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SUMMARY

The Carrier–Greenspan solutions to the shallow water wave equations for flows on a sloping beach are of two
types, periodic and transient. This paper focuses only on periodic-type waves. We review an exact solution
over the whole domain presented by Johns [‘Numerical integration of the shallow water equations over a
sloping shelf’, Int. J. Numer. Meth. Fluids, 2(3): 253–261, 1982] and its approximate solution (the Johns pre-
scription) prescribed at the zero point of the spatial domain. A new simple formula for the shoreline velocity
is presented. We also present new higher order approximations of the Carrier–Greenspan solution at the zero
point of the spatial domain. Furthermore, we compare numerical solutions obtained using a finite volume
method to simulate the periodic waves generated by the Johns prescription with those found using the same
method to simulate the periodic waves generated by the Carrier–Greenspan exact prescription and with those
found using the same method to simulate the periodic waves generated by the new approximations. We find
that the Johns prescription may lead to a large error. In contrast, the new approximations presented in this
paper produce a significantly smaller error. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Carrier–Greenspan periodic solution [1] has been widely applied to test the performance of
numerical methods used to solve the shallow water wave equations (consult [2–6] for example).
This solution involves a fixed boundary and a moving boundary. To generate the periodic waves,
either the Carrier–Greenspan exact solution or its approximation at the fixed boundary is prescribed.

Johns [5] presented a specific form of the Carrier–Greenspan exact solution of periodic type over
a spatial domain and prescribed an approximate solution at the zero point of the spatial domain,
where the fixed boundary is located. The approximate solution can be applied at the fixed boundary
to generate an approximation of the Carrier–Greenspan exact solution using a numerical method
as done by a number of authors, such as Johns [5] and Sidén and Lynch [6]. Thus, the numerical
solution is affected by two sources of error, namely, the error in the boundary condition (at the fixed
boundary) and the error introduced by the numerical discretization. Ideally, when testing a numer-
ical method, we want to quantify the error introduced by the numerical discretization. However,
testing a numerical method by prescribing the approximate solution at the fixed boundary may be
misleading because the error in the boundary condition could be the dominant term. Note that the
prescription at the fixed boundary propagates towards the moving boundary (shoreline), so the error
at the fixed boundary also propagates towards the shoreline.
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Our main point is that, in general, the approximate solution of Johns [5] is unable to accurately
estimate the Carrier–Greenspan exact solution at the zero point of the spatial domain. In addition,
the large prescription error at the fixed boundary results in a large error of the solution generated
by the numerical method. Therefore, we propose new approximations (which are more accurate than
the approximate solution of Johns [5]) of the Carrier–Greenspan exact solution at the zero point of
the spatial domain.

In this paper, we derive the formulation of Johns [5] for the Carrier–Greenspan periodic solution,
as Johns [5] did not explicitly present the derivation. Based on that formulation, we then derive
a new formula for the shoreline velocity and new approximate solutions at the zero point of the
spatial domain. The new formula for the shoreline velocity is found using l’Hospital’s Rule, and
the new approximate solutions at the zero point of the spatial domain are found by extending the
approximate solution of Johns [5] using either formal expansion or fixed point iteration.

The remainder of this paper is organized as follows. Section 2 recalls the shallow water wave
equations in dimensional and dimensionless systems. Section 3 is devoted to the analytical work
on the Carrier–Greenspan solution for periodic waves. In Section 4, two test cases are investigated,
which verify our claim that the use of the Johns prescription can lead to large errors, and in addition,
our new approximations are indeed more accurate. In Section 5, we present the rate of convergence
of the numerical method used in the simulations. Finally, some concluding remarks are stated in
Section 6.

2. GOVERNING EQUATIONS

The shallow water wave equations can be written in the standard dimensional system as well as the
non-standard dimensionless system. These equations are the mathematical relations governing the
vertically averaged hydrostatic water motion. In this section, we recall the shallow water wave equa-
tions in both systems. Equations in the dimensionless system are used for simplicity in the analytical
work in Section 3, whereas equations in the dimensional system are utilized to easily understand the
solution, physically, in the numerical experiments in Sections 4 and 5.

In the standard Cartesian coordinate system, the conservative shallow water wave equations
consist of the mass and momentum equations

h�t� C
�
h�u�

�
x�
D 0, (1)

�
h�u�

�
t�
C

�
h�u�

2
C
1

2
gh�

2

�
x�
D�gh�´�x� . (2)

Here, x� represents the coordinate in one-dimensional space, t� represents the time variable, u�D
u�.x�, t�/ denotes the water velocity, ´�D´�.x�/ denotes the water bed topography, h�Dh�.x�, t�/
denotes the water height, that is, the distance from the free surface to the water bed topography, and
g is the constant of gravitation.

Consider the situation illustrated in Figure 1. The topography changes linearly with x�

´� D .h�0=L
�/x� � h�0 , (3)

in which h�0 is the vertical distance from the origin O to the topography at any time, and L� is the
horizontal distance from the origin O to the topography when the water is still. This implies that
when the water is still, ´�D�h� over the spatial domain, ´�D�h�0 at x�D0, and the position of the
shoreline is x�DL�.

We introduce a new variable called the stage w� WD h�C ´�, which specifies the free surface.
Scaling the horizontal distance by L�, the vertical distance by h�0 , the time by L�=

p
gh�0 , and

the velocity by
p
gh�0 , we can rewrite Equations (1) and (2) as the nonconservative dimensionless

shallow water wave equations

wt C Œ.wC 1� x/ u�x D 0, (4)
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Figure 1. Cross section of a sloping beach.

ut C uux Cwx D 0. (5)

In this paper, all unstarred variables denote dimensionless quantities corresponding to their dimen-
sional quantities denoted by starred variables. Equations (4) and (5) were used by Johns [5] in
developing a finite difference numerical technique to simulate shallow water flows on a sloping
beach.

