilating graph.

Theorem 1.

Suppose Z,, ring of integer modulo n where n not prime.
1. Ifn = p?, where p is prime then |A(Z,)*| = 1.
2. Ifn # p?, where p is prime then |A(Z,,)*| > 2

Proof.

(1) Suppose n = p? then there exists uniquely non zero proper ideal in di Z,,, (p) = {pz|Z € Z,}. If n =
p? its means p2 = @1 = 0 such that (5){(5) = (0). Ideal (p) is an annihilating ideal of Z,, by Definition
1. Since ideal (p) is the only one of proper non zero ideal in Z,,, hence A(Z,,)* = {(p)} or |A(Z,,)*| = 1.

(2) Suppose n is nonprime, thatisn = ab forsomea,b € Zwhere1 <a <n,1<b <n,anda # b. The
product of two ideal, (a){b) = {(za)(yb)|a,b € Z,y,z € Z,}. Since n = ab, zy(ab) = zy(n) then
(a)b) = {zynl|z,y € Z,} = (0). Clearly, {(a) # (0) and (b} = (0). Ideals (a) and (b) are annihilating
ideal by Definition 1. Hence, {(a), (b) € A(Z,)*. That is prove that for any nonprime n, |A(Z,)*| = 2. m

Theorem 2.

Suppose Z,, ring of integer modulo n. The number of vertices of annihilating ideal graph AG(Z,,) is ¢(n) —
2, where ¢(n) is the number of positive factors of n.

Proof.

Suppose n = (p1)*1(p,)%2 ... (p,)% is prime factorization of n. If x|n then x = (p,)P1(p,)P2 ... (p,)Pn
where f; < a; for all i. If x|n, also means that there exists integer y such that xy = n. Suppose y =
(@) ()72 ... (pp)" theny = (p )" (p2)"? ... ()", where a; = B +y; for1 < i <n.

We construct principal ideal (x) = {xz|z € Z,} and (y) = {yt|t € Z,} of Z,,. The product of these
ideal (x)(y) = {(x2)(y©)} = {(xy)(zt)}. As xy = n implies (x){(y) = {0}. For all {x), where x is a positive
factor of n, there exists ideal (y) such that (x){y) = {0}. The number of Ideal {x) that satisfied the condition
is the number of positive factor of n, ¢(n). Suppose the set

I(Z,) = {(x) ideal Z, |3y € Z such that xy = n}
Based on the process above, we have |1(Z,,)| = ¢(n). All of elements [(Z,,) is the elements of A(Z,,)* except
(1) and (n). Hence |A(Z,))*| = p(n) — 2. m

Theorem 3.
Suppose Z,, ring of integer modulo n. If (@) is a vertex of graph AG(Z,,) then a is a factor of n.
Proof.

Assume a isn’t factor of n. We have n = ax + y, where x and y is integerand 0 < y < a.
The product of ideal (@) and (x) is

(a)x) = {(ar)(xn)} = {a(rxn)} = {a(xrn)} = {(ax)rn} = {(@xX)rn}

We have element 7 = ¥ because n = ax + y. Then (@){(x) = {(ax)rn} = {(axr)n} = (1) = (¥). In means
(@) isn’t a ideal annihilator of Z,,. Hence (a) ¢ A(Z,)*. By the contraposition, we have if (a) € A(Z,,)* then
a is afactorof n. m

The converse of Theo_rem 3 is not true. For all n € Z, we have 1|n, but clearly (1) is not an ideal
annihilator of Z,,. It means (1) is not a vertex ini AG(Z,,).

Theorem 4.
Suppose (p) and (g) are ideal in Z,,. Vertex (p) and (g) are adjacent in AG(Z,,) if and only if n|pq.
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Proof.
Suppose (p) = {pala € Z,} and (q) = {qblr € Z,}. The product (p)}{q) = (pq). If n|pq then (pXq) =
(0) = {0}. Hence (p) and (g) are adjacent in AG(Z,,) by Definition 3.
If (p) and (g) are adjacent then (p){q) = {0}. It means (pq)(ab) = nk for some integer a, b, and k. The
equation (pq)(ab) = nk implies n|(pq) (ab), especially must be n|pg. m

We will continue to discuss the relation some part of annihilating ideal and exact annihilating ideal
graph of any commutative ring R.

Lemma 5.

For any commutative ring R, EA(R)* = A(R)*

Proof.

Take any ideal I € EA(R)*. It means there exist ideal J of R such that Ann(I) = J and Ann(J) = I. Based
on definition of annihilator, the product of ideal IJ = 0. Hence I € A(R)".

Now, take any ideal I € A(R)*. It means there exist nonzero ideal J such that IJ = 0. Ideal I is annihilator
ideal then Ann(Il) # 0. Suppose J = Ann(I) then J is nonzero ideal of R. We have Ann(J) =
Ann(Ann(I)) = I. We conclude Ann(I) = J and Ann(J) = I. Hence I € EA(R)". m

Lemma 6.

For any commutative ring R, EAG(R) is a subgraph of AG(R).

Proof.

