SEAMS - GMU 2011 International Conference on Mathematics and Its Applications

Proceedings of the $6^{\text {I" }}$ SEAMS-GMU International Conference on Mathematics and Its Applications Yogyakarta - Indonesia, $12^{\text {mi }}$ - $15^{\text {t"July }} 2011$

MATHEMATICS AND ITS APPLICATIONS INTHE

 DEVELOPMENT OF SCIENCES AND TECHNOLOGY
PROCEEDINGS OF THE $6^{\text {TH }}$ SOUTHEAST ASIAN MATHEMATICAL SOCIETY GADJAH MADA UNIVERSITY INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2011

Yogyakarta, Indonesia, $12^{\text {th }}-15^{\text {th }}$ July 2011

DEPARTMENT OF MATHEMATICS
FACULTY OF MATHEMATICS AND NATURAL SCIENCES
UNIVERSITAS GADJAH MADA
YOGYAKARTA, INDONESIA
2012

Published by

Department of Mathematics
Faculty of Mathematics and Natural Sciences
Universitas Gadjah Mada
Sekip Utara, Yogyakarta, Indonesia
Telp. +62 (274) 7104933, 552243
Fax. +62 (274) 555131

PROCEEDINGS OF

THE $6^{\text {TH }}$ SOUTHEAST ASIAN MATHEMATICAL SOCIETY-GADJAH MADA UNIVERSITY INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2011
Copyright @ 2012 by Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia

ISBN 978-979-17979-3-1

PROCEEDINGS OF THE $6^{\text {TH }}$ SOUTHEAST ASIAN MATHEMATICAL SOCIETY-GADJAH MADA UNIVERSITY INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2011

Chief Editor:

Sri Wahyuni

Managing Editor :

Indah Emilia Wijayanti Dedi Rosadi

Managing Team :

Ch. Rini Indrati	Irwan Endrayanto A.
Herni Utami	Dewi Kartika Sari
Nur Khusnussa'adah	Indarsih
Noorma Yulia Megawati	Rianti Siswi Utami
	Hadrian Andradi

Supporting Team :

Parjilan	Warjinah
Siti Aisyah	Emiliana Sunaryani Yuniastuti
Susiana	Karyati
Tutik Kristiastuti	Sudarmanto
Tri Wiyanto	Wira Kurniawan
Sukir Widodo	Sumardi

EDITORIAL BOARDS

Algebra, Graph and Combinatorics

Budi Surodjo
Ari Suparwanto

Analysis

Supama
Atok Zulijanto

Applied Mathematics

Fajar Adi Kusumo
Salmah

Computer Science

Edi Winarko
MHD. Reza M.I. Pulungan

Statistics and Finance

Subanar
Abdurakhman

LIST OF REVIEWERS

Abdurakhman
Universitas Gadjah Mada, Indonesia
Achmad Muchlis
Institut Teknologi Bandung, Indonesia
Adhitya Ronnie Effendi
Universitas Gadjah Mada, Indonesia
Agus Buwono
Institut Pertanian Bogor, Indonesia
Agus Maman Abadi
Universitas Negeri Yogyakarta, Indonesia
Agus Yodi Gunawan
Institut Teknologi Bandung, Indonesia
Ari Suparwanto
Universitas Gadjah Mada, Indonesia
Asep. K. Supriatna
Universitas Padjadjaran, Indonesia
Atok Zulijanto
Universitas Gadjah Mada, Indonesia
Azhari SN
Universitas Gadjah Mada, Indonesia
Budi Nurani
Universitas Padjadjaran, Indonesia
Budi Santosa
Institut Teknologi Sepuluh Nopember, Indonesia
Budi Surodjo
Universitas Gadjah Mada, Indonesia
Cecilia Esti Nugraheni
Universitas Katolik Parahyangan, Indonesia
Ch. Rini Indrati
Universitas Gadjah Mada, Indonesia
Chan Basarrudin
Universitas Indonesia
Danardono
Universitas Gadjah Mada, Indonesia
Dedi Rosadi
Universitas Gadjah Mada, Indonesia

Insap Santosa
Universitas Gadjah Mada, Indonesia Intan Muchtadi-Alamsyah Institut Teknologi Bandung, Indonesia Irawati

Institut Teknologi Bandung, Indonesia Irwan Endrayanto A. Universitas Gadjah Mada, Indonesia Jailani Universitas Negeri Yogyakarta, Indonesia Janson Naiborhu Institut Teknologi Bandung, Indonesia Joko Lianto Buliali Institut Teknologi Sepuluh Nopember, Indonesia
Khreshna Imaduddin Ahmad S.
Institut Teknologi Bandung, Indonesia
Kiki Ariyanti Sugeng
Universitas Indonesia
Lina Aryati
Universitas Gadjah Mada, Indonesia
M. Farchani Rosyid

Universitas Gadjah Mada, Indonesia
Mardiyana
Universitas Negeri Surakarta, Indonesia
MHD. Reza M. I. Pulungan
Universitas Gadjah Mada, Indonesia
Miswanto
Universitas Airlangga, Indonesia
Netty Hernawati
Universitas Lampung, Indonesia
Noor Akhmad Setiawan
Universitas Gadjah Mada, Indonesia
Nuning Nuraini
Institut Teknologi Bandung, Indonesia
Rieske Hadianti
Institut Teknologi Bandung, Indonesia

Deni Saepudin
Institut Teknologi Telkom, Indonesia
Diah Chaerani
Universitas Padjadjaran, Indonesia
Edy Soewono
Institut Teknologi Bandung, Indonesia

Edy Tri Baskoro
Institut Teknologi Bandung, Indonesia
Edi Winarko
Universitas Gadjah Mada, Indonesia
Endar H Nugrahani
Institut Pertanian Bogor, Indonesia
Endra Joelianto
Institut Teknologi Bandung, Indonesia
Eridani
Universitas Airlangga, Indonesia
Fajar Adi Kusumo
Universitas Gadjah Mada, Indonesia
Frans Susilo
Universitas Sanata Dharma, Indonesia
Gunardi
Universitas Gadjah Mada, Indonesia
Hani Garminia
Institut Teknologi Bandung, Indonesia Hartono

Universitas Negeri Yogyakarta, Indonesia
Hengki Tasman
Universitas Indonesia
I Wayan Mangku
Institut Pertanian Bogor, Indonesia
Indah Emilia Wijayanti
Universitas Gadjah Mada, Indonesia

Roberd Saragih
Institut Teknologi Bandung, Indonesia
Salmah
Universitas Gadjah Mada, Indonesia
Siti Fatimah
Universitas Pendidikan Indonesia

Soeparna Darmawijaya
Universitas Gadjah Mada, Indonesia
Sri Haryatmi
Universitas Gadjah Mada, Indonesia
Sri Wahyuni
Universitas Gadjah Mada, Indonesia
Subanar
Universitas Gadjah Mada, Indonesia
Supama
Universitas Gadjah Mada, Indonesia
Suryanto
Universitas Negeri Yogyakarta, Indonesia
Suyono
Universitas Negeri Jakarta, Indonesia
Tony Bahtiar
Institut Pertanian Bogor, Indonesia
Wayan Somayasa
Universitas Haluoleo, Indonesia
Widodo Priyodiprojo
Universitas Gadjah Mada, Indonesia
Wono Setyo Budhi
Institut Teknologi Bandung, Indonesia
Yudi Soeharyadi
Institut Teknologi Bandung, Indonesia

PREFACE

It is an honor and great pleasure for the Department of Mathematics Universitas Gadjah Mada, Yogyakarta - INDONESIA, to be entrusted by the Southeast Asian Mathematical Society (SEAMS) to organize an international conference every four years. Appreciation goes to those who have developed and established this tradition of the successful series of conferences. The SEAMS Gadjah Mada University (SEAMS-GMU) 2011 International Conference on Mathematics and Its Applications took place in the Faculty of Mathematics and Natural Sciences of Universitas Gadjah Mada on July $12^{\text {th }}-15^{\text {th }}$, 2011. The conference was the follow up of the successful series of events which have been held in 1989, 1995, 1999, 2003 and 2007.

