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Abstract—Analytical solutions to debris avalanche problems

involving shock waves are derived. The debris avalanche problems

are described in two different coordinate systems, namely, the

standard Cartesian and topography-linked coordinate systems. The

analytical solutions can then be used to test debris avalanche

numerical models. In this article, finite volume methods are applied

as the numerical models. We compare the performance of the finite

volume method with reconstruction of the conserved quantities

based on stage, height, and velocity to that of the conserved

quantities based on stage, height, and momentum for solving the

debris avalanche problems involving shock waves. The numerical

solutions agree with the analytical solution. In addition, both

reconstructions lead to similar numerical results. This article is an

extension of the work of Mangeney et al. (Pure Appl Geophys

157(6–8):1081–1096, 2000).

Key words: Dam break, debris avalanche, method of char-

acteristics, sloping topography, finite volume method, shock waves.

1. Introduction

Avalanche problems including rocks, snows,

debris, lands (landslides), water, etc., have been

studied using the Saint-Venant approach (shallow

water wave equations) by a number of researchers

(MANGENEY et al. 2000; MUNGKASI and G ROBERTS

2011c; NAAIM et al. 1997; STOKER 1948, 1957) on a

planar topography. Other than avalanche problems,

the Saint-Venant model has a number of applications,

such as for modelling in dam break, flood, tsunami,

etc. The mathematical model of shallow water waves

was originally derived by DE SAINT-VENANT (1871).

Readers interested in the derivation of shallow water

models for arbitrary topography are referred to the

work of BOUCHUT and WESTDICKENBERG (2004). In

addition, those interested in solving avalanche prob-

lems using a modified Saint-Venant model called the

Savage–Hutter model are referred to the work of TAI

et al. (2002).

Some research on dam break and debris avalanche

problems using the Saint-Venant model is as follows.

RITTER (1892) and STOKER (1948, 1957) solved the

problems for the case with horizontal topography,

particularly called the dam break problem. MANGENEY

et al. (2000) derived an analytical solution to the

debris avalanche problem in a topography-linked

coordinate system involving a dry area, where the

wall separating quiescent wet and dry areas initially

is not vertical, but orthogonal to the topography.

Because a non-vertical dam is less similar to some

real-world scenarios (ANCEY et al. 2008), MUNGKASI

and ROBERTS (2011c) studied a modified problem

having a vertical wall initially and developed its

solution in the standard Cartesian coordinate system.

MANGENEY et al. (2000) and MUNGKASI and

ROBERTS (2011c) derived solutions to debris ava-

lanche problems only for cases involving wet and dry

regions, that is, one region either on the left or right to

the separating wall is dry. In their works, no dis-

continuous solution was involved. However, it is well

known that because the model is hyperbolic, the

Saint-Venant model admits a discontinuous solution

called a bore or shock (shock wave) or hydraulic

jump. This was also stated by MANGENEY et al.

(2000), which means that the study of debris ava-

lanche problems using a Saint-Venant approach will

be complete if a shock is included. Therefore, in this

article, we consider problems on inclined slopes

involving wet and wet regions, that is, both regions

on the left and right of the initially separating wall are

wet. With this setting, a shock will be formed as the
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time evolves (STOKER 1957). We apply the method of

characteristics and a transformation technique to

obtain the analytical solution to the debris avalanche

problem involving a shock.

Two problems are considered. The first is the debris

avalanche problem in the standard Cartesian coordi-

nate system, as shown in Fig. 1, and the second is the

debris avalanche problem in the topography-linked

coordinate system, as shown in Fig. 2. We derive the

analytical solutions to both problems having quiet state

initially (zero initial velocity). Assuming that h1 and h0

are nonnegative representing the fluid heights on the

left and right respectively of the separating wall given

initially, we see that these two problems are the gen-

eralisations of those solved by STOKER (1948, 1957),

MANGENEY et al. (2000), and MUNGKASI and ROBERTS

(2011c). Note that for the case with a horizontal

topography, these two problems coincide and STOKER

(1948, 1957) has already solved it; for the case with an

inclined topography and h1 = 0 in the topography-

linked coordinate system, MANGENEY et al. (2000)

have proposed a solution; the case with an inclined

topography and h1 = 0 in the standard Cartesian

coordinate system has been recently solved by MUN-

GKASI and ROBERTS (2011c).

The remainder of this article is organised as fol-

lows. Section 2 recalls the governing equations of

debris flows in the standard Cartesian coordinate

system, derives the analytical solution of the corre-

sponding debris avalanche problem, and presents the

properties of the analytical solution. Section 3 recalls

the governing equations and develops the analytical

solution of the debris avalanche problem in the

topography-linked coordinate system. In Sect. 4, we

use the analytical solution in the standard Cartesian

coordinate system to test debris avalanche numerical

models. Finally, some concluding remarks are pro-

vided in Sect. 5.