Remark 1
For smooth solutions, Equations (4) and (5) are equivalent to the conservative dimensionless shallow
water wave equations

ht C .hu/x D 0, (6)

.hu/t C

�
hu2C

1

2
h2
�
x

D�h´x . (7)

3. PERIODIC WAVES ON A SLOPING BEACH

In this section, we review the solutions for periodic waves on a sloping beach presented by Carrier
and Greenspan [1]. Five subsections are given. In Subsection 3.1, we recall the hodograph trans-
formation applied by Carrier and Greenspan [1] to solve the shallow water equations analytically.
This solution in the hodograph variables is then transformed back to the physical variables in Sub-
section 3.2 to get the formulation of Johns [5] for the Carrier–Greenspan periodic solution. We then
present a new formula for the shoreline velocity in Subsection 3.3. In Subsection 3.4, we review
the Johns approximation, which can be used as boundary conditions for numerical simulations, to
the Carrier–Greenspan periodic solution at x D 0. Finally, Subsection 3.5 is devoted to new (more
accurate) approximations of the Carrier–Greenspan periodic solution at x D 0.

3.1. Carrier–Greenspan solution

Carrier and Greenspan [1] applied the classical hodograph transformation to solve the shallow water
wave equations. Two dimensionless hodograph variables

� D 4c, (8)

�D 2.uC t / (9)

were used. Here,

c D
p
wC 1� x (10)

is the wave speed relative to the water velocity u. In the hodograph system, the variables � and
� are, respectively, a space-like and a time-like coordinate [3]. Note that the value of wC1�x is
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actually the water height h in our dimensionless system. The dimensionless variables are related to
the hodograph variables as

x D
1

4
�� �

1

16
�2 �

1

2
u2C 1, t D

1

2
�� u, (11)

w D
1

4
�� �

1

2
u2, uD ��1�� , (12)

where � D � .� ,�/ is a potential function satisfying

.��� /� � ���� D 0. (13)

Equations for stage w and velocity u given by Equation (12) are the Carrier–Greenspan exact
solution. The choice of � .� ,�/, which satisfies Equation (13), depends on the conditions of the
investigated problem.

Carrier and Greenspan [1] showed that a periodic oscillation of water is formed if we take

� .� ,�/D AJ0 .!�/ cos .!�/ (14)

as long as the Jacobian @ .x, t / =@ .� ,�/ does not vanish in �>0. This means that the implicit func-
tions w.x, t / and u.x, t / are single-valued, that is, the waves represented by those functions do not
break. Here, J0 is the Bessel function of the first kind of order 0. The constant ! is given by �=T
instead of the usual value 2�=T because a coefficient of 2 has appeared in the definition of � in
Equation (9), where T is the dimensionless period of oscillation. According to Equations (13) and
(14), we can infer that

� .� ,�/D AJ0 .!�/ sin .!�/ (15)

is also a potential function satisfying Equation (13).

3.2. The formulation of Johns for the Carrier–Greenspan periodic solution

In this subsection, we transform the solution (12) from the hodograph variables � and � to the usual
variables x and t .

Considering the potential function (15), Johns [5] presented the corresponding Carrier–Greenspan
periodic solution and prescribed an approximation of the Carrier–Greenspan periodic solution at
xD 0. Here, we derive the formulation‡ of Johns [5] for the Carrier–Greenspan periodic solution,
so that in the next subsections we can propose a new formula for the shoreline velocity, review the
prescription of Johns at xD0, and propose new approximations of the Carrier–Greenspan periodic
solution at x D 0. The motivation here is to provide the missing derivation of the solution presented
by Johns [5].

Let us consider the potential function (15). Its partial derivatives are

�� D�!AJ1 .!�/ sin .!�/, (16)

�� D !AJ0 .!�/ cos .!�/, (17)

where J1 and J0 are Bessel functions of the first kind of order 1 and 0, respectively. Substituting
Equations (16) and (17) into Equation (12), we obtain

w D�
1

2
u2C

1

4
!AJ0 .!�/ cos .!�/, (18)

‡Sidén and Lynch [6], in implementing the formulation of Johns, observed that the solution presented by Johns [5] fails
to satisfy the kinematic boundary condition on the moving boundary because it involves a factor of 4. This failure is
because of a misprint (typographical error) in the solution presented by Johns.
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uD�
!AJ1 .!�/

�
sin .!�/. (19)

Letting AD 1
4
!A and recalling !D�=T , we can write Equations (18) and (19) as

w D�
1

2
u2CAJ0

�
4�˛

T

�
cos

�
2�ˇ

T

�
, (20)

uD�
AJ1

�
4�˛
T

�
˛

sin

�
2�ˇ

T

�
, (21)

where ˛Dc and ˇD 1
2
�. Here, ˛ and ˇ have the same meaning as that used by Johns [5] but is differ-

ent from that used by Carrier and Greenspan [1]. Equations (20) and (21) are the Carrier–Greenspan
exact solution corresponding to the potential function (15).

For convenience, we rewrite the Carrier–Greenspan exact solutions (20) and (21) as

w D�
1

2
u2CAJ0

 
4�
p
wC 1� x

T

!
cos

�
2� .uC t /

T

�
, (22)

uD�
AJ1

�
4�
p
wC1�x
T

�
p
wC 1� x

sin

�
2� .uC t /

T

�
. (23)

3.3. Calculating the stage and velocity

Let us recall some properties of the shoreline before presenting how to calculate the stage w and
velocity u over the whole domain. The shoreline is a moving boundary, and its position is defined at
any time by cD0, so that, introducing the dimensionless horizontal displacement � of the shoreline,
by Equation (10), we have

�.t/D w.1C �.t/, t /. (24)

Differentiating Equation (24) with respect to t , we have

d�

dt
D wx

d�

dt
Cwt . (25)

Using Equation (4) and assuming that wx.1C�.t/, t /<1, we obtain the kinematical condition of the
shoreline

uD
d�

dt
at x D 1C � . (26)