Lemma 5 show us that EA(R)* = A(R)*. We will prove that for all (I,]) € E(EAG(R)) then (I,]) €
E(AG(R)). Adjacency of ideal I and J on EAG(R) means that I = Ann(J) and | = Ann(I). Based on
properties of annihilator of ideal, we have IJ = 0. Based on definition of adjacency on AG(R), we have
(1,)) e E(AG(R)). m

The converse of Theorem 4 not valid for exact annihilating ideal graph. Figure 1 below show that vertex
(6) and (12) are adjacent in AG(Z,,) but not adjacent in EAG(Z,,) although 24|12 X 6.

(@ (b)
Figure 1. Representation of Annihilating Ideal and Exact Annihilating Ideal Graph
(DAG(Zz4), (D)EAG(Z24)

Based on the situation, we will construct the criteria of adjacency in exact annihilating ideal graph.
Theorem 7.
Suppose commutative ring Z,, with identity 1. Ideals (p) and (g) are adjacent vertex of EAG(Z,,) if and only
if n = pgq.
Proof.
(«). Assume (p) and (g) are not adjacent. We will proof n # pq. We have (p) = {pala,p € Z,} and (g) =
{qb|b,q € Z.,} are not adjacent. It means Ann((p)) # (g) and Ann({g)) # (p) such that (p)(g) # {0}. We
use commutative and associative property of Z, to get form (pXg) = {(pa)(qb)} = {(Pg)(ab)} # {O}. It
imply pq t n. Hence pq # n.
(—). Assume n # pq. We will proof vertex (p) and (g) are not adjacent in graph EAG(Z,,). If n # pq then
n = pq + a with a is non-zero integer. We construct two principal ideal generated by p and g on Z,,. Now,
we have the product of these ideal

PXq) = {(P (D)} = {r=a)D} = (=a)

We have ((p),(q)) ¢ E(AG(Zn)). Based on Lemma 6, vertex (p) and (g) are not adjacent in graph
EAG(Z,).m
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Theorem 8.

Suppose commutative ring Z,, with identity 1. If n = 72 then (7) is a isolated vertex in EAG(Z,,).

Proof.

Suppose n = r2 and principal ideal () of ring Z,,. We have Ann({(r)) = (). Its means (7) is a vertex of
EAG(Z,). Assume there is a vertex (@) (not equal to (7)) of EAG(Z,,) such that () and (@) adjacent. The
product of the ideals is (@)(r) # (F){¥) = (0). Vertex (¥) and (a) adjacent on EAG(Z,) means that () =
Ann({@)) and (@) = Ann((7)). Furthermore (7){@) = (0). Its contradiction with the product ideals () and
(a@). Hence there is no vertex adjacent with () on EAG(Z,). m

In [11] showed that diam(EAG(R)) < 1 and g(EAG(R)) < 4 for any commutative ring R. In this
paper, we will show more specific result about diameter, girth, cycle existence of EAG(R).

Theorem 9.

Suppose commutative ring R. If EAG(R) is connected graph then diam(EAG(R)) = 1.

Proof.

Suppose I and J are two different vertex of EAG(R). Assume d(I,]) = 2 > 1, means that exist a vertex A of
EAG(R) such that I — A —J is a path in EAG(R). Based on Definition 4 we have I = Ann(4),A =
Ann(I),A = Ann(J),and ] = Ann(A). Itimply I = Ann(4) = Ann(Ann(])). Based on Lemma 2.1 on [3],
we get Ann(Ann(])) = J. Two last equation imply I = J. We have a contradiction with ideal I and J must
be different. So, d(1,]) = 1 for all ideal I and J. It proved that diam(EAG(R)) = 1. m

Collorary 10.
Suppose commutative ring R. If EAG(R) contain a cycle then g(IEA(G(R)) <3.

Proof.
If graph G contain a cycle then g(G) < 2diam(G) + 1. Theorem 9 has shown that diam(]EA(G(R)) =1.

Finally, we have g(EAG(R)) < 2diam(EAG(R)) +1=3. m

Theorem 3.9 in [11] showed that IEA(G(an) where p is prime can be represented as union of some

complete graph. Figure 1 below show that EAG(Z,,) can be represented as union of K, graph, although
24 + p™ for any prime p. Based on this fact, we construct a theorem to generalize properties of representation
of EAG(Z,,).

Theorem 11.

The number of complete subgraph of Exact annihilating ideal graph of ring Z, is [‘p(n) 1]

Proof.

Lemma 5 showed that EA(R)* = A(R)*. Based on Theorem 2, we have |EA(Z,)*| = ¢(n) — 2. Theorem 9

showed that diam(EAG(R)) = 1 for any commutative ring R. We conclude that the maximum number of

edges EAG(Z,) is—— ‘D(n) — 1. Its means the maximum complete subgraph of EAG(Z,,) is also &= ‘p(") -1.