2. Debris Avalanche Problem in the Standard

Cartesian Coordinate System

Consider the debris avalanche problem in the

standard Cartesian coordinate system shown in

Fig. 1. In this section, we recall the governing

equations of fluid flows in the standard Cartesian

coordinate system, derive the solution to the debris

avalanche problem using characteristics and a trans-

formation, and present the properties of the solution.

2.1. Governing Equations

In the standard Cartesian coordinate system, the

mass and momentum equations governing the fluid

motion are

oh

ot
þ o huð Þ

ox
¼ 0; ð1Þ

o huð Þ
ot
þ

o hu2 þ 1
2

gh2
� �

ox
¼ �gh

dz

dx
þ hF: ð2Þ

These two equations are called the Saint-Venant

model or the shallow water equations. Here, x repre-

sents the coordinate in one-dimensional space,

t represents the time variable, u = u(x, t) denotes the

fluid velocity, h = h(x, t) denotes the fluid height,

Figure 1
Initial profile of the debris avalanche problem in the standard

Cartesian coordinate system

Figure 2
Initial profile of the debris avalanche problem in the topography-

linked coordinate system
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z = z(x) is the topography, and g is the acceleration

due to gravity. In addition, F is a factor representing

the Coulomb-type friction defined as

F ¼ �g cos2 h tan d sgn u ð3Þ

in the standard Cartesian coordinate system. This

Coulomb-type friction is adapted from the one used

by MANGENEY et al. (2000). For further reference, we

use the notations d for representing the dynamic

friction angle, h for the angle between the topography

(bed elevation) and the horizontal line, and w for the

quantity h ? z called the stage. In this article, the

values tan d and tan h are called the friction slope and

bed slope respectively. Note that in the standard

Cartesian coordinate system, we limit our discussion

on the problems having bed topography z(x) with

property dz=dx ¼ tan h; where h is constant.

Following MANGENEY et al. (2000), we limit our

discussion to the case when the friction slope is not

larger than the bed slope, that is, tan d� tan h: With

this limitation, after the separating wall is broken, the

fluid motion never stops.Consequently, the Coulomb-

type friction (3) can be simplified into

F ¼ g cos2 h tan d ð4Þ

for the debris avalanche problem in the standard

Cartesian coordinate system for time t [ 0.

Taking Eq. 1 into account, we can rewrite Eq. 2 as

ou

ot
þ u

ou

ox
¼ �g

oh

ox
� g tan hþ F: ð5Þ

Introducing a ‘‘wave speed’’1 defined as

c ¼
ffiffiffiffiffi
gh

p
; ð6Þ

and replacing h by c, we can rewrite Eqs. 1 and 5 to be

2
oc

ot
þ 2u

oc

ox
þ c

ou

ox
¼ 0; ð7Þ

ou

ot
þ u

ou

ox
þ 2c

oc

ox
þ g tan h� F ¼ 0: ð8Þ

An addition of Eqs. 7 to 8 and subtraction of Eqs. 7

from 8 result in

o

ot
þ uþ cð Þ o

ox

� �
� uþ 2c� mtð Þ ¼ 0; ð9Þ

o

ot
þ u� cð Þ o

ox

� �
� u� 2c� mtð Þ ¼ 0; ð10Þ

respectively, where

m ¼ �g tan hþ F: ð11Þ

Note that this value of m is the horizontal acceleration

of a particle sliding down an inclined topography

(DRESSLER 1958; MUNGKASI and ROBERTS 2011c).

In other words, Eqs. 1 and 2 are equivalent to

characteristic relations

Cþ :
dx

dt
¼ uþ c; ð12Þ

C� :
dx

dt
¼ u� c; ð13Þ

in which

uþ 2c� mt ¼ kþ ¼ constant along each curve Cþ;

ð14Þ

u� 2c� mt ¼ k� ¼ constant along each curve C�;

ð15Þ

where m ¼ �g tan hþ F and c ¼
ffiffiffiffiffi
gh
p

: These k± are

usually called the Riemann invariants.

2.2. Derivation of the Analytical Solution

Recall the debris avalanche problem shown in

Fig. 1. In this subsection, we derive the analytical

solution of this problem using characteristics. This

method of characteristics for the Saint-Venant model

is actually an adaptation of the method implemented

by COURANT and FRIEDRICH (1948) in studying gas

dynamics.

Figure 1 illustrates the fluid profile at time t = 0,

while Fig. 3 shows the fluid motion and its charac-

teristics at time t [ 0. Note that Fig. 3 is a schematic

illustration of the flow adapted from the work of

STOKER (1957) and MANGENEY et al. (2000), and is

really the physics. At time t = 0, only two regions

exist: Zone (1) has a linear surface with height h1 on

the left of the separating wall; and Zone (0) has a

linear surface with height h0 on the right. At time

t [ 0, four regions exist: Zone (1) is the linear surface

1 Following STOKER (1957), we prefer to call c the wave

speed (instead of the wave velocity), as it measures the propagation

speed of the wave relative to the fluid velocity u. Moreover, the

value of c is always nonnegative by definition, whereas the value of

velocity could be negative or nonnegative.