A statement of zero depth cD 0 at xD 1C� and the kinematical condition (26) are the boundary
conditions at the shoreline [5]. Note that because the slope of the topography in the dimensionless
system is unity, we have �Dw at the shoreline, as described by Dietrich, Kolar, and Luettich [4].
This means that the horizontal displacement of the shoreline is equal to the vertical displacement of
the shoreline. Because the instantaneous shoreline is fixed by the statement of zero depth cD0 at
xD1C� , the horizontal displacement of the shoreline is

� D�
1

2
u2CA cos

�
2�.uC t /

T

�
, (27)

according to Equation (22).
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To test a numerical method, Dietrich et al. [4] used the Carrier–Greenspan solution by referring to
the formulation§ of Johns [5]. To figure out the solution, Dietrich et al. [4] took two steps. First, the
system of equations consisting of the horizontal displacement � and the velocity u of the shoreline

� D�
1

2
u2CA cos

�
2�

T
.uC t /

�
, (28)

uD
d�

dt
D�u

du

dt
�
2A�
T

�
1C

du

dt

�
sin

�
2�

T
.uC t /

�
(29)

were solved. Equation (29) was solved for velocity u using a finite difference approximation on the
du=dt terms as well as using the information that the velocity of the shoreline at maximum inun-
dation is zero. The shoreline displacement was found by substituting the shoreline velocity u into
Equation (28). Second, the stage w and velocity u at the interior points in the wet region (on the left
side of the shoreline) were calculated using Equations (22) and (23).

Here, we propose a different approach at the first step to find the shoreline velocity. Let us con-
sider the velocity formulation (21) at wet areas, that is, on the interval ˛>0. We take the limit of the
velocity formulation (21) as ˛ goes to zero and take l’Hospital’s Rule to get

uD�
2�

T
A sin

�
2�

T
.uC t /

�
, (30)

which is our new formula for the shoreline velocity. Note that we take Equation (21), instead of
Equation (23), into consideration in the derivation of Equation (30) because it is clearer to work
with. Then the shoreline displacement is found by substituting the shoreline velocity u into Equa-
tion (28). The second step is similar to the work of Dietrich et al. [4]. To be specific, we can use
the Newton–Raphson method to solve Equations (22) and (23) to get the stage w and velocity u of
interior points in the wet region, with a note that the solution at a point closer to the shoreline is
the initial guess for the Newton–Raphson method in obtaining the solution for a point further away
from the shoreline.

3.4. The Johns approximate solution at the zero point of the spatial domain

In this subsection, we focus on the solution at spatial point x D 0 and review the prescription of
Johns [5] defined at that point.

Let us assume that w,u<<1 at xD0. At xD0, Johns [5] prescribed the stage

w D � cos

�
2�t

T

�
, (31)

where � is the dimensionless wave amplitude, and fixed the amplitude factor A in terms of �, which
can be explained as follows. Let

w D w0C ıw , uD u0C ıu (32)

be defined, where wDw0, uDu0 is a reference state, whereas ıw and ıu are perturbation terms.
Substituting Equation (32) into the right-hand side of Equations (22) and (23) with a sea at rest
w0D0, u0D0 as the reference state leads to

w D�
1

2
.ıu/2CAJ0

 
4�
p
ıwC 1

T

!
cos

�
2� .ıuC t /

T

�
, (33)

§Dietrich et al. [4] used the analytical solution with a factor of 4 appearing in front of the amplitude factor in the formu-
lation of the velocity u. This suggests that the analytical solution that they used might not be the correct one. However,
we cannot judge if they really used either the correct or incorrect formulation of the velocity u because there exists a
variable ˛ involved in their formulation that is not described.
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uD�
AJ1

�
4�
p
ıwC1
T

�
p
ıwC 1

sin

�
2� .ıuC t /

T

�
(34)

at xD0. Johns [5] took

w DAJ0
�
4�

T

�
cos

�
2�t

T

�
, (35)

uD�AJ1
�
4�

T

�
sin

�
2�t

T

�
, (36)

which are explicit functions of time t and linear with respect to the amplitude A. This means that
all contributions of perturbation terms ıw and ıu on the right-hand side of Equations (33) and (34)
are neglected.

Matching Equation (35) with Equation (31), Johns [5] fixed

AD �

J0
�
4�
T

� , (37)

which is the amplitude factor A in terms of �. We note that the assumption made on w and u in the
linearization of Johns (w,u<<1 at xD0) implies A<<1. However, the amplitude factor A given
by Equation (37), which implies the quality of approximation (35) and (36), is determined by two
elements. The first is, rather intuitively, the magnitude of �, whereas the second is the denominator
J0.4�=T /. As a result, we can have significant nonlinear effects even for moderate values of �,
which will be demonstrated in Section 4.

In this paper, Equation (35) is called ‘the Johns approximate solution’ of the Carrier–Greenspan
exact solution for the stage w at x D 0 or ‘the Johns prescription’ when it is applied at a fixed
boundary to generate a periodic wave using a numerical method. Note that the value of the ampli-
tude factor A corresponds to the maximum shoreline displacement (see the explanation of Carrier
and Greenspan [1] for more details). That is, the shoreline horizontal position varies from 1�jAj to
1CjAj.

3.5. More accurate approximations at the zero point of the spatial domain

In this subsection, we extend the Johns approximate solution, which is defined at xD0, to get more
accurate approximations. We describe two ways to do this extension. The first is by formal expan-
sion of stage w and velocity u with respect to the amplitude A, and the second is by a fixed point
iteration with a sea at rest (w0D0, u0D0) as the initial guess of the solution. (Please note that one
may also use other standard methods, such as the Newton–Raphson method, for solving a system of
equations to do an extension of the Johns approximate solution.)