Case 1: n =r? for some integer r

Based on Theorem 8, (7) is a isolated vertex in EAG(Z,,). We have ¢(n) — 3 other vertices of EAG(Z,,).
Obviously there is no positive integer a such thatn = a?. In another word, we just found exactly one isolated
vertex on EAG(Z,). We can partition EAG(Z,,) to be —— q’(n) =3 graph K. Isolated vertex can be represented as

<p<n) 3 <p(nz>+1 1= [M 1=

+1=

K;. The total of number complete graph that contain in IEA(G(Zn) is

%521}

Case 2: n # r? for any integer r
If n # 2 for any integer r then n = ab where a # b. ldeal (a) and (b) are vertices in EAG(Z,,). Based on
theorem 7, (@) and (b} adjacent in EAG(Z,,). This condition means there is no isolated vertex in EAG(Z,,).
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Graph EAG(Z,,) is fully partition into complete graph K,. Total number of K, is @ = @— 1=

-

4. CONCLUSIONS

Factorization on Z,, characterizes the (Exact) Annihilating Ideal Graph, especially in 1) the number of vertices
in an annihilating ideal graph, 2) adjacency of the vertices, and 3) decomposition of exact annihilating ideal
graph.
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1. INTRODUCTION

The use of graphs in representing algebraic structures has been carried out since at least 1878 in [1].
This representation starts from representing a group structure into a graph. The vertices of a graph are all
elements of a group and changes to an element due to operations on the group are represented by directed
edges. Furthermore, [2], [3] began to associate graphs with a broader structure, namely rings. Investigation
of the ring structure is carried out through the colored representation of the graph. The representation of an
algebraic structure on a graph opens up opportunities for visual investigation of the properties of a particular
structure. An essential part in the process of representing a particular algebraic structure to a graph is how to
define the connection between the vertices of the graph. Different ways of defining adjacent vertices can lead
to different variations of properties as well.

One of the interesting things in the ring, which is about zero divisor. A non-zero element a is said to
be a zero divisor if it can be found a non-zero element b such that ab = 0. From this structure, [4] proposed
the origin of the zero divisor graph. The vertices of the graph are all zero divisors. Two vertices are adjacent
if and only if the product of the two elements is zero. Many interesting properties result from this concept,
one of which is about the combinatorics of a finite ring [5], [6], [7].

The concept is similar to zero divisor in the ring is the Annihilator. Badawi has started a study on
annihilator graphs [8]. In its development, annihilating graphs are generalized into annihilating Ideal graphs.
In [9], it is stated that Annihilator is an ideal I, namely Ann(I) = {r € R|rl =0Vl € L}. If Ann(I) is not
a trivial set, then I is called an ideal annilator. In 2011, [10] started to represent a structure consisting of
annihilator ideals into a graph. The graph that is formed is named Annihilating Ideal Graph. In line with the
development of zero divisor graphs, [11] is continuing the study of Exact Annihilating Ideal graphs. The
development of ideal annihilating and exact annihilating properties of graphs is studied separately. The
general relationship between these two graphs began to be investigated by [12].

An integer modulo n, Z,, is a ring that has very interesting properties. This z,, structure is widely used
in graphs, for example in coloring Antimagic graphs [13] and Domination ratio [14]. The factorization
theorem on integers is a motivation for developing graph studies involving a ring of integers modulo n. One
of the graph studies carried out was a study on non-coprime for Z,, [15]. In this research, we combine the
properties of (Exact) Annihilating Ideal Graph of arbitrary ring with factorization of ring integer modulo n.
These properties will be used to represent integer factors in a graph.

2. RESEARCH METHODS

This research is a literature research that examines the properties of annihilating ideal and exact annihilating
ideal graphs on integer rings modulo n, Z,. The properties studied are the relationship between the
factorization of integer n and the vertex of an ideal annihilating graph, the adjacency of vertices, and the
relationship between integer decomposition and graph decomposition. The definition of (Exact) Annihilating
Ideal based on [10], [11] is as follows.

Definition 1. [10]

An Ideal I of commutative ring R with identity is a Annihilating Ideal if there exist non zero ideal J of R such
that I] = 0. The set of all Annihilating Ideal of ring R is denoted by A(Rﬂ).

Definition 2. [11]

An ideal I of commutative ring R with identity is Exact Annihilating Ideal if there exist non zero ideal ] of R
such that Ann(I) = J and Ann(J) = 1. The set of all Exact Annihilating Ideal of ring R denoted by EA(R).

Based on the two definitions above, then (Exact) Annihilating ldeal Graph is defined as follows.

Definition 3. [10]

Annihilating Ideal graph of ring R denoted by AG(R) is a graph with vertices A(R)* = A(R)\{(0)} and
(L)) € ECAG(R)) if and only if I] = (0).

Definition 4. [11]

Exact Annihilating Ideal graph of ring R denoted by EAG(R) is a graph with vertices EA(R)" =
EA(R)\{(0)} and (1,]) € E(EAG(R)) if and only if Ann(I) = Jand Ann(J) = 1.
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Definition of (Exact) Annihilating Ideal Graph, this article further describes the properties of the graph with
rings z,,. Comparison of the properties of annihilating ideal and exact annihilating ideal graph of ring z,, is
also presented in this article.

3. RESULTS AND DISCUSSION

Integers are partitioned into prime numbers and composite numbers. Integer factorization affects the
cardinality of the set of all vertices of an ideal annihilating graph. Conversely, can also be observed from the
ideal annihilating graph, the characteristics of these integers can be determined. The following theorem shows
the relationship between integer factorization and vertex cardinality of an ideal annihilating graph.

Theorem 1.

Suppose Z,, ring of integer modulo n where n not prime.
1. Ifn = p?, where p is prime then |A(Z,,)*| = 1.
2. Ifn = p?, where p is prime then |A(Z,)*| = 2

Proof.

(1) Suppose n = p? then there exists uniquely non zero proper ideal in di Z,, (p) = {pz|Z € Z,}. If n =
p? its means ;7 =7 = 0 such that (p)(p) = (0). Ideal (p) is an annihilating ideal of Z,, by Definition
1. Since ideal (p) is the only one of proper non zero ideal in Z,,, hence A(Z,)" = {(p)} or |[A(Z,)"| = 1.