Vol. 169, (2012) Analytical Solutions Involving Shock Waves 1849



with a constant height h1; Zone (2) is another linear

surface with constant height h2; Zone (3) has a

quadratic surface with height h3; Zone (0) is the

linear surface with height h0. For time t [ 0, we name

x1,2 as the point separating Zone (1) and Zone (2); x2,3

as the point separating Zone (2) and Zone (3); and

similarly x3,0 separating Zone (3) and Zone (0). Zones

(1) and (0) are the quiet regions, that is, the fluid is

affected only by the acceleration due to gravity and

remains unaffected by disturbance. Zones (2) and (3)

are the disturbance regions, where the solutions in

terms of height h and velocity u need to be found.

For further reference, we use the following

conventions. For the arbitrary value of m, we use

notations in Zones (1), (3), and (0) as follows: the

velocity, height, and wave speed are denoted respec-

tively by ui, hi, and ci, where i = 1, 3, 0; the

subscripts of the variables represent the name of the

zone. For Zone (2), we denote the velocity, height,

and wave speed by u2, h2, and c2 only for the case

when m = 0, and we state those quantities explicitly

if we have m = 0. In addition, still in Zone (2), the

shock velocity is denoted by r only for the case when

m = 0, and we also state it explicitly if the case is

m = 0. Note that the shock position is exactly at the

interface between Zones (1) and (2).

Recall that Zones (1) and (0) are the quiet regions,

that is, the fluid is affected only by the acceleration

due to gravity. Therefore, the heights at Zones (1) and

(0) remain h1 and h0 respectively, and their corre-

sponding velocities are the same value given by

u1 = u0 = mt.

The solution at Zone (3) having a quadratic profile

is derived in a similar way to our previous work

(MUNGKASI and ROBERTS 2011c) as follows. On the

rightmost characteristic curve C? emanating from the

origin, we have a velocity u = at and relative wave

speed c0 ¼
ffiffiffiffiffiffiffi
gh0

p
: So, at arbitrary point N on that

curve, we have a velocity u = atN and relative wave

speed c = c0 where tN is the time associated with

point N. Now, consider an arbitrary point M in zone II

such that tM [ tN, where tM is the time associated

with point M. Since k- is constant along character-

istic curve C- passing through points M and N, and

we have a = m, the velocity at point M is

u ¼ 2c� 2c0 þ mt; ð16Þ

where tM is rewritten as t for simplicity. The slope

dx

dt
¼ uþ c ¼ 3c� 2c0 þ mt ð17Þ

is the slope of each characteristic curve C? in the

rarefaction fan. Since k? is constant along each curve

defined by dx/dt = u ? c and since the velocity u is

given by (16), the relative wave speed c is constant

along each curve in the rarefaction fan. As a result,

Eq. 17 can be integrated to get

c ¼ 1

3

x

t
þ 2c0 �

1

2
mt

� �
ð18Þ

that is

h ¼ 1

9g

x

t
þ 2c0 �

1

2
mt

� �2

: ð19Þ

Substituting (18) into (16), we obtain

Figure 3
A schematic profile of the debris avalanche problem in the

topography-linked coordinate system and their corresponding

characteristic curves

1850 S. Mungkasi, S. G. Roberts Pure Appl. Geophys.



u ¼ 2

3

x

t
� c0 þ mt

	 

: ð20Þ

The position of x3,0 is characterised by

dx

dt
¼ u0 þ c0 ¼ mt þ c0: ð21Þ

Therefore, x3;0 ¼ c0t þ 1
2

mt2:

Suppose that we have m = 0, so we have the

classical dam break problem. The solution at Zone (2)

is derived as follows. After the separating wall is

removed (t [ 0), a shock occurs. The shock position

is at x1,2, at the interface between Zone (1) and Zone

(2). Let us denote the shock velocity as r, which is a

constant, so that the shock position is x1,2 = r t at

time t. The shock conditions2 are (STOKER 1957)

�r u2 � rð Þ ¼ 1

2
c2

1 þ c2
2

� �
; ð22Þ

c2
2 u2 � rð Þ ¼ �c2

1r: ð23Þ

Using Eq. 23, we eliminate c2
2 from Eq. 22 resulting

in the quadratic equation

r u2 � rð Þ2þ 1

2
c2

1 u2 � rð Þ � 1

2
c2

1r ¼ 0: ð24Þ

From this quadratic equation, we have

u2 ¼ r� c2
1

4r
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8
r
c1

� �2
s0

@

1

A; ð25Þ

in which the positive sign (instead of the negative) in

front of the square root is chosen such that u2 - r
and -r have the same sign. This same sign guaran-

tees that Zone (2) expands out, as the time t evolves.