The extension by formal expansion follows. Suppose that we are interested in getting an approx-
imation that is quadratic with respect to the amplitude A. The motivation is that we want to add an
extra term to the approximate prescription (35) of Johns [5], so that it results in a new approximation
that is a second order of accuracy. Let

w D w.A/DW0CW1ACW2A2CO
�
A3
�

, (38)

uD u.A/D U0CU1ACU2A2CO
�
A3
�

(39)

be defined for some functions W0,W1,W2, : : : and U0,U1,U2, : : :. Substituting Equations (38) and
(39) into Equations (22) and (23) and neglecting the O

�
A3
�

terms that are the cubic and higher
order terms, we find the quadratic approximation of the stage w and the quadratic approximation of
the velocity u given by

w D AJ0
�
4�

T

�
cos

�
2�t

T

�

�A2
�
2�

T
J0

�
4�

T

�
J1

�
4�

T

�
cos

�
4�t

T

�
C
1

2
J 21

�
4�

T

�
sin2

�
2�t

T

�	
, (40)
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uD�AJ1
�
4�

T

�
sin

�
2�t

T

�

CA2
�
�

T
J 21

�
4�

T

�
�
�

T
J 20

�
4�

T

�
C
1

2
J0

�
4�

T

�
J1

�
4�

T

�	
sin

�
4�t

T

�
. (41)

It should be stressed that the linearized w, given by Equation (35), of Johns [5] can be derived using
the same process but neglecting the O

�
A2
�

term that is the quadratic and higher order terms of the
expansions (38) and (39).

The extension of the Johns approximate solution through a fixed point iteration follows. Based on
Equations (22) and (23), we define kth level approximations of w and u at xD0

wk D�
1

2
u2k�1CAJ0

�
4�
p
wk�1C 1

T

�
cos

�
2� .uk�1C t /

T

�
, (42)

and

uk D�
AJ1

�
4�
p
wk�1C1
T

�
p
wk�1C 1

sin

�
2� .uk�1C t /

T

�
, (43)

for kD1, 2, ..., where w0D0, u0D0. These approximations are constructed recursively with a sea
at rest (w0D0, u0D0) as the initial guess of the solution. As long as the Jacobian @ .x, t / =@ .� ,�/
does not vanish in � >0 (as mentioned in Subsection 3.1), we know that Equations (22) and (23)
are single valued. Therefore, if the fixed point iteration converges, then it converges to the unique
solution of the problem. Notice that here the first level recursive approximation w1 of w is the
approximate prescription (35) of Johns [5]. The second level recursive approximation w2 of w and
the second level recursive approximation u2 of u are explicitly given by

w2 D�
1

2

�
AJ1

�
4�

T

�
sin

�
2�t

T

�	2

CAJ0

0
B@4�

q
AJ0

�
4�
T

�
cos

�
2�t
T

�
C 1

T

1
CA cos

 
2�


t �AJ1

�
4�
T

�
sin
�
2�t
T

��
T

!
, (44)

u2 D�

AJ1

 
4�

q
AJ0. 4�T / cos . 2�tT /C1

T

!
q
AJ0

�
4�
T

�
cos

�
2�t
T

�
C 1

sin

 
2�
�
t �AJ1

�
4�
T

�
sin
�
2�t
T

��
T

!
. (45)

As mentioned by Johns [5], the exact solutions w and u can be computed by the use of Equations
(22) and (23). However, it is impossible to explicitly write the exact solutions w and u. Therefore,
if an explicit formulation of w is needed, such as for developing a numerical technique [5], we can
take an approximation. We can take either the approximate solution (35) of Johns [5], our quadratic
approximation (40), or our second level recursive approximation (44). Of course, we can have more
accurate explicit approximations than the quadratic approximation (40) and the second level recur-
sive approximation (44) by extending the approximate solution (35) of Johns [5] using either the
formal expansion technique or fixed point iteration, but the formulations will be more complicated
to write. Indeed, our approximate solutions (40) and (44) are more accurate than the approximate
solution (35) of Johns [5].

4. COMPUTATIONAL EXPERIMENTS

In this section, we present the main results of computational experiments to achieve the goal of
this paper. Based on these numerical experiments, we see that in some cases the Johns approximate
solution (35) produces a large error.
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Johns [5] and Sidén and Lynch [6] applied the approximate prescription (35) to generate Carrier–
Greenspan periodic waves. We claim the following: The Johns prescription (35) is not always a
good approximation of the Carrier–Greenspan exact solution at x�D0, and applying that approxi-
mate prescription at the fixed boundary to generate periodic waves using a numerical method may
lead to a large error. A discrepancy between the Carrier–Greenspan exact solution and the Johns
approximate solution (prescription) at x�D 0 must exist because of the linearization of Equation
(22) to get Equation (37). To verify our claim, which is the goal of this paper, we investigate the
discrepancy in two test cases: The first shows that the Johns prescription (35) is successful, and the
second shows that the Johns prescription (35) fails to accurately approximate the Carrier–Greenspan
exact solution at x�D0. Note that, in this section, quantities are given in their dimensional values
and measured in SI units.

Furthermore, for each test case, we compare three numerical solutions with respect to the exact
solution in order to investigate the propagation of the prescription error. The first numerical solu-
tion is produced by a finite volume method (FVM) using the well-balanced scheme proposed by
Audusse et al. [13] and extended by Noelle et al. [14] with the approximate prescription (35) of
Johns [5] at x�D0. The second numerical solution is produced by the same method using the same
scheme but with the exact prescription (18) of Carrier and Greenspan at x�D0. The third numerical
solution is produced by the same method using the same scheme but with our proposed approximate
prescription (44) at x�D0.