The conference has achieved its main purposes of promoting the exchange of ideas and presentation of recent development, particularly in the areas of pure, applied, and computational mathematics which are represented in Southeast Asian Countries. The conference has also provided a forum of researchers, developers, and practitioners to exchange ideas and to discuss future direction of research. Moreover, it has enhanced collaboration between researchers from countries in the region and those from outside.

More than 250 participants from over the world attended the conference. They come from USA, Austria, The Netherlands, Australia, Russia, South Africa, Taiwan, Iran, Singapore, The Philippines, Thailand, Malaysia, India, Pakistan, Mongolia, Saudi Arabia, Nigeria, Mexico and Indonesia. During the four days conference, there were 16 plenary lectures and 217 contributed short communication papers. The plenary lectures were delivered by Halina FranceJackson (South Africa), Jawad Y. Abuihlail (Saudi Arabia), Andreas Rauber (Austria), Svetlana Borovkova (The Netherlands), Murk J. Bottema (Australia), Ang Keng Cheng (Singapore), Peter Filzmoser (Austria), Sergey Kryzhevich (Russia), Intan MuchtadiAlamsyah (Indonesia), Reza Pulungan (Indonesia), Salmah (Indonesia), Yudi Soeharyadi (Indonesia), Subanar (Indonesia) Supama (Indonesia), Asep K. Supriatna (Indonesia) and Indah Emilia Wijayanti (Indonesia). Most of the contributed papers were delivered by mathematicians from Asia.

We would like to sincerely thank all plenary and invited speakers who warmly accepted our invitation to come to the Conference and the paper contributors for their overwhelming response to our call for short presentations. Moreover, we are very grateful for the financial assistance and support that we received from Universitas Gadjah Mada, the Faculty of Mathematics and Natural Sciences, the Department of Mathematics, the Southeast Asian Mathematical Society, and UNESCO.

We would like also to extend our appreciation and deepest gratitude to all invited speakers, all participants, and referees for the wonderful cooperation, the great coordination, and the fascinating efforts. Appreciation and special thanks are addressed to our colleagues and staffs who help in editing process. Finally, we acknowledge and express our thanks to all friends, colleagues, and staffs of the Department of Mathematics UGM for their help and support in the preparation during the conference.

The Editors
October, 2012

CONTENTS

Title i
Publisher and Copyright ii
Managerial Boards iii
Editorial Boards iv
List of Reviewers v
Preface vii
Paper of Invited Speakers
On Things You Can't Find : Retrievability Measures and What to do with Them 1
Andreas Rauber and Shariq Bashir
A Quasi-Stochastic Diffusion-Reaction Dynamic Model for Tumour Growth 9
Ang Keng Cheng
*-Rings in Radical Theory 19H. France-Jackson
Clean Rings and Clean Modules 29
Indah Emilia Wijayanti
Research on Nakayama Algebras 41
Intan Muchtadi-Alamsyah
Mathematics in Medical Image Analysis: A Focus on Mammography 51
Murk J. Bottema, Mariusz Bajger, Kenny MA, Simon Williams
The Order of Phase-Type Distributions 65
Reza Pulungan
The Linear Quadratic Optimal Regulator Problem of Dynamic Game for Descriptor System.. 79 Salmah
Chaotic Dynamics and Bifurcations in Impact Systems 89
Sergey Kryzhevich
Contribution of Fuzzy Systems for Time Series Analysis 121
Subanar and Agus Maman Abadi

Contributed Papers

Algebra

Degenerations for Finite Dimensional Representations of Quivers 137
Darmajid and Intan Muchtadi-Alamsyah
On Sets Related to Clones of Quasilinear Operations 145
Denecke, K. and Susanti, Y.
Normalized \mathcal{H}_{∞} Coprime Factorization for Infinite-Dimensional Systems 159
Fatmawati, Roberd Saragih, Yudi Soeharyadi
Construction of a Complete Heyting Algebra for Any Lattice 169
Harina O.L. Monim, Indah Emilia Wijayanti, Sri Wahyuni
The Fuzzy Regularity of Bilinear Form Semigroups 175
Karyati, Sri Wahyuni, Budi Surodjo, Setiadji
The Cuntz-Krieger Uniqueness Theorem of Leavitt Path Algebras 183
Khurul Wardati, Indah Emilia Wijayanti, Sri Wahyuni
Application of Fuzzy Number Max-Plus Algebra to Closed Serial Queuing Network with Fuzzy Activitiy Time 193
M. Andy Rudhito, Sri Wahyuni, Ari Suparwanto, F. Susilo
Enumerating of Star-Magic Coverings and Critical Sets on Complete Bipartite Graphs 205
M. Roswitha, E. T. Baskoro, H. Assiyatun, T. S. Martini, N. A. Sudibyo
Construction of Rate $s / 2 s$ Convolutional Codes with Large Free Distance via Linear System Approach 213
Ricky Aditya and Ari Suparwanto
Characteristics of IBN, Rank Condition, and Stably Finite Rings 223
Samsul Arifin and Indah Emilia Wijayanti
The Eccentric Digraph of $P_{n} \times P_{m}$ Graph 233Sri Kuntarti and Tri Atmojo Kusmayadi
On \mathcal{M}-Linearly Independent Modules 241
Suprapto, Sri Wahyuni, Indah Emilia Wijayanti, Irawati
The Existence of Moore Penrose Inverse in Rings with Involution 249
Titi Udjiani SRRM, Sri Wahyuni, Budi Surodjo