(2) Suppose n is nonprime, thatisn = ab forsomea,b € Zwhere1 <a <n,1<b <n,anda # b. The
product of two ideal, (a)(b) = {(za)(yb)|a,b € Z,y,z € Z,}. Since n = ab, zy(ab) = zy(n) then
(a)(b) = {zyn|z,y € Z,} = (0). Clearly, (a) # (0) and (b) # (0). Ideals (a) and (b) are annihilating
ideal by Definition 1. Hence, (a), (b) € A(Z,)". That is prove that for any nonprime n, |A(Z,)*| = 2. m

Theorem 2.

Suppose Z,, ring of integer modulo n. The number of vertices of annihilating ideal graph AG(Z,,) is ¢(n) —
2, where ¢ (n) is the number of positive factors of n.

Proof.

Suppose n = (p1)% (p2)% ... (pp)* is prime factorization of n. If x|n then x = (p1)P1(p,)Pz ... (pp)Pn
where B; < a; for all i. If x|n, also means that there exists integer y such that xy = n. Suppose y =
(P (P2)2 .. (pn)" theny = (P)V1(P2)"2 ... (pn)'™, Where a; = B; +y; for 1 < i <n.

We construct principal ideal (x) = {xz|z € Z,} and (y) = {yt|t € Zy,} of Z,. The product of these
ideal (x)(y) = {(Z)(¥D)} = {(xY)(2b)}. As xy = n implies (x)(y) = {0}. For all {x), where x is a positive
factor of n, there exists ideal (y) such that (x)(y) = {0}. The number of Ideal (x) that satisfied the condition
is the number of positive factor of n, ¢(n). Suppose the set

I(Z,) = {{x) ideal Z,,|3y € Z such that xy = n}
Based on the process above, we have |I(Z,,)| = ¢(n). All of elements I(Z,,) is the elements of A(Z,,)" except
(1) and (n). Hence |A(Z,)" | = e(n) — 2. m

Theorem 3.
Suppose Z,, ring of integer modulo n. If (@) is a vertex of graph AG(Z,,) then a is a factor of n.
Proof.

Assume a isn’t factor of n. We have n = ax + y, where x and y is integerand 0 < y < a.
The product of ideal (a) and (i) is

(@yx) = (@) (En)} = @(ren)} = {@(@rn)} = {@orn} = {@)rn}

We have element 1 = ¥ because n = ax + y. Then (a)(x) = {(ax)rn} = {(axr)n} = () = (¥). In means
(@) isn’t a ideal annihilator of Z,,. Hence (a) ¢ A(Z,)". By the contraposition, we have if (@) € A(Z,)" then
a isafactor of n. m

The converse of Theorem 3 is not true. For all n € Z, we have 1|n, but clearly (1) is not an ideal
annihilator of Z,,. It means (1) is not a vertex ini AG(Zy,).

Theorem 4.
Suppose (p) and (g) are ideal in Z,,. Vertex (p) and (g) are adjacent in AG(Zy,) if and only if n|pgq.
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Proof.
Suppose (p) = {pala € Z,} and (q) = {gb|r € Z,}. The product (p)(q) = (pq). If n|pq then (p}q) =
(0) = {0}. Hence (p) and (g) are adjacent in AG(Z,,) by Definition 3.
If (p) and (g) are adjacent then (p)(q) = {0}. It means (pq)(ab) = nk for some integer a, b, and k. The
equation (pq)(ab) = nk implies n|(pq)(ab), especially must be n|pg. m

We will continue to discuss the relation some part of annihilating ideal and exact annihilating ideal
graph of any commutative ring R.

Lemma 5.

For any commutative ring R, EA(R)* = A(R)"

Proof.

Take any ideal I € EA(R)". It means there exist ideal J of R such that Ann(I) =] and Ann(J) = I. Based
on definition of annihilator, the product of ideal IJ] = 0. Hence I € A(R)".

Now, take any ideal I € A(R)*. It means there exist nonzero ideal J such that IJ = 0. Ideal I is annihilator
ideal then Ann(l) # 0. Suppose J = Ann(I) then ] is nonzero ideal of R. We have Ann(J) =
Ann(Ann(I)) = I. We conclude Ann(I) = J and Ann(J) = I. Hence I € EA(R)". m

Lemma 6.

For any commutative ring R, EAG(R) is a subgraph of AG(R).

Proof.

Lemma 5 show us that EA(R)* = A(R)*. We will prove that for all (I,)) € E(EAG(R)) then (I,)) €
E(AG(R)). Adjacency of ideal I and J on EAG(R) means that | = Ann(J) and ] = Ann(I). Based on
properties of annihilator of ideal, we have IJ = 0. Based on definition of adjacency on AG(R), we have
(1)) € E(AG(R)). m

The converse of Theorem 4 not valid for exact annihilating ideal graph. Figure 1 below show that vertex
(6) and (12) are adjacent in AG(Z,,) but not adjacent in EAG(Z,,) although 24|12 x l6

<2> <3> <4>

() (b)
Figure 1. Representation of Annihilating Ideal and Exact Annihilating Ideal Graph
(0)AG(Z24), (D)EAG(Z,4)