In the finite volume method, here we use the best (among some other choices) numerical dis-
cretization given in our previous work [7]. That is, we choose a method based on the reconstruction
of stage w�, height h�, and velocity u�. We use the second order source, second order spatial
(except at the prescribed cell where a first order discretization is taken), and second order tem-
poral discretization. The minmod limiter is used for quantity reconstruction. We use the central
upwind formulation developed by Kurganov, Noelle, and Petrova [8] to compute the numerical
fluxes. The constant of gravitation is gD9.81. The minimum fluid height allowed in the flux com-
putation is h�minD10

�6. The uniform cell length is fixed and given by 	x�D100 (except for testing
the rate of convergence given in Section 5, in which we take various uniform cell lengths). The
Courant–Friedrichs–Lewy number applied is 1.0. The discrete L1 absolute error

E D
1

N

NX
iD1

jq.xi /�Qi j (46)

is used to quantify the numerical error, where N is the number of cells, q is the exact quantity func-
tion, xi is the centroid of the i th cell, andQi is the average value of quantity of the i th cell produced
by the numerical method.

The prescribed cell is the first cell containing x�D 0 as its centroid. To be consistent with the
work of Johns [5], at the first cell, if the linearized stage (35) of Johns is prescribed, we prescribe
Equation (36) for the velocity; if the exact stage (18) of Carrier and Greenspan is prescribed, we
take the exact velocity Equation (19) as the velocity prescription; and if the second level recursive
approximation (44) of the stage is prescribed, the prescription (45) for the velocity is taken.

The numerical prescription is done as follows. Suppose that the linearized stage (35) of Johns [5]
is prescribed (the prescription for Equations (18) and (44) are done similarly). Suppose that we are
given time t�. We compute the value Nw of the stage w�.t�/ and the value Nu of the velocity u�.t�/
at x�D 0 using the approximate prescriptions (35) and (36) of Johns [5]. Then we approximate
the stage w� and the velocity u� for each spatial point x� in the first cell using these values Nw
and Nu. This means that for this first cell, we take an approximation of the stage w� and that of the
velocity u� that are constants with respect to spatial variable x�. As a first order discretization of
the bed topography is taken, we have constant (with respect to spatial variable x�) approximations
for all quantities (stage w�, momentum p�, velocity u, height h�, and bed topography ´�) as our
reconstruction for this first cell.

4.1. First test case: the Johns prescription is successful

In this subsection, we present a test case where the Johns prescription (35) successfully approxi-
mates the Carrier–Greenspan exact solution at x�D 0. We consider a spatial domain given by the
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interval [�50, 55,050] discretized into 551 cells. The dimensional length L�D 50,000, dimensional
height h�0 D 500, and dimensional period T � D 900 are taken. Johns [5] took that at x� D 0 the
dimensional amplitude was ��D1.0, and we also take this value of �� in this test case. This setting
implies that the shoreline position at any time lies on the interval [49,590.88, 50,409.12]. In a half
of the period of oscillation, the shoreline travels a distance about 818.24.

When the Johns approximation (35), the quadratic approximation (40), and the second level
recursive approximation (44) are prescribed at position x�D 0 for time t� on the interval Œ0,T ��, dis-
crepancies between each of those approximations and the Carrier–Greenspan exact solution occur.
If we discretize the time interval Œ0,T �� into 1000 nodes, the average absolute discrepancy at x�D0
for stage w� and velocity u� are as given in Table I. Those discrepancies are very small, but obvi-
ously the quadratic approximation (40) and the second level recursive approximation (44) result in
much smaller discrepancies. The results for the quadratic approximation (40) and the results for the
second level recursive approximation (44) are about the same order.

Figure 2 illustrates the Carrier–Greenspan exact solution, the Johns approximate solution, and
the second level recursive approximation for stage w� and velocity u� at position x�D 0 for time
t� on the interval Œ0,T ��. The discrepancies, in this case, are seen as negligible. We do not graphi-
cally show the results for the quadratic approximation because they are similar to the results for the
second level recursive approximation.

Now, we investigate if the negligible discrepancy between the Carrier–Greenspan exact solution
and the Johns approximate solution at x�D0 leads to a negligible discrepancy of any flow quantity

Table I. Average absolute discrepancies (errors) E at x�D0 when the setting of the first test case is taken.
Here, the time interval Œ0,T �� is discretized into 1000 nodes. Subscripts w� and u� of E denote the average

absolute discrepancy for stage w� and velocity u�, respectively.

Stage w prescription at x�D0 Ew� Eu�

Johns approximation, Equation (35) 1.35 � 10�3 1.20 � 10�6

Quadratic approximation, Equation (40) 2.29 � 10�5 1.78 � 10�8

Second level recursive approximation, Equation (44) 2.28 � 10�5 2.39 � 10�8
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Figure 2. Prescriptions for w� and u� at x�D 0. Here, L�D 50,000, h�
0
D 500, ��D 1.0, and T �D 900.

‘C–G prescription’ stands for the Carrier–Greenspan exact prescription (18); ‘Johns prescription’ means the
Johns prescription (35); ‘w2 prescription’ means the prescription of w2 that is the second level recursive

approximation (44).
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when those solutions at x�D0 are prescribed in numerical simulations to generate periodic waves.
We compare here the performance of the Johns approximate solution (35) and that of the second
level recursive approximation (44). Starting from quiescent state, the numerical method generates
a periodic solution after four periods of oscillation. The error comparison is presented in Table II.
In general, the method with Carrier–Greenspan exact prescription results in smaller error. This is
because the prescription discrepancy at x�D0 propagates towards the shoreline as the time evolves,
and consequently the error produced by the numerical method with the approximate prescription
is larger than that produced by the numerical method with the exact prescription. However, we see
that the discrepancies of the errors produced using the Johns prescription and Carrier–Greenspan
exact prescription are small, as are the discrepancies of the errors produced using the second level
recursive approximation and Carrier–Greenspan exact prescription. Figure 3 shows the stage w�,
momentum p�, and velocity u� at time t�D14T �. A large error in terms of the velocity occurs
around the wet/dry interface: This is called the wet/dry interface or wetting and drying problem. It
should be stressed that this problem is caused by the inaccuracy of the numerical method that we
use at the wet/dry interface and does not relate to whether the prescription applied in the numerical
simulation is exact or approximate. Through more recent research, we are working on this wet/dry
interface problem to get a more accurate resolution. Some authors, such as Bollermann, Kurganov,
and Noelle [9], Briganti and Dodd [10], Brufau, Vázquez-Cendón, and García-Navarro [11], and
Gallardo, Parés, and Castro [12], have also attempted to resolve this wet/dry interface problem.