Analysis

An Application of Zero Index to Sequences of Baire-1 Functions 259
Atok Zulijanto
Regulated Functions in the n-Dimensional Space 267
Ch. Rini Indrati
Compactness Space Which is Induced by Symmetric Gauge 275
Dewi Kartika Sari and Ch. Rini Indrati
A Continuous Linear Representation of a Topological Quotient Group 281Diah Junia Eksi Palupi, Soeparna Darmawijaya, Setiadji, Ch. Rini Indrati
On Necessary and Sufficient Conditions for ℓ_{ϕ}^{L} into ℓ_{1} Superposition Operator 289Elvina Herawaty, Supama, Indah Emilia Wijayanti
A DRBEM for Steady Infiltration from Periodic Flat Channels with Root Water Uptake 297
Imam Solekhudin and Keng-Cheng Ang
Boundedness of the Bimaximal Operator and Bifractional Integral Operators in Generalized Morrey Spaces 309
Wono Setya Budhi and Janny Lindiarni
Applied Mathematics
A Lepskij-Type Stopping-Rule for Simplified Iteratively Regularized Gauss-Newton Method.. 317
Agah D. Garnadi
Asymptotically Autonomous Subsystems Applied to the Analysis of a Two-Predator One- Prey Population Model 323
Alexis Erich S. Almocera, Lorna S. Almocera, Polly W.Sy
Sequence Analysis of DNA H1N1 Virus Using Super Pair Wise Alignment 331
Alfi Yusrotis Zakiyyah, M. Isa Irawan, Maya Shovitri
Optimization Problem in Inverted Pendulum System with Oblique Track 339
Bambang Edisusanto, Toni Bakhtiar, Ali Kusnanto
Existence of Traveling Wave Solutions for Time-Delayed Lattice Reaction-Diffusion Systems 347
Cheng-Hsiung Hsu, Jian-Jhong Lin, Ting-Hui Yang
Effect of Rainfall and Global Radiation on Oil Palm Yield in Two Contrasted Regions of Sumatera, Riau and Lampung, Using Transfer Function 365
Divo D. Silalahi, J.P. Caliman, Yong Yit Yuan
Continuously Translated Framelet 379
Dylmoon Hidayat
Multilane Kinetic Model of Vehicular Traffic System 386
Endar H. Nugrahani
Analysis of a Higher Dimensional Singularly Perturbed Conservative System: the Basic Properties 395
Fajar Adi Kusumo
A Mathematical Model of Periodic Maintence Policy based on the Number of Failures for Two-Dimensional Warranted Product 403
Hennie Husniah, Udjianna S. Pasaribu, A.H. Halim
The Existence of Periodic Solution on STN Neuron Model in Basal Ganglia 413
I Made Eka Dwipayana
Optimum Locations of Multi-Providers Joint Base Station by Using Set-Covering Integer Programming: Modeling \& Simulation 419
I Wayan Suletra, Widodo, Subanar
Expected Value Approach for Solving Multi-Objective Linear Programming with Fuzzy Random Parameters 427
Indarsih, Widodo, Ch. Rini Indrati
Chaotic S-Box with Piecewise Linear Chaotic Map (PLCM) 435
Jenny Irna Eva Sari and Bety Hayat Susanti
Model of Predator-Prey with Infected Prey in Toxic Environment 449
Lina Aryati and Zenith Purisha
On the Mechanical Systems with Nonholonomic Constraints: The Motion of a Snakeboard on a Spherical Arena 459
Muharani Asnal and Muhammad Farchani Rosyid
Safety Analysis of Timed Automata Hybrid Systems with SOS for Complex Eigenvalues 471
Noorma Yulia Megawati, Salmah, Indah Emilia Wijayanti
Global Asymptotic Stability of Virus Dynamics Models and the Effects of CTL and Antibody Responses 481
Nughtoth Arfawi Kurdhi and Lina Aryati
A Simple Diffusion Model of Plasma Leakage in Dengue Infection 499
Nuning Nuraini, Dinnar Rachmi Pasya, Edy Soewono
The Sequences Comparison of DNA H5N1 Virus on Human and Avian Host Using Tree Diagram Method 505
Siti Fauziyah, M. Isa Irawan, Maya Shovitri
Fuzzy Controller Design on Model of Motion System of the Satellite Based on Linear Matrix Inequality 515
Solikhatun and Salmah
Unsteady Heat and Mass Transfer from a Stretching Suface Embedded in a Porous Medium with Suction/injection and Thermal Radiation Effects 529
Stanford Shateyi and Sandile S Motsa
Level-Set-Like Method for Computing Multi-Valued Solutions to Nonlinear Two Channels Dissipation Model 547
Sumardi, Soeparna Darmawijaya, Lina Aryati, F.P.H. Van Beckum
Nonhomogeneous Abstract Degenerate Cauchy Problem: The Bounded Operator on the Nonhomogen Term 559
Susilo Hariyanto, Lina Aryati,Widodo
Stability Analysis and Optimal Harvesting of Predator-Prey Population Model with Time Delay and Constant Effort of Harvesting 567
Syamsuddin Toaha
Dynamic Analysis of Ethanol, Glucose, and Saccharomyces for Batch Fermentation 579
Widowati, Nurhayati, Sutimin, Laylatusysyarifah
Computer Science, Graph and Combinatorics
Survey of Methods for Monitoring Association Rule Behavior 589
Ani Dijah Rahajoe and Edi Winarko
A Comparison Framework for Fingerprint Recognition Methods 601
Ary Noviyanto and Reza Pulungan
The Global Behavior of Certain Turing System 615
Janpou Nee
Logic Approach Towards Formal Verification of Cryptographic Protocol 621
D.L. Crispina Pardede, Maukar, Sulistyo Puspitodjati
A Framework for an LTS Semantics for Promela 631
Suprapto and Reza Pulungan
Mathematics Education
Modelling On Lecturers' Performance with Hotteling-Harmonic-Fuzzy 647
H. A. Parhusip and A. Setiawan
Differences in Creativity Qualities Between Reflective and Impulsive Students in Solving Mathematics 659
Warli
Statistics and Finance
Two-Dimensional Warranty Policies Using Copula 671
Adhitya Ronnie Effendie
Consistency of the Bootstrap Estimator for Mean Under Kolmogorov Metric and Its Implementation on Delta Method 679
Bambang Suprihatin, Suryo Guritno, Sri Haryatmi
Multivariate Time Series Analysis Using RcmdrPlugin.Econometrics and Its Application for Finance 689
Dedi Rosadi
Unified Structural Models and Reduced-Form Models in Credit Risk by the Yield Spreads 697
Di Asih I Maruddani, Dedi Rosadi, Gunardi, Abdurakhman
The Effect of Changing Measure in Interest Rate Models 705
Dina Indarti, Bevina D. Handari, Ias Sri Wahyuni
New Weighted High Order Fuzzy Time Seriesfor Inflation Prediction 715
Dwi Ayu Lusia and Suhartono
Detecting Outlier in Hyperspectral Imaging UsingMultivariate Statistical Modeling and Numerical Optimization 729
Edisanter Lo
Prediction the Cause of Network Congestion Using Bayesian Probabilities 737
Erwin Harapap, M. Yusuf Fajar, Hiroaki Nishi
Solving Black-Scholes Equation by Using Interpolation Method with Estimated Volatility 751
F. Dastmalchisaei, M. Jahangir Hossein Pour, S. Yaghoubi
Artificial Ensemble Forecasts: A New Perspective of Weather Forecast in Indonesia 763
Heri Kuswanto
Second Order Least Square for ARCH Model 773
Herni Utami, Subanar, Dedi Rosadi, Liqun Wang
Two Dimensional Weibull Failure Modeling 781
Indira P. Kinasih and Udjianna S. Pasaribu
Simulation Study of MLE on Multivariate Probit Models 791
Jaka Nugraha
Clustering of Dichotomous Variables and Its Application for Simplifying Dimension of Quality Variables of Building Reconstruction Process 801
Kariyam
Valuing Employee Stock Options Using Monte Carlo Method 813
Kuntjoro Adji Sidarto and Dila Puspita
Classification of Epileptic Data Using Fuzzy Clustering 821
Nazihah Ahmad, Sharmila Karim, Hawa Ibrahim, Azizan Saaban, Kamarun Hizam Mansor
Recommendation Analysis Based on Soft Set for Purchasing Products 831R.B. Fajriya Hakim, Subanar, Edi Winarko
Heteroscedastic Time Series Model by Wavelet Transform 849Rukun Santoso, Subanar, Dedi Rosadi, Suhartono
Parallel Nonparametric Regression Curves 859Sri Haryatmi Kartiko
Ordering Dually in Triangles (Ordit) and Hotspot Detection in Generalized Linear Model for Poverty and Infant Health in East Java 865Yekti Widyaningsih, Asep Saefuddin, Khairil Anwar Notodiputro, Aji Hamim Wigena
Empirical Properties and Mixture of Distributions: Evidence from Bursa Malaysia Stock Market Indices 879Zetty Ain Kamaruzzaman, Zaidi Isa, Mohd Tahir IsmailAn Improved Model of Tumour-Immune System Interactions895Trisilowati, Scott W. Mccue, Dann Mallet