Based on the situation, we will construct the criteria of adjacency in exact annihilating ideal graph.
Theorem 7.
Suppose commutative ring Z, with identity 1. Ideals () and (g) are adjacent vertex of EAG(Z,,) if and only
ifn = pq.
Proof.
(«). Assume (p) and (g) are not adjacent. We will proof n # pq. We have (p) = {pa|a,p € Z,} and (g) =
{q_b|5,<7 € Z,} are not adjacent. It means Ann((p)) # (g) and Ann((g)) # (p) such that (p)(q) +# {0}. We
use commutative and associative property of Z, to get form (p)(g) = {(W)(ﬁ)} = {(ﬁ)(%)} # {0}. It
imply pq t n. Hence pq # n.
(=). Assume n # pq. We will proof vertex (p) and (g) are not adjacent in graph EAG(Z,,). If n # pq then
n = pq + a with a is non-zero integer. We construct two principal ideal generated by p and q on Z,,. Now,
we have the product of these ideal

(B)@) = {(EH @D} = {(T=a)(7D)} = (~a)

We have ((p).(q)) & E(AG(ZH)). Based on Lemma 6, vertex (p) and (g) are not adjacent in graph
EAG(Z,).m

[ Commented [A3]: Please, put in a exanple form
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Theorem 8.

Suppose commutative ring Z, with identity 1. If n = 2 then (¥) is a isolated vertex in EAG(Z,,).

Proof.

Suppose n = r2 and principal ideal (7) of ring Z,,. We have Ann((¥)) = (¥). Its means (¥) is a vertex of
EAG(Zy). Assume there is a vertex (a) (not equal to (7)) of EAG(Z,) such that (r) and (a) adjacent. The
product of the ideals is (@)(F) # (F)(F) = (0). Vertex (¥} and (@) adjacent on EAG(Z,) means that () =
Ann((@)) and (@) = Ann((¥)). Furthermore (7¥)(a@) = (0). lts contradiction with the product ideals (') and
(a). Hence there is no vertex adjacent with (7') on EAG(Z,,). m

In [11] showed that diam(EAG(R)) < 1 and g(EAG(R)) < 4 for any commutative ring R. In this
paper, we will show more specific result about diameter, girth, cycle existence of EAG(R).

Theorem 9.

Suppose commutative ring R. If EAG(R) is connected graph then diam([EA(G(R)) =1

Proof.

Suppose I and J are two different vertex of EAG(R). Assume d(I,]) = 2 > 1, means that exist a vertex A of
EAG(R) such that I — A —] is a path in EAG(R). Based on Definition 4 we have I = Ann(4),A =
Ann(I),A = Ann(J),and ] = Ann(4). Itimply I = Ann(4) = Ann(Ann(J)). Based on Lemma 2.1 0n [3],
we get Ann(Ann(j)) = J. Two last equation imply I = J. We have a contradiction with ideal I and J must
be different. So, d(I,]) = 1 for all ideal  and J. It proved that diam(EAG(R)) = 1. m

Collorary 10.
Suppose commutative ring R. If EAG(R) contain a cycle then g(EAG(R)) < 3.

Proof.
If graph G contain a cycle then g(G) < 2diam(G) + 1. Theorem 9 has shown that diam(EAG(R)) = 1.
Finally, we have g(EAG(R)) < 2diam(EAG(R)) +1=3. m

Theorem 3.9 in [11] showed that IEAG(an) where p is prime can be represented as union of some
complete graph. Figure 1 below show that EAG(Z,,) can be represented as union of K, graph, although
24 # p™ for any prime p. Based on this fact, we construct a theorem to generalize properties of representation
of EAG(Zy).

Theorem 11.

The number of complete subgraph of Exact annihilating ideal graph of ring Z, is [%") - 1].

Proof.

Lemma 5 showed that EA(R)* = A(R)". Based on Theorem 2, we have |EA(Z,)*| = ¢(n) — 2. Theorem 9
showed that diam(EAG(R)) = 1 for any commutative ring R. We conclude that the maximum number of

edges EAG(Z,) is @ — 1. Its means the maximum complete subgraph of EAG(Z,,) is also @ —1.

Case 1: n = r? for some integer r
Based on Theorem 8, () is a isolated vertex in EAG(Z,,). We have ¢(n) — 3 other vertices of EAG(Z,,).
Obviously there is no positive integer a such thatn = a?. In another word, we just found exactly one isolated

vertex on EAG(Z,,). We can partition EAG(Z,,) to be @ graph K. Isolated vertex can be represented as

K; . The total of number complete graph that contain in EAG(Z,,) is@ +1= @ -1= [@] -1=

M _ 4
5 .
Case 2: n # r? for any integer r B
If n # r2 for any integer r then n = ab where a # b. Ideal (@) and (b} are vertices in EAG(Z,). Based on

theorem 7, (@) and (b) adjacent in EAG(Z,,). This condition means there is no isolated vertex in EAG(Z,).
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pm=z _ oM _ 1 =

Graph EAG(Z,,) is fully partition into complete graph K,. Total number of K, is 2 5

[57]-1=[42~1] =

4. CONCLUSIONS

Factorization on Z,, characterizes the (Exact) Annihilating Ideal Graph, especially in 1) the number of vertices
in an annihilating ideal graph, 2) adjacency of the vertices, and 3) decomposition of exact annihilating ideal

graph

C ted [A4]: Please, give more specific information in
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1. INTRODUCTION

The use of graphs in representing algebraic structures has been carried out since at least 1878 in [1].
This representation starts from representing a group structure into a graph. The vertices of a graph are all
elements of a group and changes to an element due to operations on the group are represented by directed
edges. Furthermore, [2], [3] began to associate graphs with a broader structure, namely rings. Investigation
of the ring structure is carried out through the colored representation of the graph. The representation of an
algebraic structure on a graph opens up opportunities for visual investigation of the properties of a particular
structure. An essential part in the process of representing a particular algebraic structure to a graph is how to
define the connection between the vertices of the graph. Different ways of defining adjacent vertices can lead
to different variations of properties as well.