It is worth questioning why the discrepancy of the solutions at x�D0 in this test case is negligible.
This error is due to the small magnitude of the amplitude factor A in this test case. Recall that the
amplitude factor A is found from the process of linearization of an equation discussed in Subsec-
tion 3.4. The linear approximation matches exactly with the exact solution when AD0. In addition,
a small magnitude of A leads to a small error of the linear approximation; a larger magnitude of A
results in a larger error of the linear approximation.

Recalling the specified values of the dimensional lengthL�D50,000, dimensional height h�0D500,
and dimensional amplitude ��D1.0, we can plot a graph relating the dimensional period T � and the
amplitude factor A as given in Figure 4 using Equation (37). The vertical lines in the figure are the
asymptotes, which are the singularities of A, that is, the zeros of the denominator in Equation (37).
For T �D900, the amplitude factor is AD�8.18 � 10�3.

Table II. Errors E for various times. Here, L�D50,000, h�
0
D500, ��D1.0, and T �D900. Subscripts w�,

p�, and u� of E denote the error for stage w�, momentum p�, and velocity u�, respectively. Superscript
J of E denotes that the computation uses the Johns prescription, whereas superscript CG denotes that the
computation uses Carrier–Greenspan exact prescription, and superscript w2 denotes that the computation

uses our w2 approximate prescription.

Time .T �/ EJ
w�

ECG
w�

E
w2
w�

EJ
p�

ECG
p�

E
w2
p�

EJ
u�

ECG
u�

E
w2
u�

... ... ... ... ... ... ... ... ... ...
4 0.0130 0.0126 0.0127 0.686 0.679 0.679 0.0117 0.0114 0.0114
4C 1=3 0.0138 0.0138 0.0138 0.693 0.693 0.694 0.0092 0.0090 0.0091
4C 2=3 0.0161 0.0161 0.0161 0.500 0.480 0.481 0.0123 0.0122 0.0122
5 0.0119 0.0114 0.0114 0.643 0.636 0.636 0.0111 0.0109 0.0109
5C 1=3 0.0117 0.0117 0.0117 0.648 0.648 0.649 0.0066 0.0065 0.0065
5C 2=3 0.0119 0.0119 0.0119 0.393 0.376 0.376 0.0106 0.0106 0.0106
6 0.0076 0.0074 0.0074 0.413 0.409 0.409 0.0094 0.0092 0.0092
... ... ... ... ... ... ... ... ... ...
12 0.0072 0.0069 0.0070 0.244 0.246 0.246 0.0090 0.0088 0.0088
12C 1=3 0.0053 0.0051 0.0051 0.360 0.364 0.365 0.0057 0.0056 0.0055
12C 2=3 0.0084 0.0084 0.0084 0.220 0.226 0.226 0.0102 0.0103 0.0103
13 0.0072 0.0069 0.0070 0.245 0.246 0.246 0.0090 0.0088 0.0088
13C 1=3 0.0053 0.0051 0.0051 0.360 0.364 0.365 0.0057 0.0056 0.0055
13C 2=3 0.0084 0.0084 0.0084 0.220 0.225 0.226 0.0102 0.0103 0.0103
14 0.0072 0.0069 0.0070 0.245 0.246 0.246 0.0090 0.0088 0.0088
... ... ... ... ... ... ... ... ... ...
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Figure 3. Solutions forw�, p�, and u� at t�D14T �. Here, L�D50,000, h�
0
D500, ��D1.0, and T �D900.

‘Exact’ means the Carrier–Greenspan exact solution; ‘C–G FVM’ is the numerical solution by FVM with
the exact prescription (18); ‘Johns FVM’ is the numerical solution by FVM with the Johns prescription (35);
‘w2 FVM’ is the numerical solution by FVM with the prescription of w2 that is the second level recursive

approximation (44).
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Figure 4. Relation of the dimensional period T � and the amplitude factor A for L�D50,000, h0D500, and
��D1.0. The vertical lines are asymptotes.

Roughly speaking, using the specified values of the dimensional length L�, dimensional height
h�0 , and dimensional amplitude �� in this first test case, the Johns approximate solution (found by
involving a linearization of an equation) at x�D0 is accurate on some intervals of the dimensional
period T �, such as Œ800, 1000�, where all points in this interval are far enough from asymptotes.
This is illustrated in Figure 4 in which the tangent lines on the interval Œ800, 1000�, especially for
points around T �D900, are almost horizontal.

Using the same values of the dimensional length L�, dimensional height h�0 , and dimensional
amplitude �� but taking the dimensional period T �D1020, we find a larger discrepancy between the
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approximate and the exact solutions at x�D0, as shown in Figure 5. Now, we have AD�5.26�10�2.
When we discretize the time interval Œ0,T �� into 1000 nodes, the average absolute discrepancy at
x�D0 for stagew� and velocity u� are 5.65�10�2 and 1.30�10�4, respectively, for the Johns approx-
imate solution, and 3.16 � 10�3 and 6.83 � 10�6, respectively, for our second level approximation.
These discrepancies for the Johns approximate solution are still relatively small. Unfortunately, if
we take a larger value of T � closer to the asymptote lying on the interval Œ1000, 1200� to get a larger
value of A, the Jacobian @ .x, t / =@ .� ,�/ may vanish in �>0, that is, a breaking wave occurs. The
vanishing of the Jacobian @ .x, t / =@ .� ,�/ can be verified analytically from Equations (11), (15),
(16), and (17).