APPLICATION OF FUZZY NUMBER MAX-PLUS ALGEBRA TO CLOSED SERIAL QUEUING NETWORK WITH FUZZY ACTIVITY TIME

M. Andy Rudhito, Sri Wahyuni, Ari Suparwanto, F. SUSILO

Abstract

The activity times in a queuing network are seldom precisely known, and then could be represented into the fuzzy number, that is called fuzzy activity times. This paper aims to determine the dynamical model of a closed serial queuing network with fuzzy activity time and its periodic properties using max-plus algebra approach. The finding shows that the dynamics of the network can be modeled as a recursive system of fuzzy number max-plus linear equations. The periodic properties of the network can be obtained from the fuzzy number max-plus eigenvalue and eigenvector of matrix in the system. In the network, for a given level of risk, it can be determined the earliest of early departure time of a customer, so that the customer's departure interval time will be in the smallest interval where the lower bound and upper bound are periodic. Keywords and Phrases: max-plus algebra, queuing network, fuzzy activity times, periodic.

1. INTRODUCTION

We will discuss the closed serial queuing network of n single-server, with a infinite buffer capacity and n customers (Krivulin [4]). The network works with the principle of FirstIn First-Out (FIFO). In the system, the customers have to pass through the queues consecutively so as to receive service at each server. One cycle of network services is the process of entry of customers into the buffer of 1st server to leave the nth server. After completion of service to the nth server, customers return to the first queue for a new cycle of network services. Suppose at the initial time of observation, all the servers do not give service, in which the buffer of ith server contains one customer, for each $\mathrm{i}=1,2, \ldots, n$. It is assumed that the transition of customers from a queue to the next one requires no time.

Figure 1 (Krivulin [5]) gives the initial state of the closed serial queuing network, where customers are expressed by "•".

Figure 1 Closed Serial Queuing Network

The closed serial queuing network can be found in the assembly plant systems, such as assembling cars and electronic goods. Customers in this system are palettes while the server is a machine assembler. Palette is a kind of desk or place where the components or semifinished goods are placed and moved to visit machines assemblers. At first, 1st pallete enters to the buffer of 1st engine and then enters to the 1 st machine and the 2 nd pallete enters to the buffer of 1st engine. In the 1st engine, components are placed and prepared for assembly in the next machine. Next, 1st palette enters buffer of 2nd machine and 2nd pallette enter 1st machine. And so forth for n palettes are available, so that it reaches the state as in Figure 1 above, where the initial state observation is reached. After assembly is completed in the nth machine, the assembly of goods will leave the network, while the palette will go back to the buffer of 1st engine, to begin a new cycle of network services, and so on.

Max-plus algebra (Baccelli, et al. [1]; Heidergott, B. B, et. al. [3]), namely the set of all real numbers \mathbf{R} with the operations max and plus, has been used to model a closed serial queuing network algebraically, with a deterministic time activity (Krivulin [4]; Krivulin [5]). In the problem of modeling and analysis of a network sometimes its activity times is not known, for instance due to its design phase, data on time activity or distribution are not fixed. This activity can be estimated based on the experience and opinions from experts and network operators. This network activity times are modeled using fuzzy number, that is called fuzzy activity times. Scheduling problems involving fuzzy number can be seen in Chanas and Zielinski [2], and Soltoni and Haji [9]. As for the issue network model involving fuzzy number can be seen in Lüthi and Haring [6].

In this paper we determine the dynamical model of a closed serial queuing network with fuzzy activity time and its periodic properties using max-plus algebra approach. This approach will use some concepts such as: fuzzy number max-plus algebra, fuzzy number max-plus eigenvalue and eigenvector (Rudhito [8]). We will discuss a closed serial queuing network as discussed in Krivulin [4] and Krivulin [5], where crisp activity time will be replaced with fuzzy activity time, where can be modeled by fuzzy number. The dynamical model of the network can be obtained analogous with crisp activity time case. The periodic properties of the network can be obtained from the fuzzy number max-plus eigenvalue and eigenvector of matrix in the system. We will use some concepts and result on max-plus algebra, interval max-plus algebra and fuzzy number max-plus algebra.

2. MAX-PLUS ALGEBRA

In this section we will review some concepts and results of max-plus algebra, matrix over max-plus algebra and max-plus eigenvalue. Further details can be found in Baccelli, et al. [1].

Let $\mathbf{R}_{\varepsilon}:=\mathbf{R} \cup\{\varepsilon\}$ with \mathbf{R} is the set of all real numbers and $\varepsilon:=-\infty$. Define two operations \oplus and \otimes such that

$$
a \oplus b:=\max (a, b) \text { and } a \otimes b:=a+b
$$

for every $a, b \in \mathbf{R}_{\varepsilon}$.
We can show that $\left(\mathbf{R}_{\varepsilon}, \oplus, \otimes\right)$ is a commutative idempotent semiring with neutral element $\varepsilon=$ $-\infty$ and unity element $e=0$. Moreover, $\left(\mathbf{R}_{\varepsilon}, \oplus, \otimes\right)$ is a semifield, that is $\left(\mathbf{R}_{\varepsilon}, \oplus, \otimes\right)$ is a commutative semiring, where for every $a \in \mathbf{R}$ there exists $-a$ such that $a \otimes(-a)=0$. Then, $\left(\mathbf{R}_{\varepsilon}, \oplus, \otimes\right)$ is called max-plus algebra, and is written as $\mathbf{R}_{\text {max }}$. The relation " \preceq_{m} " defined on $\mathbf{R}_{\max }$ as $x \preceq_{\mathrm{m}} y$ iff $x \oplus y=y$. In $\mathbf{R}_{\max }$, operations \oplus and \otimes are consistent with respect to the order \preceq_{m}, that is for every $a, b, c \in \mathbf{R}_{\max }$, if $a \preceq_{\mathrm{m}} b$, then $a \oplus c \preceq_{\mathrm{m}} b \oplus c$, and $a \otimes c \preceq_{\mathrm{m}} b$ $\otimes c$. Define $x^{\otimes^{0}}:=0, x^{\otimes^{k}}:=x \otimes x^{\otimes^{k-1}}$ and $\varepsilon^{\otimes^{k}}:=\varepsilon$, for $k=1,2, \ldots$.