Using Eq. 22, we eliminate u2 from Eq. 64, and so

c2 ¼ c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8
r
c1

� �2
s

� 1

0

@

1

A

vuuut ; ð26Þ

is obtained. The shock conditions (22) and (23) now

become (25) and (26). We see that infinitely many

solutions exist satisfying (25) and (26), as there are

three unknowns, namely u2, c2, and r, but only two

equations are given. To get a unique set of solutions,

we need one more equation. The other equation is

found by observing the characteristic curve passed by

x2,3. Recall that k- is constant along each character-

istic curve C-. Therefore,

u� 2c� mt ¼ �2c0 ð27Þ

over the whole Zone (3), and

u� 2c� mt ¼ u2 � 2c2 ð28Þ

at point x2,3. As a result, we have

�2c0 ¼ u2 � 2c2 ð29Þ

at point x2,3. Therefore, u2, c2, and r are found by

solving the three simultaneous Eqs. 25, 26, and 29.

If m = 0, at Zone (2), the quantities u2 and r
defined for m = 0 described above must be corrected

for the fluid velocity and shock velocity. Recall that

the constant m is the horizontal acceleration of a

particle sliding down an inclined topography. This

implies that the fluid velocity and shock velocity at

Zone (2) are u2 ? mt and r ? mt respectively. The

position of x2,3 is then characterised by

dx

dt
¼ ðu2 þ mtÞ þ c2; ð30Þ

which implies that x2;3 ¼ ðu2 þ c2Þt þ 1
2

mt2: In

addition, the shock position is x1;2 ¼ rt þ 1
2

mt2:

Therefore, the solution to the debris avalanche

problem in the standard Cartesian coordinate system is

hðx; tÞ

¼

h1 if x\rt þ 1
2

mt2

h2 if rt þ 1
2

mt2� x\ðu2 þ c2Þt þ 1
2

mt2

1
9g

x
t þ 2c0 � 1

2
mt

� �2
if ðu2 þ c2Þt þ 1

2
mt2� x\c0t þ 1

2
mt2

h0 if x� c0t þ 1
2

mt2

8
>>>><

>>>>:

ð31Þ

and

uðx; tÞ

¼

mt if x\rt þ 1
2

mt2

u2 þ mt if rt þ 1
2

mt2� x\ðu2 þ c2Þt þ 1
2

mt2

2
3

x
t � c0 þ mt
� �

if ðu2 þ c2Þt þ 1
2

mt2� x\c0t þ 1
2

mt2

mt if x� c0t þ 1
2

mt2

8
>>><

>>>:

ð32Þ

for time t [ 0. Here u2, c2, and r are the solutions of

the three simultaneous Eqs. 25, 26, and 29. The value

of h2 is calculated using relation c2 ¼
ffiffiffiffiffiffiffi
gh2

p
:

2 These shock conditions were derived by STOKER (1957) for

the case when the topography is horizontal. In fact, the shock

conditions for arbitrary shape of topography are still the same as

long as the topography is continuous, as proved by DRESSLER (1949).
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Alternatively, we can implement a transformation

technique to get the solution to the debris avalanche

problem by recalling the solution to the classical dam

break problem. The solution, where m = 0 and

h0 [ h1, is (STOKER 1957)

hðx; tÞ ¼

h1 if x\rt
h2 if rt� x\ðu2 þ c2Þt

1
9g

x
t þ 2c0

� �2
if ðu2 þ c2Þt� x\c0t

h0 if x� c0t

8
>><

>>:

ð33Þ

and

uðx; tÞ ¼

0 if x\rt
u2 if rt� x\ðu2 þ c2Þt

2
3

x
t � c0

� �
if ðu2 þ c2Þt� x\c0t

0 if x� c0t

8
>><

>>:
ð34Þ

for time t [ 0. Here u2, c2, and r are the solutions of

the three simultaneous Eqs. 25, 26, and 29. The value

of h2 is calculated using relation c2 ¼
ffiffiffiffiffiffiffi
gh2

p
: Let us

now review a transformation technique as follows.

We consider the Saint-Venant model in the standard

Cartesian coordinate system, (1) and (2), and denote

that m ¼ �g tan hþ F and c ¼
ffiffiffiffiffi
gh
p

: Introducing new

variables (MANGENEY et al. 2000; MUNGKASI and

ROBERTS 2011c; WATSON et al. 1992)

n ¼ x� 1

2
mt2; s ¼ t; t ¼ u� mt; H ¼ h

ð35Þ

into (1) and (2), we obtain

Hs þ ðtHÞn ¼ 0; ð36Þ

ðHtÞs þ Ht2 þ 1

2
gH2

� �

n

¼ 0: ð37Þ

Therefore for a given initial condition, if the solution

to (36) and (37) is

t ¼ tðn; sÞ; and H ¼ Hðn; sÞ ð38Þ

then the solution to (1) and (2) is

uðx; tÞ ¼ t n; tð Þ þ mt; and hðx; tÞ ¼ H n; tð Þ:
ð39Þ

Consequently, the solution to the debris avalanche

problem shown in Fig. 1, where h0 [ h1, is (31) and

(32) for time t [ 0.

