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Abstract 

In time-invariant max-plus linear systems (IMLS), the activity times are real numbers. In time-invariant fuzzy max-
plus linear systems (IFMLSI), as there is uncertainty in the activity times, the activity times are modeled as fuzzy 
numbers. This article discusses a generalization of IMLSI to IFMLS, especially IFMLS with single input single out-
put (SISO), and input-output analysis of IFMLS-SISO. We show that input-output analysis IFMLS-SISO associated 
with the latest times input problem can be solved by using a solution of a system of fuzzy number max-plus linear 
equations.  
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Sistem Linier Max-Plus Samar yang Invarian terhadap Waktu 

Abstrak 

Dalam sistem linear max-plus waktu invarian (SLMI), waktu aktifitas berupa bilangan real. Dalam sistem linear 
max-plus kabur waktu invarian (SLMKI), ada ketidakpastian dalam waktu aktifitas, sehingga waktu aktifitas di-
modelkan sebagai bilangan kabur. Artikel ini membahas suatu generalisasi SLMI menjadi SLMKI, khususnya 
SLMKI dengan satu input dan satu output (SISO), dan analisis input-output SLMKI-SISO. Dapat ditunjukkan bahwa 
analisis input-output SLMKI-SISO yang berkaitan dengan masalah waktu input paling lambat, dapat diselesaikan 
dengan menggunakan suatu penyelesaian sistem persamaan linear max-plus kabur. 

Kata kunci: Sistem Linear, Max-Plus, Bilangan Kabur, Waktu-Invariant, Input-Output. 

1. Introduction 

In modeling and analyzing a network sometimes 
its activity time is not known, because, for example its 
phase design, data on time activity or distribution 
which are not fixed. The activity can be estimated 
based on the experience and opinions from experts and 
network operators. This network activity times are 
modeled using fuzzy number, and it is called fuzzy 
activity times (Chanas and Zielinski, 2001; Soltoni and 
Haji, 2007). 

Max-plus algebra, namely the set of all real 
numbers R with operations max and plus, has been 
used to model and analyze network problems 
algebraically, such as problem of project scheduling 
and queuing system, with a deterministic time activity 
(Chanas and Zielinski, 2001; Heidergott et al., 2005; 
Krivulin, 2001; Rudhito, 2003). Rudhito (2004), de 
Schutter (1996) have discussed a model of simple 
production system dynamics using max-plus algebra 
approach. In general, this model is a system of max-
plus linear time-invariant.  

Fuzzy number max-plus algebra is an extension 
of max-plus algebra, in which the elements are fuzzy 
numbers, (Rudhito et al., 2008; 2011a). Morever 
Rudhito et al. (2011b) studied matrices over fuzzy 

number max-plus algebra and systems of fuzzy 
number linear equations. 

In a manner analogous to Rudhito (2003) 
and de Schutter (1996), and taking into account the 
results on fuzzy numbers max-plus algebra, this 
paper will discuss the time-invariant fuzzy max-
plus linear system using fuzzy number max-plus 
algebra. 

2. Results and Discussion 

First, we review some definitions and basic 
concepts of max-plus algebra and matrices over 
max-plus algebra. For further details see (Chanas & 
Zielinski, 2001;  Rudhito, 2003). Let R : = R {} 
be the set of all real numbers and  : = . In R we 
define two operations as follow:  

for every a, b  R  ,  

a  b := max(a, b)  and  a  b : = a  b. 