Define $\mathbf{R}_{\text {max }}^{m \times n}:=\left\{A=\left(A_{i j}\right) \mid A_{i j} \in \mathbf{R}_{\text {max }}, i=1,2, \ldots, m\right.$ and $\left.j=1,2, \ldots, n\right\}$, that is set of all matrices over max-plus algebra. Specifically, for $A, B \in \mathbf{R}_{\max }^{n \times n}$ and $\alpha \in \mathbf{R}_{\max }$ we define

$$
(\alpha \otimes A)_{i j}=\alpha \otimes A_{i j},(A \oplus B)_{i j}=A_{i j} \oplus B_{i j} \text { and }(A \otimes B)_{i j}=\bigoplus_{k=1}^{n} A_{i k} \otimes B_{k j}
$$

We define matrix $E \in \mathbf{R}_{\max }^{n \times n},(E)_{i j}:=\left\{\begin{array}{l}0 \text { if } i=j \\ \varepsilon \text { if } i \neq j\end{array}\right.$ and matrix $\varepsilon \in \mathbf{R}_{\max }^{n \times n},(\varepsilon)_{i j}:=\varepsilon$ for every i and j. For any matrix $A \in \mathbf{R}_{\max }^{n \times n}$, one can define $A^{\otimes^{0}}=E_{n}$ and $A^{\otimes^{k}}=A \otimes A^{\otimes^{k-1}}$ for $k=1$, $2, \ldots$. The relation " \preceq_{m} "defined on $\mathbf{R}_{\max }^{m \times n}$ as $A \preceq_{\mathrm{m}} B$ iff $A \oplus B=B$. In $\left(\mathbf{R}_{\max }^{n \times n}, \oplus, \otimes\right)$, operations \oplus and \otimes are consistent with respect to the order \preceq_{m}, that is for every $A, B, C \in$ $\mathbf{R}_{\max }^{n \times n}$, if $A \preceq_{\mathrm{m}} B$, then $A \oplus C \preceq_{\mathrm{m}} B \oplus C$, and $A \otimes C \preceq_{\mathrm{m}} B \otimes C$.

Define $\mathbf{R}_{\text {max }}^{n}:=\left\{\boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{\mathrm{T}} \mid x_{i} \in \mathbf{R}_{\text {max }}, i=1,2, \ldots, n\right\}$. Note that $\mathbf{R}_{\text {max }}^{n}$ can be viewed as $\mathbf{R}_{\text {max }}^{n \times 1}$. The elements of $\mathbf{R}_{\text {max }}^{n}$ are called vectors over $\mathbf{R}_{\text {max }}$ or shortly vectors. A vector $\boldsymbol{x} \in \mathbf{R}_{\text {max }}^{n}$ is said to be not equal to vector $\boldsymbol{\varepsilon}$, and is written as $\boldsymbol{x} \neq \boldsymbol{\varepsilon}$, if there exists $i \in$ $\{1,2, \ldots, n\}$ such that $x_{i} \neq \varepsilon$.

Let $G=(V, A)$ with $V=\{1,2, \ldots, p\}$ is non empty finite set which is its elements is called node and A is a set of ordered pairs of nodes. A directed graph G is said to be weighted if every arch $(j, i) \in A$ corresponds to a real number $A_{i j}$. The real number $A_{i j}$ is called the weight of arch (j, i), and is written as $w(j, i)$. In pictorial representation of weighted directed graph, archs are labelled by its weight. Define a precedence graph of a matrix $A \in \mathbf{R}_{\max }^{n \times n}$ as weighted directed graph $G(A)=(\mathcal{V}, \boldsymbol{A})$ with $V=\{1,2, \ldots, n\}, A=\left\{(j, i) \mid w(i, j)=A_{i j} \neq \varepsilon\right\}$.

Conversely, for every weighted directed graph $G=(V, A)$, can be defined a matrix $A \in$ $\mathbf{R}_{\max }^{n \times n}$, which is called the weighting matrix of graph \mathcal{G}, where

$$
A_{i j}=\left\{\begin{array}{ll}
w(j, i) & \text { if }(j, i) \in \mathcal{A} \\
\varepsilon & \text { if }(j, i) \notin \mathcal{A} .
\end{array}\right. \text {. The mean weight of a path is defined as the sum of the }
$$

weights of the individual arcs of this path, divided by the length of this path. If such a path is a circuit one talks about the mean weight of the circuit, or simply the cycle mean. It follow that a formula for maximum mean cycle mean $\lambda_{\max }(A)$ in $G(A)$ is $\lambda_{\max }(A)=$ $\bigoplus_{k=1}^{n}\left(\frac{1}{k} \bigoplus_{\mathrm{i}=1}^{n}\left(A^{\otimes^{k}}\right)_{i i}\right)$.

The matrix $A \in \mathbf{R}_{\max }^{n \times n}$ is said to be irreducible if its precedence graph $G=(V, A)$ is strongly connected, that is for every $i, j \in V, i \neq j$, there is a path from i to j. We can show that matrix $A \in \mathbf{R}_{\text {max }}^{n \times n}$ is irreducible if and only if $\left(A \oplus A^{\otimes^{2}} \oplus \ldots \oplus A^{\otimes^{n-1}}\right)_{i j} \neq \varepsilon \quad$ for every i, j where $i \neq j$ (Schutter, 1996).

Given $A \in \mathbf{R}_{\max }^{n \times n}$. Scalar $\lambda \in \mathbf{R}_{\max }$ is called the max-plus eigenvalue of matrix A if there exists a vector $\boldsymbol{v} \in \mathbf{R}_{\max }^{n}$ with $\boldsymbol{v} \neq \boldsymbol{\varepsilon}_{n \times 1}$ such that $A \otimes \boldsymbol{v}=\lambda \otimes \boldsymbol{v}$. Vector \boldsymbol{v} is called max-plus eigenvector of matrix A associated with λ. We can show that $\lambda_{\max }(A)$ is a max-plus eigenvalue of matrix A. For matrix $B=-\lambda_{\max }(A) \otimes A$, if $B_{i i}^{+}=0$, then i-th column of matrix B^{*} is an eigenvector corresponding with eigenvalue $\lambda_{\max }(A)$. The eigenvector is called fundamental max-plus eigenvector associated with eigenvalues $\lambda_{\max }(A)$ (Bacelli, et al., 2001). A linear combination of fundamental max-plus eigenvector of matrix A is also an eigenvector assosiated with $\lambda_{\max }(A)$. We can show that if matrix $A \in \mathbf{R}_{\max }^{n \times n}$ is irreducible, then $\lambda_{\max }(A)$ is the unique max-plus egenvalue of A and the max-plus eigenvector associated with $\lambda_{\max }(A)$ is \boldsymbol{v}, where $v_{i} \neq \varepsilon$ for every $i \in\{1,2, \ldots, n\}$ (Bacelli, et al., 2001).