4.2. Second test case: the Johns prescription fails

In this subsection, we present a test case where the Johns prescription (35) fails to accurately approx-
imate the Carrier–Greenspan exact solution at x�D 0. We consider a spatial domain given by the
interval [�50, 65,050] discretized into 651 cells. The dimensional length L�D50,000, dimensional
height h�0D500, and dimensional period T �D3600 are taken. We fix ��D5.0 in this test case. We
consider these values in order to get a larger value of amplitude factor A than the value of A in the
first test case and that the Jacobian @ .x, t / =@ .� ,�/ does not vanish in �>0. Hence, the error of the
Johns prescription (35) in this test case is larger than that in the first test case.

The setting here implies that the shoreline position at any time lies on the interval [38,745.65,
61,254.35] since AD �2.25 � 10�1 and that no breaking wave occurs. In a half of the period of
oscillation, the shoreline travels a distance more than 22.5 �103. This distance is more than 27 times
the distance traveled by the shoreline in the first test case. Recalling the specified values of the
dimensional length L�, dimensional height h�0 , and dimensional amplitude ��, we plot the relation
between the dimensional period T � and the amplitude factor A in Figure 6.

When the Johns approximation (35), the quadratic approximation (40), and the second level
recursive approximation (44) are prescribed at position x�D0 for time t� on the interval Œ0,T ��, dis-
crepancies between each of those approximations and the Carrier–Greenspan exact solution occur.
Discretizing the time interval Œ0,T �� into 1000 nodes, we obtain that the average absolute discrep-
ancy at x� D 0 for stage w� and velocity u� are as given in Table III. We see that the quadratic
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Figure 5. Solutions for w� and u� at x�D 0. Here, L�D 50,000, h�
0
D 500, ��D 1.0, and T �D 1020.

‘C–G prescription’ stands for the Carrier–Greenspan exact prescription (18); ‘Johns prescription’ means the
Johns prescription (35); ‘w2 prescription’ means the prescription of w2 that is the second level recursive

approximation (44).
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Figure 6. Relation of the dimensional period T � and the amplitude factor A for L�D50,000, h0D500, and
��D5.0. The vertical lines are asymptotes.

Table III. Average absolute discrepancies (errors) E at x�D 0 when the setting of the second test case is
taken. Here the time interval Œ0,T �� is discretized into 1000 nodes. Subscripts w� and u� of E denote the

average absolute discrepancy for stage w� and velocity u�, respectively.

Stage w prescription at x�D0 Ew� Eu�

Johns approximation, Equation (35) 1.83 2.69 � 10�2

Quadratic approximation, Equation (40) 3.19 � 10�1 4.26 � 10�3

Second level recursive approximation, Equation (44) 2.88 � 10�1 3.85 � 10�3

approximation (40) and the second level recursive approximation (44) results in much smaller dis-
crepancies than the discrepancies that result from the Johns approximate solution (35). The results
for the quadratic approximation (40) and the results for the second level recursive approximation
(44) are again about the same order.

Figure 7 illustrates the Carrier–Greenspan exact solution, the Johns approximate solution, and the
second level recursive approximation for stage w� and velocity u� at position x�D 0 for time t�

on the interval Œ0,T ��. The discrepancies that result from the Johns approximate solution are now
large, whereas the discrepancies from the second level recursive approximation are much smaller.
We do not graphically show the results for the quadratic approximation because they are similar to
the results for the second level recursive approximation.

The method with the Johns prescription produces very large errors, as shown in Table IV. Large
errors can also be observed graphically for the stage w�, momentum p�, and velocity u� at time
t�D 14T �, as illustrated in Figure 8. A magnification of Figure 8, depicting the stage w� at cells
around the wet/dry interfaces on the interval [38,400, 39,400], is shown in Figure 9. Notice that
in Figure 9, the horizontal and the vertical distances from the wet/dry interface for the Carrier–
Greenspan exact solution to the wet/dry interface for the numerical solution generated using the
Johns prescription are about 500 and 5, respectively.

In this test case, the linearization of Equation (22) done by Johns [5] results in a poor approx-
imation of the exact solution at x� D 0. This poor approximation then leads to a very large error
when it is prescribed in place of the Carrier–Greenspan exact solution at x�D0 to generate periodic
waves in the numerical simulation. According to the simulation results, our second level recursive
approximation (44) indeed produces smaller errors than the Johns approximate solution (35).

5. RATE OF CONVERGENCE

In this section, we present the rate of convergence of the numerical solution to the analytical solution
using the exact boundary condition when the computational mesh is refined.
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Figure 7. Solutions for w� and u� at x� D 0. Here, L� D 50,000, h�
0
D 500, �� D 5.0, and T � D 3600.

‘C–G prescription’ stands for the Carrier–Greenspan exact prescription (18); ‘Johns prescription’ means
Johns prescription (35); ‘w2 prescription’ means the prescription of w2 that is the second level recursive

approximation (44).

Table IV. ErrorsE for various times. Here,L�D50,000, h�
0
D500, ��D5.0, and T �D3600. Subscriptsw�,

p�, and u� of E denote the error for stage w�, momentum p�, and velocity u�, respectively. Superscript
J of E denotes that the computation uses the Johns prescription, whereas superscript CG denotes that the
computation uses Carrier–Greenspan exact prescription, and superscript w2 denotes that the computation

uses our w2 approximate prescription.