We can show that (R, , ) is a 
commutative semiring whose neutral element  = 
 and  unity element  e = 0. Moreover, (R, , ) 
is a semifield, that is (R, , ) is a commutative 
semiring, where for every a  R there exists a 
such that a  (a)  = 0.  We call (R, , ) a max-
plus algebra, and write it as Rmax. The max-plus 
algebra R max has no zero divisors, that is for every 
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x, y  R , if x  y = ,  then x =   or y = . The 

relation “ m ” as x m  y iff x  y = y. The max-plus 

algebra Rmax can be partially ordered by introducing a 
partial order relation. Operations  and  are 
consistent with respect to the order m , that is, for 

every a, b, c  Rmax, if a m b, then a  c m  b  c, 

and a  c m  b  c. We define 
0x := 0 , 

k
x := x  

1k
x  and 

k : = ,  for all k = 1, 2, ... .  
The operations  and  in Rmax can be 

extended to matrix operations in nm
maxR , where nm

maxR : 

=  {A = (Aij)Aij  Rmax, for i = 1, 2, ..., m and j = 1, 2, 
..., n} is the set of all m-by-n matrices over max-plus 

algebra.  Specifically, for A, B  nn
maxR   and    Rmax 

we define  

(  A)ij =   Aij , (A  B)ij = Aij  Bij  

and  (A  B)ij = kjik

n

k

BA 
1

. 

For any matrix A nn
maxR , one can define  

0A  = En  where (E)ij :=







ji

ji

 where

 where0


  

and  
k

A =   A  
1k

A  for   k = 1, 2, ... .  

The relation “ m ” is defined on nm
maxR  as A 

m B iff A  B = B. It is a partial order in nm
maxR . In  

( nn
maxR , , ), operations  and   are consistent with 

respect to the order m , that is for every A, B, C  

nn
maxR , if  A m B , then   A  C m B  C and A 

 C m  B  C . 

We also review some definitions and some 
basic concepts of interval max-plus algebra, matrices 
over interval max-plus algebra. Further details can be 
found in Rudhito et al. (2011a) and de Schutter (1996). 
The (closed) interval x in Rmax is a subset of Rmax of the 

form x = [ x , x ] = {x  Rmax  x m  x m x }. The 

interval x in Rmax is called max-plus interval or shortly 

interval. Define I(R) := {x = [ x , x ]  x , x   R ,  

m  x  m x }  {  }, where  := [,  ]. In I(R) we 

can define two operations   and   where  

x   y = [ x  y , x y ] 

and  

x   y = [ x y , x y ]  

for every x, y  I(R). The algebraic structure  
(I(R), ,  ) is a commutative semiring with neutral 

element  = [, ] and unity element 0 = [0, 0]. This 
commutative semiring (I(R),  ,  ) is called the 
interval max-plus algebra and is  written as I(R)max. 

Relation “ Im ”defined on I(R)max as x Im y  x 

  y = y, and it is a partial order on I(R)max. Notice 

that  x   y = y  x m y  and  x m y . 

Define I(R) nm
max  := {A = (Aij)Aij  I(R)max, 

for i = 1, 2, ..., m and  j = 1, 2, ..., n}. The elements 

of I(R) nm
max  are called  matrices over interval max-

plus algebra or shortly interval matrices. The 
operations   and   in I(R)max can be extended to 

matrix operations on I(R) nm
max . Specifically, for A, 

B  I(R) nn
max  and   I(R)max we define ( A)ij = 

  Aij, (A  B)ij = Aij   Bij  and  (A  B)ij = 

kjik

n

k

BA
1




. 

Relation “ Im ” defined on I(R) nm
max  with A 

Im B  A  B = B is a partial order. Notice that 

A   B = B   Aij   Bij = Bij  Aij Im  Bij  

ijA m ijB  and ijA  m ijB  for every i and j. 

In further discussion, we assume that the 
reader knows about some basic concepts in fuzzy 
set and fuzzy number. For further details see Lee 
(2005) and Zimmermann (1991). Firstly, we will 
review a theorem in the fuzzy set that we will use 
later on. 

Theorem 2.1 (Decomposition Theorem, 

Zimmermann, 1991) If A is a -cut of fuzzy set A
~

 

in X and A
~

is a fuzzy set in X with membership 

function )()(~ xx
AA    , where αA

χ is the 

charateristic function of set A, then 
1][0,

~~






AA .  