3. INTERVAL MAX-PLUS ALGEBRA

In this section we will review some concepts and results of interval max-plus algebra, matrix over interval max-plus algebra and interval max-plus eigenvalue. Further details can be found in Rudhito, et al. [7] and Rudhito [8].

The (closed) max-plus interval x in $\mathbf{R}_{\max }$ is a subset of $\mathbf{R}_{\text {max }}$ of the form

$$
\mathrm{x}=[\underline{\mathrm{x}}, \overline{\mathrm{X}}]=\left\{x \in \mathbf{R}_{\max } \mid \underline{\mathrm{x}} \preceq_{\mathrm{m}} x \preceq_{\mathrm{m}} \overline{\mathrm{x}}\right\},
$$

which is shortly called interval. The interval $\mathrm{x} \subseteq \mathrm{y}$ if and only if $\mathrm{y} \preceq_{\mathrm{m}} \underline{x} \preceq_{\mathrm{m}} \overline{\mathrm{x}} \preceq_{\mathrm{m}} \overline{\mathrm{y}}$. Especially $\mathrm{x}=\mathrm{y}$ if and only if $\underline{\mathrm{x}}=\underline{\mathrm{y}}$ and $\overline{\mathrm{x}}=\overline{\mathrm{y}}$. The number $x \in \mathbf{R}_{\max }$ can be represented as interval $[x, x]$. Define $\mathbf{I}(\mathbf{R})_{\varepsilon}:=\left\{\mathrm{x}=[\underline{\mathrm{X}}, \overline{\mathrm{X}}] \mid \underline{\mathrm{x}}, \overline{\mathrm{X}} \in \mathbf{R}, \varepsilon \prec_{\mathrm{m}} \underline{\mathrm{X}} \preceq_{\mathrm{m}} \overline{\mathrm{X}}\right\} \cup\{\varepsilon\}$, where $\varepsilon:=[\varepsilon, \varepsilon]$. Define $\mathrm{x} \bar{\oplus} \mathrm{y}=[\underline{\mathrm{x}} \oplus \underline{\mathrm{y}}, \overline{\mathrm{x}} \oplus \overline{\mathrm{y}}]$ and $\mathrm{x} \bar{\otimes} \mathrm{y}=[\underline{\mathrm{x}} \otimes \underline{\mathrm{y}}, \overline{\mathrm{x}} \otimes \overline{\mathrm{y}}]$ for every x, y $\in \mathbf{I}(\mathbf{R})_{\varepsilon}$. We can show that $\left(\mathbf{I}(\mathbf{R})_{\varepsilon}, \bar{\oplus}, \bar{\otimes}\right)$ is a commutative idempotent semiring with neutral element $\varepsilon=[\varepsilon, \varepsilon]$ and unity element $0=[0,0]$. This commutative idempotent semiring
$\left(\mathbf{I}(\mathbf{R})_{\varepsilon}, \bar{\oplus}, \bar{\otimes}\right)$ is called interval max-plus algebra, and is written as $\mathbf{I}(\mathbf{R})_{\max }$. Relation " $\preceq_{\operatorname{Im}}$ "defined on $\mathbf{I}(\mathbf{R})_{\max }$ as $\mathrm{x} \preceq_{\operatorname{Im}} \mathrm{y} \Leftrightarrow \mathrm{x} \bar{\oplus} \mathrm{y}=\mathrm{y}$ is a partial order on $\mathbf{I}(\mathbf{R})_{\max }$. Notice that x $\bar{\oplus} \mathrm{y}=\mathrm{y} \Leftrightarrow \underline{\mathrm{x}} \preceq_{\mathrm{m}} \underline{y}$ and $\overline{\mathrm{x}} \preceq_{\mathrm{m}} \overline{\mathrm{y}}$.

Define $\mathbf{I}(\mathbf{R})_{\max }^{m \times n}:=\left\{\mathrm{A}=\left(\mathrm{A}_{i j}\right) \mid \mathrm{A}_{i j} \in \mathbf{I}(\mathbf{R})_{\max }, i=1,2, \ldots, m, j=1,2, \ldots, n\right\}$. The elements of $\mathbf{I}(\mathbf{R})_{\max }^{m \times n}$ are called matrices over interval max-plus algebra or shortly interval matrices. The operations on interval matrices can be defined in the same way with the operations on matrices over max-plus algebra. For any matrix $A \in \mathbf{I}(\mathbf{R})_{\max }^{m \times n}$, Define the matrix $\underline{\mathrm{A}}=\left(\underline{\mathrm{A}_{i j}}\right) \in \mathbf{R}_{\text {max }}^{m \times n}$ and $\overline{\mathrm{A}}=\left(\overline{\mathrm{A}_{i j}}\right) \in \mathbf{R}_{\text {max }}^{m \times n}$, which are called lower bound matrix and upper bound matrix of A , respectively. Define a matrix interval of A , that is $[\underline{\mathrm{A}}, \overline{\mathrm{A}}]=$ $\left\{A \in \mathbf{R}_{\max }^{m \times n} \mid \underline{\mathrm{A}} \preceq_{\mathrm{m}} A \preceq_{\mathrm{m}} \overline{\mathrm{A}}\right\}$ and $\mathbf{I}\left(\mathbf{R}_{\max }^{m \times n}\right)_{\mathrm{b}}=\left\{[\underline{\mathrm{A}}, \overline{\mathrm{A}}] \mid \mathrm{A} \in(\mathbf{R})_{\max }^{n \times n}\right\}$. The matrix interval $[\underline{\mathrm{A}}, \overline{\mathrm{A}}]$ and $[\underline{\mathrm{B}}, \overline{\mathrm{B}}] \in \mathbf{I}\left(\mathbf{R}_{\max }^{m \times n}\right)_{\mathrm{b}}$ are equal if $\underline{\mathrm{A}}=\underline{\mathrm{B}}$ and $\overline{\mathrm{A}}=\overline{\mathrm{B}}$. We can show that for every matrix interval $A \in \mathbf{I}\left(\mathbf{R}_{\max }^{m \times n}\right)$ we can determine matrix interval $[\underline{\mathrm{A}}, \overline{\mathrm{A}}] \in \mathbf{I}\left(\mathbf{R}_{\max }^{m \times n}\right)_{\mathrm{b}}$ and conversely. The matrix interval $[\underline{\mathrm{A}}, \overline{\mathrm{A}}]$ is called matrix interval associated with the interval matrix A , and is written as $\mathrm{A} \approx[\underline{\mathrm{A}}, \overline{\mathrm{A}}]$. Moreover, we have $\alpha \bar{\otimes} \mathrm{A} \approx[\underline{\alpha} \otimes \underline{\mathrm{A}}, \bar{\alpha} \otimes \overline{\mathrm{A}}], \mathrm{A} \oplus \mathrm{B} \approx[\underline{\mathrm{A}} \oplus \underline{\mathrm{B}}, \overline{\mathrm{A}} \oplus \overline{\mathrm{B}}]$ and $\mathrm{A} \bar{\otimes} \mathrm{B} \approx[\underline{\mathrm{A}} \otimes \underline{\mathrm{B}}, \overline{\mathrm{A}} \otimes \overline{\mathrm{B}}]$.