One of the interesting things in the ring, which is about zero divisor. A non-zero element a is said to
be a zero divisor if it can be found a non-zero element b such that ab = 0. From this structure, [4] proposed
the origin of the zero divisor graph. The vertices of the graph are all zero divisors. Two vertices are adjacent
if and only if the product of the two elements is zero. Many interesting properties result from this concept,
one of which is about the combinatorics of a finite ring [5], [6], [7].

The concept is similar to zero divisor in the ring is the Annihilator. Badawi has started a study on
annihilator graphs [8]. In its development, annihilating graphs are generalized into annihilating Ideal graphs.
In [9], itis stated that Annihilator is an ideal I, namely Ann(I) = {r € R|rl =0Vl € L}. If Ann(I) is not
a trivial set, then I is called an ideal annilator. In 2011, [10] started to represent a structure consisting of
annihilator ideals into a graph. The graph that is formed is named Annihilating Ideal Graph. In line with the
development of zero divisor graphs, [11] is continuing the study of Exact Annihilating Ideal graphs. The
development of ideal annihilating and exact annihilating properties of graphs is studied separately. The
general relationship between these two graphs began to be investigated by [12].

An integer modulo n, Z,, is a ring that has very interesting properties. This z,, structure is widely used
in graphs, for example in coloring Antimagic graphs [13] and Domination ratio [14]. The factorization
theorem on integers is a motivation for developing graph studies involving a ring of integers modulo n. One
of the graph studies carried out was a study on non-coprime for Z,, [15]. In this research, we combine the
properties of (Exact) Annihilating Ideal Graph of arbitrary ring with factorization of ring integer modulo n.
These properties will be used to represent integer factors in a graph.

2. RESEARCH METHODS

This research is a literature research that examines the properties of annihilating ideal and exact annihilating
ideal graphs on integer rings modulo n, Z,. The properties studied are the relationship between the
factorization of integer n and the vertex of an ideal annihilating graph, the adjacency of vertices, and the
relationship between integer decomposition and graph decomposition. The definition of (Exact) Annihilating
Ideal based on [10], [11] is as follows.

Definition 1. [10]

An Ideal I of commutative ring R with identity is a Annihilating Ideal if there exist non zero ideal J of R such
that IJ = 0. The set of all Annihilating Ideal of ring R is denoted by A(R).

Definition 2. [11]
An ideal I of commutative ring R with identity is Exact Annihilating Ideal if there exist non zero ideal J of R
such that Ann(I) = J and Ann(J) = I. The set of all Exact Annihilating Ideal of ring R denoted by EA(R).

Based on the two definitions above, then (Exact) Annihilating Ideal Graph is defined as follows.

Definition 3. [10]
Annihilating Ideal graph of ring R denoted by AG(R) is a graph with vertices A(R)* = A(R)\{(0)} and
(1,)) € E(AG(R)) ifand only if I] = (0).

Definition 4. [11]
Exact Annihilating ldeal graph of ring R denoted by EAG(R) is a graph with vertices EA(R)* =
EA(R)\{(0)}and (1,]) € E(EAG(R)) ifand only if Ann(I) = J and Ann(J) = I.
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Definition of (Exact) Annihilating Ideal Graph, this article further describes the properties of the graph with
rings Z,. Comparison of the properties of annihilating ideal and exact annihilating ideal graph of ring Z,, is
also presented in this article.

3. RESULTS AND DISCUSSION

Integers are partitioned into prime numbers and composite numbers. Integer factorization affects the
cardinality of the set of all vertices of an ideal annihilating graph. Conversely, can also be observed from the
ideal annihilating graph, the characteristics of these integers can be determined. The following theorem shows
the relationship between integer factorization and vertex cardinality of an ideal annihilating graph.

Theorem 1.

Suppose Z,, ring of integer modulo n where n not prime.
1. Ifn = p?, where p is prime then |A(Z,)*| = 1.
2. Ifn # p?, where p is prime then |A(Z,,)*| > 2

Proof.

(1) Suppose n = p? then there exists uniquely non zero proper ideal in di Z,,, (p) = {pz|Z € Z,}. If n =
p? its means p? = 71 = 0 such that (p){p) = (0). Ideal (p) is an annihilating ideal of Z,, by Definition
1. Since ideal (p) is the only one of proper non zero ideal in Z,,, hence A(Z,,)* = {(p)} or |A(Z,)*| = 1.

(2) Suppose n is nonprime, thatisn = ab forsomea,b € Zwhere1 <a <n,1<b <n,anda # b. The
product of two ideal, (a){b) = {(za)(yb)|a,b € Z,y,z € Z,}. Since n = ab, zy(ab) = zy(n) then
(a)b) = {zynl|z,y € Z,} = (0). Clearly, {(a) # (0) and (b} = (0). Ideals (a) and (b) are annihilating
ideal by Definition 1. Hence, {(a), (b) € A(Z,)*. That is prove that for any nonprime n, |A(Z,,)*| = 2. m

Theorem 2.