2.3. Properties of the Analytical Solution

In this subsection, we provide three properties of

the analytical solution (31) and (32) we have derived

to the debris avalanche problem following the

properties of the solution to the dam break problem

presented by STOKER (1957).

The first is the property of the solution at point

x ¼ 1
2

mt2: If

u2 þ c2 þ mt� 0; ð40Þ

this point x ¼ 1
2

mt2 belongs to Zone (3), and we have

that at this point the fluid height, velocity, and

momentum are

h ¼ 4

9
h0; u ¼ � 2

3
c0; p ¼ � 8

27
h0c0; ð41Þ

respectively. If

u2 þ c2 þ mt [ 0; ð42Þ

the point x ¼ 1
2

mt2 belong to Zone (2), and we see

that the fluid height, velocity, and momentum at this

point are

h ¼ h2; u ¼ u2 þ mt; p ¼ h2ðu2 þ mtÞ; ð43Þ

respectively.

The second is the height of the shock, measured by

h2 - h1. The height of the shock is zero when h1 = 0 or

h1 = h0, and it attains its maximum h2 - h1 = 0.32 h0

when h1/h0 = 0.176, as described by STOKER (1957).

The third is the behaviour of the solution when

h1 = h0 or h1 = 0. Recalling the solution given by

(31) and (32), and its illustration in Fig. 3, we describe

the behaviour as follows. When h1 = h0, the height of

the shock is zero, which corresponds to the fact that

the shock speed r equals the value of the fluid velocity

upstream u0. At the same time, Zone (3) disappears, as

the width of Zone (3) is zero. We note that when

h1 = h0, what happens is just a block of fluid sliding

downstream with a constant height h0 and velocity

u = mt. For the other case, when h1 = 0, the analyt-

ical solution (31) and (32) becomes:

hðx; tÞ

¼
0 if x\� 2c0t þ 1

2
mt2

1
9g

x
t þ 2c0 � 1

2
mt

� �2
if � 2c0t þ 1

2
mt2� x\c0t þ 1

2
mt2

h0 if x� c0t þ 1
2

mt2

8
>><

>>:

ð44Þ
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and

uðx; tÞ

¼
0 if x\� 2c0t þ 1

2
mt2

2
3

x
t � c0 þ mt
� �

if � 2c0t þ 1
2

mt2� x\c0t þ 1
2

mt2

mt if x� c0t þ 1
2

mt2

8
><

>:

ð45Þ

that is, the analytical solution derived by MUNGKASI

and ROBERTS (2011c) to the debris avalanche prob-

lem involving a dry bed in the standard Cartesian

coordinate system. When h1 = 0, we say that there

is not a shock in the solution. This is because when

h1 = 0, Zone (2) is squeezed out into one point,

which is the interface between wet and dry areas,

and the dry area is always reached by the rarefaction

wave.

3. Debris Avalanche Problem in the Topography-

Linked Coordinate System

Consider the debris avalanche problem in the

topography-linked coordinate system shown in

Fig. 2. In this section, we recall the governing

equations and briefly derive the analytical solution to

the problem.

3.1. Governing Equations

In the topography-linked coordinate system, the

Saint-Venant model written in the conservative form

with a flat topography is

o~h

ot
þ

o ~h~u
� �

o~x
¼ 0; ð46Þ

o ~h~u
� �

ot
þ

o ~h~u2 þ 1
2

g~h2 cos h
� �

o~x
¼ �~h g sin h� ~F

� �
:

ð47Þ

Equations 46 and 47 are the equation of mass and that

of momentum respectively. Here, ~x represents the

coordinate in one-dimensional space, t represents the

time variable, ~u ¼ ~uð~x; tÞ denotes the fluid velocity,
~h ¼ ~hð~x; tÞ denotes the fluid height, h is the angle

between the topography (bed elevation) and the

horizontal line, and g is the acceleration due to

gravity. In addition, ~F is a factor representing the

Coulomb-type friction, given by

~F ¼ �g cos h tan d sgn~u ð48Þ

in this topography-linked coordinate system. Recall

that we use the notation d for representing the

dynamic friction angle, and the values tan d and tan h
are the friction slope and bed slope respectively.

Again, following MANGENEY et al. (2000), we

limit our discussion to the case when tan d� tan h; so

the Coulomb-type friction is defined by

~F ¼ g cos h tan d; ð49Þ

for the debris avalanche problem in the topography-

linked coordinate system for time t [ 0. We use tilde

~notation attached in the quantity variables for those

variables corresponding to the problem in the

topography-linked coordinate system, and the stan-

dard quantity variables (without tilde ~ notation) are

used for variables corresponding to the problem in the

standard Cartesian coordinate system.