Proof: (Zimmermann, 1991). 
Definition 2.2 (Rudhito et al., 2011b). Let 

F(R) ε~ := F(R)  { ε~ }, where F(R) is the set of all 

fuzzy numbers and ε~  : = {}, with the -cut of 

ε~ is   = [,] for every   [0, 1]. We define 

two operations ~ and ~ as follows : for every 

a~ , b
~
 F(R) ε~  with a = [

αa , αa ]  I(R)max and 

b = [
αb , αb ] I(R)max,  

i) Maximum of a~  and b
~

, written ba
~~~ , is a 

fuzzy number whose -cut is the interval [ a  
b , a  b ] for every   [0, 1] 
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ii) Addition of a~  and b
~

, written a~ ~ b
~

, is a fuzzy 

number whose -cut is interval [ a  
b , a  

b ] for every   [0, 1]. 
 

We can show that -cut in this definition 
satisfies the conditions of -cut of a fuzzy number. The 

commutative semiring F(R)max := ((F(R) ~ , ~ , ~ ) is 

called fuzzy number max-plus algebra, and is written  

as F(R)max . Relation “ Fm ” defined on F(R)max as 

x~ Fm y~   x~  ~  y~  = y~  is a partial order in 

F(R)max. Notice that x~  ~  y~  = y~   x    y  = y  

  x 
Im  y     x m

y and x m
y  for 

every    [0, 1]. 
Definition 2.3 (Rudhito et al., 2011a) Define 

F(R) nm
max := { A

~
= ( A

~
ij) A

~
ij  F(R)max,  for i = 1, 2, 

..., m  and  j = 1, 2, ..., n }.  The elements of 
F(R) nm 

max are called matrices over fuzzy number max-

plus algebra.  
These matrices are also called fuzzy number 

matrix. The operations ~  and ~  in F(R)max can be 
extended to the operations of  fuzzy number matrices 

in (F(R) nm
max . Specifically, for the matrices A

~
, B

~
  

F(R) nn
max , we define  

ijijij BABA
~~~

)
~~~

(   

and  

kjik

n

k

ij BABA
~~

)
~~~

( ~
1

 


. 

For every A
~

  F(R) nm
max  and for some number   [0, 

1] define a -cut matrix of A
~

 as the interval matrix A 

= ( 
ijA ) , with 

ijA is the -cut of A
~

ij for every i and j. 

Matrices A  = ( 
ijA )  nm

maxR  and A = ( 
ijA )  

nm
maxR  are called lower bound and upper bound of 

matrix A, respectively.  We conclude that the matrices 

A
~

, B
~

  F(R) nm 
max are equal iff A  = B, that is 

ijA  = 


ijB  for every   [0, 1] and for every i and j. For 

every fuzzy number matrix A
~

, A = [
A , A ]. Let 

~   F(R)max, A
~

, B
~

   F(R) nm 
max . We can show that 

(  A)  = [   A ,   A ] and  (A  B) = 

[ A  B ,  A  B ] for every   [0, 1]. Let A
~

 

 F(R) pm 
max , B

~
  F(R) np

max . We can show that (A  

B) = [ A  B ,  A  B ] for every   [0, 1]. 

Relation “ Fm ”defined on F(R) nm 
max  with A

~
 

Fm B
~

  A
~

 ~  B
~

 = B
~

 is a partial order. No-

tice that A
~

 ~ B
~

 = B
~

  A
~

ij 
~

B
~

ij = B
~

ij  

A
ij   B

ij = B
ij   A

ij Im B
ij  

ijA
m ijB  and ijA  m ijB  for every  

  [0, 1] and for every i and j. Define F(R) n
max := { 

x~  = [ 1x~ , 2x~ , ... , nx~ ]T | ix~  F(R)max , i = 1, 2, ... 