Suppose Z,, ring of integer modulo n. The number of vertices of annihilating ideal graph AG(Z,,) is ¢(n) —
2, where ¢(n) is the number of positive factors of n.

Proof.

Suppose n = (p1)*1(p,)%2 ... (p,)% is prime factorization of n. If x|n then x = (p,)P1(p,)P2 ... (p,)Pn
where f; < a; for all i. If x|n, also means that there exists integer y such that xy = n. Suppose y =
(@) ()72 ... (pp)" theny = (p )" (p2)"? ... ()", where a; = B +y; for1 < i <n.

We construct principal ideal (x) = {xz|z € Z,} and (y) = {yt|t € Z,} of Z,,. The product of these
ideal (x)(y) = {(x2)(y©)} = {(xy)(zt)}. As xy = n implies (x){(y) = {0}. For all {x), where x is a positive
factor of n, there exists ideal (y) such that (x){y) = {0}. The number of Ideal {x) that satisfied the condition
is the number of positive factor of n, ¢(n). Suppose the set

I(Z,) = {(x) ideal Z, |3y € Z such that xy = n}
Based on the process above, we have |1(Z,,)| = ¢(n). All of elements [(Z,,) is the elements of A(Z,,)* except
(1) and (n). Hence |A(Z,))*| = p(n) — 2. m

Theorem 3.
Suppose Z,, ring of integer modulo n. If (@) is a vertex of graph AG(Z,,) then a is a factor of n.
Proof.

Assume a isn’t factor of n. We have n = ax + y, where x and y is integerand 0 < y < a.
The product of ideal (@) and (x) is

(a)x) = {(ar)(xn)} = {a(rxn)} = {a(xrn)} = {(ax)rn} = {(@xX)rn}

We have element 7 = ¥ because n = ax + y. Then (@){(x) = {(ax)rn} = {(axr)n} = (1) = (¥). In means
(@) isn’t a ideal annihilator of Z,,. Hence (a) ¢ A(Z,)*. By the contraposition, we have if (a) € A(Z,,)* then
a is afactorof n. m

The converse of Theo_rem 3 is not true. For all n € Z, we have 1|n, but clearly (1) is not an ideal
annihilator of Z,,. It means (1) is not a vertex ini AG(Z,,).

Theorem 4.
Suppose (p) and (g) are ideal in Z,,. Vertex (p) and (g) are adjacent in AG(Z,,) if and only if n|pq.
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Proof.
Suppose (p) = {pala € Z,} and (q) = {qblr € Z,}. The product (p)}{q) = (pq). If n|pq then (pXq) =
(0) = {0}. Hence (p) and (g) are adjacent in AG(Z,,) by Definition 3.
If (p) and (g) are adjacent then (p){q) = {0}. It means (pq)(ab) = nk for some integer a, b, and k. The
equation (pq)(ab) = nk implies n|(pq) (ab), especially must be n|pg. m

We will continue to discuss the relation some part of annihilating ideal and exact annihilating ideal
graph of any commutative ring R.

Lemma 5.

For any commutative ring R, EA(R)* = A(R)*

Proof.

Take any ideal I € EA(R)*. It means there exist ideal J of R such that Ann(I) = J and Ann(J) = I. Based
on definition of annihilator, the product of ideal IJ = 0. Hence I € A(R)".

Now, take any ideal I € A(R)*. It means there exist nonzero ideal J such that IJ = 0. Ideal I is annihilator
ideal then Ann(Il) # 0. Suppose J = Ann(I) then J is nonzero ideal of R. We have Ann(J) =
Ann(Ann(I)) = I. We conclude Ann(I) = J and Ann(J) = I. Hence I € EA(R)". m

Lemma 6.

For any commutative ring R, EAG(R) is a subgraph of AG(R).

Proof.

Lemma 5 show us that EA(R)* = A(R)*. We will prove that for all (I,]) € E(EAG(R)) then (I,]) €
E(AG(R)). Adjacency of ideal I and J on EAG(R) means that I = Ann(J) and | = Ann(I). Based on
properties of annihilator of ideal, we have IJ = 0. Based on definition of adjacency on AG(R), we have
(1,)) € E(AG(R)). m

The converse of Theorem 4 not valid for exact annihilating ideal graph. The counter example of
converse Theorem 4 is in Example 1 below.

Example 1.

In ring Z,,, vertex (6) and (12) are adjacent in AG(Z,,) but not adjacent in EAG(Z,,) although
24]12 x 6. Figure 1 below show the representation both graph of ring Z,,.

(@ (b)
Figure 1. Representation of Annihilating Ideal and Exact Annihilating Ideal Graph
(DAG(Zz4), (D)EAG(Z24)

Based on the situation, we will construct the criteria of adjacency in exact annihilating ideal graph.
Theorem 7.

Suppose commutative ring Z, with identity 1. Ideals (p) and (g) are adjacent vertex of EAG(Z,,) if and only
if n = pq.

Proof.