Taking Eq. 46 into account, we can rewrite

Eq. 47 as3

o~u

ot
þ ~u

o~u

o~x
¼ �g cos h

o~h

o~x
� g sin hþ ~F: ð50Þ

Introducing a ‘‘wave speed’’ defined as

~c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g~h cos h

q
; ð51Þ

MANGENEY et al. (2000) showed that Eqs. 46 and 50

can be rewritten as

2
o~c

ot
þ 2~u

o~c

o~x
þ ~c

o~u

o~x
¼ 0; ð52Þ

o~u

ot
þ ~u

o~u

o~x
þ 2~c

o~c

o~x
þ g sin h� ~F ¼ 0: ð53Þ

The value of ~c is the wave speed relative to the fluid

velocity ~u: An addition of (52) to (53) and subtraction

of (52) from (53) result in

o

ot
þ ~uþ ~cð Þ o

o~x

� �
� ~uþ 2~c� ~mtð Þ ¼ 0; ð54Þ

o

ot
þ ~u� ~cð Þ o

o~x

� �
� ~u� 2~c� ~mtð Þ ¼ 0; ð55Þ

3 Equations (1) and (2) in the paper of MANGENEY et al.

(2000) were called ‘‘mass and momentum equations’’. We believe

that it was a typographical error (misprint), as in their context, it

should be written as ‘‘momentum and mass equations’’.
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respectively, where

~m ¼ �g sin hþ ~F: ð56Þ

In other words, Eqs. 46 and 47 are equivalent to

characteristic relations

~Cþ :
d~x

dt
¼ ~uþ ~c; ð57Þ

~C� :
d~x

dt
¼ ~u� ~c; ð58Þ

in which

~uþ 2~c� ~mt ¼ ~kþ ¼ constant along each curve ~Cþ;

ð59Þ

~u� 2~c� ~mt ¼ ~k� ¼ constant along each curve ~C�;

ð60Þ

where ~m ¼ �g sin hþ ~F; and ~c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g~h cos h

q
: These

~k� are the Riemann invariants.

From Eqs. 12–15 and 57–60, we see that the

problems in the topography-linked coordinate system

are analogous to those in the standard Cartesian

coordinate system.

3.2. Derivation and Properties of the Analytical

Solution

Because the debris avalanche problem in the

topography-linked coordinate system is analogous to

that in the standard Cartesian coordinate system,

methods applicable in the standard Cartesian coordi-

nate system are also applicable in the topography-

linked coordinate system. Therefore, we can use

either characteristics or a transformation technique to

solve the debris avalanche problem in the topogra-

phy-linked coordinate system. For brevity, we solve

the problem using a transformation.

Recall the solution (33) and (34) to the classical

dam break problem. Introducing new variables

~n ¼ ~x� 1

2
~mt2; s ¼ t; ~t ¼ ~u� ~mt; ~H ¼ ~h

ð61Þ

into (46) and (47), we can solve the problem in the

transformed coordinate. The solution in the trans-

formed coordinate is then transformed back to the

original topography-linked coordinate so that the

solution to the debris avalanche problem shown in

Fig. 2, where ~h0 [ ~h1; is

~hð~x; tÞ

¼

~h1 if ~x\~rtþ 1
2

~mt2

~h2 if ~rtþ 1
2

~mt2� ~x\ð~u2þ ~c2Þtþ 1
2

~mt2

1
9gcosh

~x
tþ 2~c0� 1

2
~mt

� �2
if ð~u2þ ~c2Þtþ 1

2
~mt2� ~x\~c0tþ 1

2
~mt2

~h0 if ~x� ~c0tþ 1
2

~mt2

8
>>>>><

>>>>>:

ð62Þ

and

~uð~x; tÞ

¼

~mt if ~x\~rt þ 1
2

~mt2

~u2 þ ~mt if ~rt þ 1
2

~mt2� ~x\ð~u2 þ ~c2Þt þ 1
2

~mt2

2
3

~x
t � ~c0 þ ~mt
� �

if ð~u2 þ ~c2Þt þ 1
2

~mt2� ~x\~c0t þ 1
2

~mt2

~mt if ~x� ~c0t þ 1
2

~mt2

8
>>><

>>>:

ð63Þ

for time t [ 0. Here ~u2; ~c2; and ~r are the solutions of

three simultaneous equations

~u2 ¼ ~r� ~c2
1

4~r
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8
~r
~c1

� �2
s0

@

1

A; ð64Þ

~c2 ¼ ~c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8
~r
~c1

� �2
s

� 1

0

@

1

A

vuuut ; ð65Þ

�2~c0 ¼ ~u2 � 2~c2 ð66Þ

where ~m ¼ �g sin hþ ~F: Note that ~ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g~hi cos h

q
;

i ¼ 1; 2; 3; 0: The value of ~h2 is calculated using

relation ~c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g~h2 cos h

q
:

The properties of this solution are similar to those

of the solution to the debris avalanche problem in the

standard Cartesian coordinate system. In particular, if
~h1 ¼ 0; the analytical solution (62) and (63) becomes:

~hð~x; tÞ

¼

~h1 if ~x\� 2~c0t þ 1
2

~mt2

1
9g cos h

~x
t þ 2~c0 � 1

2
~mt

� �2
if � 2~c0t þ 1

2
~mt2 � ~x\~c0t þ 1

2
~mt2

~h0 if ~x� ~c0t þ 1
2

~mt2

8
>><

>>:

ð67Þ

and

~uð~x; tÞ

¼
~mt if ~x\� 2~c0t þ 1

2
~mt2

2
3

~x
t � ~c0 þ ~mt
� �

if � 2~c0t þ 1
2

~mt2� ~x\~c0t þ 1
2

~mt2

~mt if ~x� ~c0t þ 1
2

~mt2

8
><

>:

ð68Þ
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that is, the analytical solution derived by MANGENEY

et al. (2000) to the debris avalanche problem

involving a dry bed in the topography-linked coor-

dinate system. However, we argue that the analytical

solution (62) and (63) and that of MANGENEY et al.

(2000) are not valid physically. This is because for

cases with steep bed slopes, some material at the top

around the wall given in Fig. 2 would fall down and

collapse with some material from around point O

moving to the left soon after the wall is removed

(MUNGKASI and ROBERTS 2011c). This collapse should

have a defect in the solution. For this reason, it is

better for us to use the solution to the debris ava-

lanche problem in the standard Cartesian coordinate

system to test debris avalanche numerical models.

4. Numerical Models

In this section, we test finite volume numerical

models (finite volume methods) used to solve the

debris avalanche problem. We compare the perfor-

mance of Method A (the finite volume method with

reconstruction based on stage w: = h ? z, height

h, and velocity u) to that of Method B (the finite

volume method with reconstruction based on stage

w, height h, and momentum p: = hu) in solving the

debris avalanche problem involving a shock.

The numerical scheme is described as follows.

The Saint-Venant model (1) and (2) can be written in

a vector form

qt þ fðqÞx ¼ s ð69Þ

where the vectors of quantity q, flux function f, and

source term s are

q ¼ h
hu

� �
; f ¼ hu

hu2 þ 1
2

gh2

� �
; and

s ¼ 0

�ghzx þ hF

� �
:

ð70Þ

Taking the hydrostatic reconstruction (AUDUSSE et al.

2004; NOELLE et al. 2006)

z�iþ1
2

:¼ maxfzi;r; ziþ1;lg; ð71Þ

h�i;r :¼ maxf0; hi;r þ zi;r � z�iþ1
2
g; ð72Þ

h�iþ1;l :¼ maxf0; hiþ1;l þ ziþ1;l � z�iþ1
2
g ð73Þ

we have that the values for h* lead to auxiliary values

for the conserved quantities, Q* = (h*, h*u)T. Then, a

semi-discrete well-balanced finite volume scheme for

the Saint-Venant model in the standard Cartesian

coordinate system is

Dxi
d

dt
Qi þF rðQi;Qiþ1; zi;r; ziþ1;lÞ

� F lðQi�1;Qi; zi�1;r; zi;lÞ

¼ S
ðjÞ
i ð74Þ

where the right and left numerical fluxes of the ith

cell are respectively calculated at xi?1/2 and xi-1/2, and

F rðQi;Qiþ1; zi;r; ziþ1;lÞ :¼ FðQ�i;r;Q�iþ1;lÞ þ Si;r;

ð75Þ

and

F lðQi�1;Qi; zi�1;l; zi;rÞ :¼ FðQ�i�1;r;Q
�
i;lÞ þ Si;l:

ð76Þ

Here, Q is the approximation of the vector q, and F is a

conservative numerical flux consistent with the

homogeneous shallow water wave equations computed

in such a way that the method is stable. In addition,

Si;r :¼ 0
g
2

h2
i;r �

g
2
ðh�i;rÞ

2

� �
; Si;l :¼ 0

g
2

h2
i;l �

g
2
ðh�i;lÞ

2

� �

ð77Þ

are the corrections due to the water height modifi-

cation in the hydrostatic reconstruction. Furthermore,

the index j of Si
(j) in Eq. 74 denotes the order of the

numerical source term. The first and second order

numerical source terms are

S
ð1Þ
i :¼ 0

hiF

� �
and

S
ð2Þ
i :¼ 0

�g
hi;rþhi;l

2
ðzi;r � zi;lÞ þ hiF

� �
;

ð78Þ

where F is defined by (3). This scheme is based on

the well-balanced finite volume scheme proposed by

AUDUSSE et al. (2004) and extended to higher orders

of accuracy by NOELLE et al. (2006).

In all simulations, the numerical settings are as

follows. We use the second-order source, second-

order spatial, and second-order temporal discretiza-

tions. The central upwind flux formulation proposed

by KURGANOV et al. (2001) is used to compute the
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numerical fluxes. Quantities are measured in SI units.

The acceleration due to gravity is taken as g = 9.81.

The minmod limiter is applied in the quantity

reconstruction, and we note that this limiter leads the

numerical method to a total variation diminishing

(TVD) method (LEVEQUE 2002). The Courant-Fried-

richs-Lewy number used in the simulations is 1.0.