, n}. The elements in F(R) n
max are called fuzzy 

number vectors over F(R)max or shortly fuzzy num-
ber vectors. 
Definition 2.4 (Rudhito et al., 2011b) Given  

A
~

  F(R) nn
max  and b

~
 F(R) n

max . A fuzzy number 

vector x~ *  F(R) n
max is called fuzzy number solu-

tion of system A
~

~

x~ = b
~

 if x~ * satisfies the  sys-

tem. A fuzzy number vector x~  F(R) n
max  is 

called fuzzy number subsolution of system 

A
~
~ x~ = b

~
 if A

~
~ x~ Fm b

~
.   

Definition 2.5 (Rudhito et al., 2011b) Given  

A
~

  F(R) nn
max  and b

~
  F(R) n

max . A fuzzy number 

vector x̂~   F(R) n
max  is called greatest fuzzy 

number subsolution of system A
~
~ x~  = b

~
 if 

x~ Fm x̂~  for every fuzzy number subsolution x~  

of the system A
~ ~ x~ = b

~
.  

Definition 2.6 (Rudhito et al., 2011) Given  

A
~

  F(R) nn
max  with the entries of each column are 

not all  equal to ε~  and b
~
 F(R) n

max . Defined a 

fuzzy number vector x
~  whose components are ix

~ , 

that is a fuzzy number with the -cut is 
ix


= 

[ 
ix


, 
ix


]. The bounds of 
ix


are defined recur-

sively as follows. Let  

ix̂ = min{(( A )T  ( b ))i, (( A )T  

 b ))i} and 
ix̂ = (( A )T   b ))i , follows 


ix
 = 

,
 }ˆ{minˆ if,,]1,0[,,

ˆˆ if,ˆ

ˆˆ if,ˆ

ˆ}ˆ{min if                                                   ,}ˆ{min

[0,1]
m

m

m

m
[0,1][0,1]







































 ii
iii

iii

iii

xx
xxx

xxx

xxx








ix
 = βαβα

x̂x̂,x̂

x̂x̂,x̂
α
i

β
i

α
i

α
i

β
i

β
i    with 1][0, , , 

 if 

 if 

m

m 







 . 
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We can show that the -cut family of the 

components of the fuzzy number vector x
~  as in 

Definition 2.6 is really an -cut family of a fuzzy 
number. The following theorem gives an existence of 
the greatest fuzzy number subsolution of the system 

A
~ ~ x~ = b

~
.  

Theorem 2.7 (Rudhito et al., 2011b) Given  

A
~

  F(R) nn
max  with the entries of each column are not 

all equal to ε~  and b
~
 F(R) n

max . Fuzzy number vec-

tor x
~  which components are defined in Definition 2.7 

is the greatest fuzzy number subsolution of system 

A
~ ~ x~ = b

~
. 

Proof : See Rudhito et al. (2011b). 
Next we will discuss time invariant fuzzy max-

plus linear systems (IFMLS) with single input single 
output (SISO). 

Definition 2.8 (IFMLS-SISO ))ˆ,
~

,
~

,
~

( 0xCBA . A time-

invariant fuzzy max-plus linear system with single in-
put single output is a discrete even system which can 
be written as follows 

x~ (k+1) = A
~

 ~  x~ (k) ~  B
~

 ~ u~ (k+1)  

y~ (k) = C
~

 ~ x~  (k) 

for k = 1, 2, 3,  ... , with initial condition x~ (0) = 0x~ ,  

A
~

  F(R) nn
max , B

~
  F(R) n

max  and C
~
 F(R) n1

max . 

Fuzzy number vector x~  (k)  F(R) n
max represents the 

state,  u~ (k)  F(R) max  is the input fuzzy sclar and 

y~ (k)  F(R) max  is the output fuzzy scalar of system 

for the k-th time. 
If the initial condition and the input sequences 

are given for these systems, we can determine 
recursively the output sequence of the system. The 
general form of the input-output for the system is given 
in the following theorem. 
Theorem 2.9 (Input-Output IFMLS-SISO 