Time .T �/ EJ
w�

ECG
w�

E
w2
w�

EJ
p�

ECG
p�

E
w2
p�

EJ
u�

ECG
u�

E
w2
u�

... ... ... ... ... ... ... ... ... ...
13 0.999 0.048 0.238 50.077 2.459 15.752 0.376 0.014 0.069
13C 1=6 1.083 0.065 0.262 46.711 0.902 5.305 0.459 0.009 0.090
13C 2=6 2.187 0.030 0.320 22.999 3.626 8.844 0.266 0.046 0.078
13C 3=6 0.841 0.041 0.240 47.976 3.038 15.831 0.373 0.017 0.071
13C 4=6 0.872 0.066 0.218 42.886 1.075 5.827 0.438 0.066 0.147
13C 5=6 2.124 0.044 0.276 29.172 3.411 8.404 0.288 0.139 0.147
14 1.001 0.048 0.237 50.230 2.433 15.712 0.377 0.014 0.069
... ... ... ... ... ... ... ... ... ...

We expect that the numerical method leads to a first order of convergence because we take a first
order discretization at the prescribed cell. Because of the wet/dry interface problem, the expected
rate of convergence is not achieved, as can be observed in Table V. However, if we truncate the
spatial domain in such a way that the computation does not involve the wet/dry interface problem,
the numerical method we use indeed results in a first order of convergence, as shown in Table VI.
This first order of convergence is observed because the errors produced by the numerical method
are halved as the cell length is halved.

The results in Tables V and VI are found from simulations using the setting of the first test
case given in Subsection 4.1. Recall that the shoreline position at any time lies on the interval
[49,590.88, 50,409.12]. Therefore, the truncated domains in Table VI obviously do not include the
moving boundary (shoreline). Consequently, all computations presented in Table VI do not involve
the wet/dry interface problem. Note that a simulation with truncated domain here means that we
prescribe the corresponding Carrier–Greenspan exact solution at cells located at both ends of the
truncated domain; in addition, the domain is taken such that the centroid of the first cell is at x� D 0.
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Figure 8. Solutions for w�, p�, and u� at t� D 14T �. Here, L� D 50,000, h�
0
D 500, �� D 5.0, and

T �D3600. ‘Exact’ means the Carrier–Greenspan exact solution; ‘C–G FVM’ is the numerical solution by
FVM with the exact prescription (18); ‘Johns FVM’ is the numerical solution by FVM with the Johns pre-
scription (35); ‘w2 FVM’ is the numerical solution by FVM with the prescription of w2 that is the second

level recursive approximation (44).
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Figure 9. A magnification of Figure 8 for w� on the interval [38,400, 39,400]. Here, t� D 14T �,
L� D 50,000, h�

0
D 500, �� D 5.0, and T � D 3600. ‘Exact’ means the Carrier–Greenspan exact solution;

‘C–G FVM’ is the numerical solution by FVM with the exact prescription; ‘Johns FVM’ is the numeri-
cal solution by FVM with the Johns prescription; ‘w2 FVM’ is the numerical solution by FVM with the

prescription of w2 that is the second level recursive approximation.

6. CONCLUSION

We have reviewed a special type of the Carrier–Greenspan solution, which can be used to test the
performance of a numerical method for the shallow water wave equations. A new formula for
the shoreline velocity has been derived. The new formula is very simple to use, as it involves no
derivatives in calculating the shoreline velocity. We have also proposed some new approximations
(a quadratic approximation and a second level recursive approximation) of the Carrier–Greenspan
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Table V. Errors E for various uniform cell lengths (	x) of spatial discretization. Here, L� D 50,000,
h�
0
D500, ��D1.0, and T �D900. Subscriptsw�, p�, and u� ofE denote the error for stagew�, momentum

p�, and velocity u�, respectively. Superscript CG ofE denotes that the computation uses Carrier–Greenspan
exact prescription. Domain means the interval of spatial domain to be considered and discretized. The errors

are computed at tD14T �.

Cell length Domain ECG
w�

in 10�3 ECG
p�

in 10�2 ECG
u�

in 10�4

200 [�100, 55,100] 23.84 88.19 254.05
100 [�50, 55,050] 6.95 24.64 88.12
50 [�25, 55,025] 2.13 13.19 35.25
25 [�12.5, 55,012.5] 1.36 9.36 8.42
12.5 [�6.25, 55,006.25] 1.26 7.24 6.23

Table VI. Errors E for various uniform cell lengths (	x) of spatial discretization. Here, L� D 50,000,
h�
0
D500, ��D1.0, and T �D900. Subscriptsw�, p�, and u� ofE denote the error for stagew�, momentum

p�, and velocity u�, respectively. Superscript CG ofE denotes that the computation uses Carrier–Greenspan
exact prescription. Domain means the interval of spatial domain to be considered and discretized. The errors

are computed at t D T �.

Cell length Domain ECG
w�

in 10�5 ECG
p�

in 10�2 ECG
u�

in 10�5

200 [�100, 10,100] 97.17 48.94 110.98
100 [�50, 10,050] 46.42 25.13 56.99
50 [�25, 10,025] 22.68 12.73 28.87
25 [�12.5, 10,012.5] 11.55 6.39 14.49
12.5 [�6.25, 10,006.25] 5.80 3.20 7.26

periodic solution, which are more accurate than the Johns approximate solution at the zero point of
the spatial domain. In addition, results of a finite volume method with the approximate prescriptions
applied at the fixed boundary to generate periodic waves on a sloping beach have been compared
with those of the same method with the Carrier–Greenspan exact prescription.

We have found that if the discrepancy between the approximate and the exact prescriptions is
negligible, the errors of both numerical solutions are similar. If the discrepancy is very large, the
error of the numerical solution with the approximate prescription is much larger than that of the
numerical solution with the exact prescription. This means that the prescription at the fixed bound-
ary significantly affects the error of the numerical solution. Therefore, we suggest that the exact,
instead of the approximate prescription, should be applied when the Carrier–Greenspan periodic
waves are used to assess the performance of a numerical method.

However, if an explicit formulation of the stage at the zero point of the spatial domain is needed,
such as for developing a numerical technique, an approximation of it can be taken. We can take
either the approximate solution of Johns, the quadratic approximation, the second level recursive
approximation, or another approximation as long as it is guaranteed that the error produced at the
zero point of the spatial domain is negligible.
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