(«). Assume (p) and (g) are not adjacent. We will proof n # pq. We have (p) = {pala,p € Z,} and (g) =
{qb|b,q € Z.,} are not adjacent. It means Ann((p)) # (g) and Ann({g)) # (p) such that (p)(g) # {0}. We
use commutative and associative property of Z, to get form (pXg) = {(pa)(qb)} = {(Pg)(ab)} # {O}. It
imply pq t n. Hence pq # n.
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(—=). Assume n # pq. We will proof vertex (p) and (g) are not adjacent in graph EAG(Z,,). If n # pq then
n = pq + a with a is non-zero integer. We construct two principal ideal generated by p and g on Z,,. Now,
we have the product of these ideal

PXg) ={(pr)(qD)} = {n=a)(rD)} = (=a)
We have ((p),(q)) ¢ E(AG(Z,)). Based on Lemma 6, vertex (p) and (g) are not adjacent in graph
EAG(Z,).m

Theorem 8.

Suppose commutative ring Z,, with identity 1. If n = 2 then (7) is a isolated vertex in EAG(Z,,).

Proof.

Suppose n = r2 and principal ideal () of ring Z,,. We have Ann({(¥)) = (). Its means (7) is a vertex of
EAG(Z,). Assume there is a vertex (@) (not equal to (7)) of EAG(Z,,) such that () and (@) adjacent. The
product of the ideals is (@)(r) # (F)(r) = (0). Vertex (¥) and (a) adjacent on EAG(Z,) means that (¥) =
Ann({@)) and (@) = Ann((7)). Furthermore (7){@) = (0). Its contradiction with the product ideals () and
(a@). Hence there is no vertex adjacent with () on EAG(Z,). m

In [11] showed that diam(EAG(R)) < 1 and g(EAG(R)) < 4 for any commutative ring R. In this
paper, we will show more specific result about diameter, girth, cycle existence of EAG(R).

Theorem 9.

Suppose commutative ring R. If EAG(R) is connected graph then diam(EAG(R)) = 1.

Proof.

Suppose I and J are two different vertex of EAG(R). Assume d(I,]) = 2 > 1, means that exist a vertex A of
EAG(R) such that I — A —J is a path in EAG(R). Based on Definition 4 we have I = Ann(4),A =
Ann(I),A = Ann(J),and ] = Ann(A). Itimply I = Ann(4) = Ann(Ann(])). Based on Lemma 2.1 on [3],
we get Ann(Ann(])) = J. Two last equation imply I = J. We have a contradiction with ideal I and J must
be different. So, d(1,]) = 1 for all ideal I and J. It proved that diam(EAG(R)) = 1. m

Collorary 10.

Suppose commutative ring R. If EAG(R) contain a cycle then g(IEA(G(R)) <3.

Proof.

If graph G contain a cycle then g(G) < 2diam(G) + 1. Theorem 9 has shown that diam(]EAG(R)) =1.
Finally, we have g(EAG(R)) < 2diam(EAG(R)) +1=3. m

Theorem 3.9 in [11] showed that IEA(G(an) where p is prime can be represented as union of some
complete graph. Figure 1 below show that EAG(Z,,) can be represented as union of K, graph, although
24 + p™ for any prime p. Based on this fact, we construct a theorem to generalize properties of representation
of EAG(Z,,).

Theorem 11.
The number of complete subgraph of Exact annihilating ideal graph of ring Z,, is [‘p(") - 1].

2
Proof.
Lemma 5 showed that EA(R)* = A(R)*. Based on Theorem 2, we have |EA(Z,)*| = ¢(n) — 2. Theorem
9 showed that diam(EEAG(R)) = 1 for any commutative ring R. We conclude that the maximum number of
edges EAG(Z,,) is @ — 1. Its means the maximum complete subgraph of EAG(Z,,) is also %") - 1.
Case 1: n = r? for some integer r
Based on Theorem 8, (7) is a isolated vertex in EAG(Z,). We have ¢(n) — 3 other vertices of EAG(Z,,).
Obviously there is no positive integer a such thatn = a?. In another word, we just found exactly one isolated
vertex on EAG(Z,). We can partition EAG(Z,,) to be (”(nTH graph K. Isolated vertex can be represented as
e)=3 | 4 e+ _ [M 1=

K;. The total of number complete graph that contain in EAG(Z,,) is . . .

75— 1]

Case 2: n # r? for any integer r
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If n # r2 for any integer r then n = ab where a # b. Ideal (@) and (b) are vertices in EAG(Z,,). Based on

theorem 7, (a) and (b) adjacent in EAG(Z,). This condition means there is no isolated vertex in EAG(Z,,).

Graph EAG(Z,,) is fully partition into complete graph K,. Total number of K, is @ = @— 1=

2212

4. CONCLUSIONS

Factorization on Z,, characterizes the (Exact) Annihilating Ideal Graph, especially in 1) the number of vertices
in an annihilating ideal graph, 2) adjacency of the vertices, and 3) decomposition of exact annihilating ideal
graph. The number of vertices of annihilating ideal is equal to the number vertices of exact annihilating graph
of ring Z,, that is ¢ (n) — 2, where ¢(n) is the number of positive factors of n. In AG(Z,,), two vertices (p)
and (qg) are adjacent if and only if n divides the product of p and g. But, in EAG(Z,,) these two vertices are

adjacent if and only if n must equal to the product of p and q. EAG(Z,,) is decomposed into [%n)— 1]
complete subgraph.
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