( A
~

, B
~

, C
~

, 0
~x )) Given a positive integer p. If u~  = 

[ u~ (1), u~ (2), ... ,  u~ (p)]T and y~ = [ y~ (1), y~ (2), ... ,  

y~ (p)]T are fuzzy vector of input sequences and the 

fuzzy vector of output sequences, respectively, for 

FMLSI-SISO( A
~

, B
~

, C
~

, 0x~ ), then 

y~  = K
~

~

0
~x  ~  H

~

~

u~  

with  

K
~

 = 































p
AC

AC

AC

~

2~

~~~

~~~

~~~


 and   




























 BCBACBAC

εBCBAC

εεBC

H

pp ~~~~~~~~~~~~~

~~~~~~~~~
~~~~~

~

2~1~






 

Proof: Using mathematical induction we can show 
that  

x~ (k) = (
k

A
~~ ~  0x~ ) ~  ( 



~
1

k

i

 (
ik

A


~~ ~  B
~

 ~  

u~ (i) ) for k = 1, 2, 3, ... . 

Hence y~  (k) = ( C
~


~ k~

A
~ ~  0

~x )  ~   

(


~
1

k

i

C
~ ~

ik~
A
~  

~
B
~

 
~

 u~ (i) ), and then 



















)(~

(2)~
(1)~

py

y

y


=































p
AC

AC

AC

~

2~

~~~

~~~

~~~


~  0x~ ~  


























 BCBACBAC

εBCBAC

εεBC

pp ~~~~~~~~~~~~~

~~~~~~~~~
~~~~~

2~1~







~



















)(~

(2)~
(1)~

pu

u

u


. ■ 

 
Let p be a positive integer, p, u~  = [ u~ (1), 

u~ (2),... , u~ (p)]T and y~ = [ y~ (1), y~ (2), ... ,  

y~ (p)]T are fuzzy vector of input sequences and 

fuzzy vector of output sequences, respectively. We 
will determine the vector of the latest times input 
(the greatest fuzzy input vector u~ ) such that 

K
~ ~ 0x~  ~  H

~

~

u~ Fm y~ , with K
~

 and H
~

 are 

given by Theorem 2.9. 

Theorem 2.10 Given a IFMLS-SISO ( A
~

, B
~

, 

C
~

, 0
~x ) with C

~

~

B
~

  ~ , where      ( ~ )ij := ε~  

for every i and j. If K
~

 ~  0
~x  Fm  y~ , then solu-

tion of the latest times input problem for the system 

is given by u
~  whose components are iu~ , i.e. it is a 

fuzzy number with the -cut is α
iu


= [ 
iu


, H ]. 

The bounds of α
iu


are defined recursively as fol-

lows. Let  
α
iû = min{(( H )T  ( y ))i, (( H )T 

  y ))i} and 
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α
iû = (( H )T   y ))i , 
α
iu


= 

,
 }ˆ{minˆ if,]1,0[,,

ˆˆ if,ˆ

ˆˆ if,ˆ

ˆ}ˆ{min if                                         },ˆ{min

[0,1]
m

m

m

m
[0,1][0,1]







































 ii
iii

iii

iii

uu
uuu

uuu

uuu







α
iu


= βαβα
ûû,û

ûû,û
α
i

β
i

α
i

α
i

β
i

β
i    with 1][0, , , 

 if 

 if 

m

m 







 . 

 

Proof: Since K
~

~

0
~x  Fm  y~ , then K

~

~

0x~  
~

 

H
~

~

u~  = y~   H
~

~

u~  = y~ . Hence, the latest times 

input problem for FMLSI-SISO ( A
~

, B
~

, C
~

, 0
~x ) be-

come the problem of determining the greatest fuzzy 

input vector u~  such that H
~

 
~

 u~  Fm  y~ , that is to 

find the greatest fuzzy number subsolution of system 

H
~

~

u~  = y~ . Since C
~

~

 B
~

  ~ , then the entries of 

each column H
~

are not all  equal to ~ .  According to 
the Theorem 2.7, the greatest fuzzy number subsolu-

tion of system H
~


~

u~  = y~  is given by u
~  whose 

components are iu
~ as given by Theorem 2.10 above.  ■ 
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