Define $\mathbf{I}(\mathbf{R})_{\text {max }}^{n}:=\left\{\mathbf{x}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{n}\right]^{\mathrm{T}} \mid \mathrm{x}_{i} \in \mathbf{I}(\mathbf{R})_{\text {max }}, i=1,2, \ldots, n\right\}$. Note that $\mathbf{I}(\mathbf{R})_{\max }^{n}$ can be viewed as $\mathbf{I}(\mathbf{R})_{\text {max }}^{n \times 1}$. The elements of $\mathbf{I}(\mathbf{R})_{\text {max }}^{n}$ are called interval vectors over $\mathbf{I}(\mathbf{R})_{\max }$ or shortly interval vectors. An interval vector $\mathbf{x} \in \mathbf{I}(\mathbf{R})_{\max }^{n}$ is said to be not equal to interval vector $\boldsymbol{\varepsilon}$, and is written as $\mathbf{x} \neq \boldsymbol{\varepsilon}$, if there exists $i \in\{1,2, \ldots, n\}$ such that $\mathrm{x}_{i} \neq \boldsymbol{\varepsilon}$.

Interval matrix $\mathrm{A} \in \mathbf{I}(\mathbf{R})_{\max }^{n \times n}$, where $\mathrm{A} \approx[\underline{\mathrm{A}}, \overline{\mathrm{A}}]$, is said to be irreducible if every matrix $A \in[\underline{\mathrm{~A}}, \overline{\mathrm{~A}}]$ is irreducible. We can show that interval matrix $\quad \mathrm{A} \in \mathbf{I}(\mathbf{R})_{\text {max }}^{n \times n}$, where $\mathrm{A} \approx[\underline{\mathrm{A}}, \overline{\mathrm{A}}]$ is irreducible if and only if $\underline{\mathrm{A}} \in \mathbf{R}_{\max }^{n \times n}$ is irreducible (Rudhito, et al. [7]).

4. FUZZY NUMBER MAX-PLUS ALGEBRA

In this section we will review some concepts and results of fuzzy number max-plus algebra, matrix over fuzzy number max-plus algebra and fuzzy number max-plus eigenvalue. Further details can be found in Rudhito [8].

Fuzzy set \tilde{K} in universal set X is represented as the set of ordered pairs $\tilde{K}=\{(x$, $\left.\left.\mu_{\tilde{K}}(x)\right) \mid x \in X\right\}$ where $\mu_{\tilde{K}}$ is a membership function of fuzzy set \tilde{K}, which is a mapping
from universal set X to closed interval [0,1]. Support of a fuzzy set \tilde{K} is $\operatorname{supp}(\tilde{K})=\{x \in X$ $\left.\mid \mu_{\tilde{K}}(x)>0\right\}$. Height of a fuzzy set \tilde{K} is $\operatorname{height}(\tilde{K})=\sup _{x \in X}\left\{\mu_{\tilde{K}}(x)\right\}$. A fuzzy set \tilde{K} is said to be normal if $\operatorname{height}(\tilde{K})=1$. For a number $\alpha \in[0,1], \alpha$-cut of a fuzzy set \tilde{K} is $\operatorname{cut}^{\alpha}(\tilde{K})=K^{\alpha}=\left\{x \in X \mid \mu_{\tilde{K}}(x) \geq \alpha\right\}$. A fuzzy sets \tilde{K} is said to be convex if K^{α} is convex, that is contains line segment between any two points in the K^{α}, for every $\alpha \in[0,1]$,

Fuzzy number \tilde{a} is defined as a fuzzy set in universal set \mathbf{R} which satisfies the following properties: i) normal, that is $\left.a^{1} \neq \varnothing, i i\right)$ for every $\alpha \in(0,1] a^{\alpha}$ is closed in \mathbf{R}, that is there exists $\underline{a^{\alpha}}, \overline{a^{\alpha}} \in \mathbf{R}$ with $\underline{a^{\alpha}} \leq \overline{a^{\alpha}}$ such that $a^{\alpha}=\left[\underline{a^{\alpha}}, \overline{a^{\alpha}}\right]=\left\{x \in \mathbf{R} \mid \underline{a^{\alpha}} \leq x \leq\right.$ $\left.\overline{a^{\alpha}}\right\}$, iii) $\operatorname{supp}(\tilde{a})$ is bounded. For $\alpha=0$, define $a^{0}=[\inf (\operatorname{supp}(\tilde{a}))$, $\sup (\operatorname{supp}(\tilde{a}))]$. Since every closed interval in \mathbf{R} is convex, a^{α} is convex for every $\alpha \in[0,1]$, hence \tilde{a} is convex.

Let $\mathbf{F}(\mathbf{R})_{\tilde{\varepsilon}}:=\mathbf{F}(\mathbf{R}) \cup\{\tilde{\varepsilon}\}$, where $\mathbf{F}(\mathbf{R})$ is set of all fuzzy numbers and $\tilde{\varepsilon}:=\{-\infty\}$ with the α-cut of $\tilde{\varepsilon}$ is $\varepsilon^{\alpha}=[-\infty,-\infty]$. Define two operations $\widetilde{\oplus}$ and $\widetilde{\otimes}$ such that for every $\tilde{a}, \tilde{b} \in \mathbf{F}(\mathbf{R})_{\tilde{\varepsilon}}$, with $a^{\alpha}=\left[\underline{a}^{\alpha}, \bar{a}^{\alpha}\right] \in \mathbf{I}(\mathbf{R})_{\max }$ and $b^{\alpha}=\left[\underline{b}^{\alpha}, \bar{b}^{\alpha}\right] \in \mathbf{I}(\mathbf{R})_{\max }$,
i) Maximum of \tilde{a} and \tilde{b}, written $\tilde{a} \widetilde{\oplus} \tilde{b}$, is a fuzzy number whose α-cut is interval $\left[\underline{a}^{\alpha} \oplus \underline{b}^{\alpha}, \bar{a}^{\alpha} \oplus \bar{b}^{\alpha}\right]$ for every $\alpha \in[0,1]$
ii) Addition of \tilde{a} and \tilde{b}, written $\tilde{a} \widetilde{\otimes} \tilde{b}$, is a fuzzy number whose α-cut is interval $\left[\underline{a}^{\alpha} \otimes \underline{b}^{\alpha}, \bar{a}^{\alpha} \otimes \bar{b}^{\alpha}\right]$ for every $\alpha \in[0,1]$.
We can show that $\left(\mathbf{F}(\mathbf{R})_{\tilde{\varepsilon}}, \widetilde{\oplus}, \widetilde{\otimes}\right)$ is a commutative idempotent semiring. The commutative idempotent semiring $\mathbf{F}(\mathbf{R})_{\max }:=\left(\mathbf{F}(\mathbf{R})_{\tilde{\varepsilon}}, \widetilde{\oplus}, \widetilde{\otimes}\right)$ is called fuzzy number maxplus algebra, and is written as $\mathbf{F}(\mathbf{R})_{\max }$ (Rudhito, et al. [8]).