The spatial domain is [-100, 100]. The initial fluid

heights are h1 = 5 on the left and h0 = 10 on the

right of the wall. The discrete L1 absolute error

(MUNGKASI and ROBERTS 2010, 2011a, c)

E ¼ 1

N

XN

i¼1

qðxiÞ � Qij j ð79Þ

is used to quantify numerical error, where N is the

number of cells, q is the exact quantity function, xi is

the centroid of the ith cell, and Qi is the average value

of quantity of the ith cell produced by the numerical

method.

The simulations are done in Python 2.4. In order

that our solvers can be reached and used by the com-

munity, we have uploaded the codes of our analytical

and numerical solvers on http://sites.google.com/

a/dosen.usd.ac.id/sudi_mungkasi/research/codes/

Avalanche.rar. Similar numerical solvers have also

been tested for solving the Saint-Venant model in our

previous work (MUNGKASI and ROBERTS 2010, 2011a, b

for the case without friction and MUNGKASI and ROB-

ERTS 2011c for the case with friction).

Three test cases are considered. First, we test the

numerical methods for a problem with friction slope

tan d ¼ 0 and bed slope tan h ¼ 0: Table 1 shows

errors for stage w, momentum p and velocity u with

various number of cells for this first case. Second, we

consider a problem with friction slope tan d ¼ 0 and

bed slope tan h ¼ 0:1: Table 2 presents errors for

stage w, momentum p, and velocity u with various

number of cells for this second case. Finally, for the

third case we consider a problem with friction slope

tan d ¼ 0:05 and bed slope tan h ¼ 0:1: The errors for

stage w, momentum p, and velocity u with various

numbers of cells are presented in Table 3. For this

third case, Fig. 4 shows the debris avalanche con-

sisting of stage w, momentum p, and velocity u at

time t = 5 using Method B with 400 cells. Method A

results in a similar figure.

Several remarks can be drawn from the numerical

results. From the error comparison shown in Tables 1,

2, and 3, we see that Methods A and B perform4

similarly. To be specific we could say that Method B

results in slightly smaller error, but the difference

between the results of Methods A and B is indeed

insignificant. In addition, according to Tables 1, 2,

and 3, as the cell length is halved, the errors produced

by the numerical methods are halved. This means that

we have only a first order of convergence, even

though we have used second-order methods. This is

Table 1

Errors for tan d ¼ 0 and tan h ¼ 0 at t = 5

Number

of cells

w error p error u error

A B A B A B

100 0.0525 0.0522 0.4592 0.4566 0.0602 0.0599

200 0.0280 0.0280 0.2531 0.2530 0.0318 0.0318

400 0.0146 0.0147 0.1337 0.1343 0.0167 0.0168

800 0.0067 0.0067 0.0599 0.0600 0.0077 0.0077

1,600 0.0033 0.0033 0.0296 0.0297 0.0038 0.0038

Table 2

Errors for tan d ¼ 0 and tan h ¼ 0:1 at t = 5

Number

of cells

w error p error u error

A B A B A B

100 0.0662 0.0659 0.6348 0.6280 0.0732 0.0725

200 0.0324 0.0322 0.2987 0.2944 0.0364 0.0360

400 0.0165 0.0164 0.1518 0.1504 0.0186 0.0185

800 0.0083 0.0083 0.0764 0.0756 0.0094 0.0094

1,600 0.0041 0.0041 0.0382 0.0378 0.0047 0.0047

Table 3

Errors for tan d ¼ 0:05 and tan h ¼ 0:1 at t = 5

Number

of cells

w error p error u error

A B A B A B

100 0.0582 0.0576 0.4983 0.4921 0.0658 0.0651

200 0.0301 0.0300 0.2664 0.2642 0.0339 0.0337

400 0.0152 0.0152 0.1360 0.1353 0.0172 0.0172

800 0.0077 0.0077 0.0693 0.0692 0.0087 0.0087

1,600 0.0039 0.0039 0.0358 0.0359 0.0045 0.0045

4 In the simulations for the debris avalanche problem

involving a dry area (MUNGKASI and ROBERTS 2011c), Method B

resulted in a slightly smaller error.
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due to diffusions around the shock and the corners in

the numerical solution, as shown in Fig. 4. It is well

known in the numerical analysis of conservation laws

that in the presence of a shock or discontinuity, finite

volume methods (second-order TVD methods in our

case here) converge at most with first-order accuracy

(LEON et al. 2007; LEVEQUE 1992).

5. Conclusions

We have used the shallow water approach to solve

the debris avalanche problems. The analytical solu-

tion to the problems in the standard Cartesian

coordinate system has been used for testing the per-

formance of two finite volume numerical models

having different ways of reconstructing the conserved

quantities. Numerical results show that both recon-

structions lead to the same accuracy when the

numerical models are used to solve the one-dimen-

sional debris avalanche problem involving a shock

for the parameter settings considered.
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