Define $\mathbf{F}(\mathbf{R})_{\max }^{m \times n}:=\left\{\tilde{A}=\left(\widetilde{A}_{i j} \mid \widetilde{A}_{i j} \in \mathbf{F}(\mathbf{R})_{\max }, i=1,2, \ldots, m\right.\right.$ and $\left.j=1,2, \ldots, n\right\}$. The elements of $\mathbf{F}(\mathbf{R})_{\max }^{m \times n}$ are called matrices over fuzzy number max-plus algebra or shortly fuzzy number matrices. The operations on fuzzy number matrices can be defined in the same way with the operations on matrices over max-plus algebra. Define matrix $\widetilde{E} \in \mathbf{F}(\mathbf{R})_{\max }^{n \times n}$, with $(\tilde{E})_{i j}:=\left\{\begin{array}{l}\tilde{0} \text { if } i=j \\ \widetilde{\mathcal{E}} \text { if } i \neq j\end{array}\right.$, and matrix $\widetilde{\mathcal{E}} \in \mathbf{F}(\mathbf{R})_{\max }^{n \times n}$, with $(\widetilde{\mathcal{E}})_{i j}:=\widetilde{\mathcal{E}}$ for every i and j.

For every $\tilde{A} \in \mathbf{F}(\mathbf{R})_{\max }^{m \times n}$ and $\alpha \in[0,1]$, define α-cut matrix of \tilde{A} as the interval matrix $A^{\alpha}=\left(A_{i j}^{\alpha}\right)$, with $A_{i j}^{\alpha}$ is the α-cut of $\tilde{A}_{i j}$ for every i and j. Define matrix $\underline{A^{\alpha}}=\left(\underline{A_{i j}^{\alpha}}\right)$ $\in \mathbf{R}_{\max }^{m \times n}$ and $\overline{A^{\alpha}}=\left(\overline{A_{i j}^{\alpha}}\right) \in \mathbf{R}_{\max }^{m \times n}$ which are called lower bound and upper bound of matrix A^{α}, respectively. We can conclude that the matrices $\tilde{A}, \tilde{B} \in \mathbf{F}(\mathbf{R})_{\max }^{m \times n}$ are equal iff $A^{\alpha}=B^{\alpha}$,
that is $A_{i j}^{\alpha}=B_{i j}^{\alpha}$ for every $\alpha \in[0,1]$ and for every i and j. For every fuzzy number matrix $\tilde{A}, A^{\alpha} \approx\left[\underline{A}^{\alpha}, \bar{A}^{\alpha}\right]$. Let $\tilde{\lambda} \in \mathbf{F}(\mathbf{R})_{\max }, \tilde{A}, \tilde{B} \in \mathbf{F}(\mathbf{R})_{\max }^{m \times n}$. We can show that $\left.\lambda \otimes A\right)^{\alpha} \approx$

 every $\alpha \in[0,1]$.

Define $\mathbf{F}(\mathbf{R})_{\text {max }}^{n}:=\left\{\tilde{\boldsymbol{x}}=\left[\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{n}\right]^{\mathrm{T}} \mid \tilde{x}_{i} \in \mathbf{F}(\mathbf{R})_{\max }, i=1, \ldots, n\right\}$. The elements in $\mathbf{F}(\mathbf{R})_{\max }^{n}$ are called fuzzy number vectors over $\mathbf{F}(\mathbf{R})_{\text {max }}$ or shortly fuzzy number vectors. A fuzzy number vector $\tilde{\boldsymbol{X}} \in \mathbf{F}(\mathbf{R})_{\text {max }}^{n}$ is said to be not equal to fuzzy number vector $\tilde{\boldsymbol{\varepsilon}}$, written $\tilde{\boldsymbol{x}} \neq \tilde{\boldsymbol{\varepsilon}}$, if there exists $i \in\{1,2, \ldots, n\}$ such that $\tilde{x}_{i} \neq \tilde{\boldsymbol{\varepsilon}}$.

Fuzzy number matrix $\tilde{A} \in \mathbf{F}(\mathbf{R})_{\max }^{n \times n}$ is said to be irreducible if $A^{\alpha} \in \mathbf{I}(\mathbf{R})_{\max }^{n \times n}$ is irreducible for every $\alpha \in[0,1]$. We can show that \tilde{A} is irreducible if and only if $\underline{A^{0}} \in$ $\mathbf{R}_{\text {max }}^{n \times n}$ is irreducible (Rudhito, et al. [7]).

Let $\tilde{A} \in \mathbf{F}(\mathbf{R})_{\max }^{n \times n}$. The fuzzy number scalar $\tilde{\lambda} \in \mathbf{F}(\mathbf{R})_{\max }$ is called fuzzy number maxplus eigenvalue of matrix \tilde{A} if there exists a fuzzy number vector $\tilde{\boldsymbol{v}} \in \mathbf{F}(\mathbf{R})^{n}{ }_{\max }^{n}$ with $\tilde{\boldsymbol{v}} \neq$ $\widetilde{\boldsymbol{\varepsilon}}_{n \times 1}$ such that $\tilde{A} \widetilde{\otimes} \tilde{\boldsymbol{v}}=\tilde{\lambda} \widetilde{\otimes} \tilde{\boldsymbol{v}}$. The vector $\tilde{\boldsymbol{v}}$ is called fuzzy number max-plus eigenvectors of matrix \tilde{A} associaed with $\tilde{\lambda}$. Given $\tilde{A} \in \mathrm{~F}(\mathrm{R})_{\max }^{n \times n}$. We can show that the fuzzy number scalar $\tilde{\lambda}_{\text {max }}(\tilde{A})=\bigcup_{\alpha \in[0,1]} \tilde{\lambda}_{\text {max }}^{\alpha}$, where $\tilde{\lambda}_{\text {max }}^{\alpha}$ is a fuzzy set in R with membership function $\mu_{\tilde{\lambda}_{\max }^{\alpha}}(\mathrm{x})=\alpha \chi_{\tilde{\lambda}_{\max }^{\alpha}}(\mathrm{x})$, and $\chi_{\tilde{\lambda}_{\max }^{\alpha}}$ is the characteristic function of the set $\left[\lambda_{\max }\left(\underline{A^{\alpha}}\right)\right.$, $\lambda_{\max }\left(\overline{A^{\alpha}}\right)$], is a fuzzy number max-plus eigenvalues of matrix \tilde{A}. Based on fundamental max-plus eigenvector associated with eigenvalues $\lambda_{\max }\left(\underline{A^{\alpha}}\right)$ and $\lambda_{\max }\left(\overline{A^{\alpha}}\right)$, we can find fundamental fuzzy number max-plus eigenvector associated with $\tilde{\lambda}_{\max }^{\alpha}$ (Rudhito [8]). Moreover, if matrix \tilde{A} is irreducible, then $\tilde{\lambda}_{\max }(\tilde{A})$ is the unique fuzzy number max-plus eigenvalue of matrix \tilde{A} and the fuzzy number max-plus eigenvector associated with $\lambda_{\max }(\tilde{A})$ is $\tilde{\boldsymbol{v}}$, where $\tilde{v}_{i} \neq \tilde{\mathcal{E}}$ for every $\quad i \in\{1,2, \ldots, n\}$.

5. DYNAMICAL MODEL OF A CLOSED SERIAL QUEUING NETWORK WITH FUZZY ACTIVITIY TIME

We discuss the closed serial queuing network of n single-server, with a infinite buffer capacity and n customers, as in Figure 1.
Let $\quad \tilde{a}_{i}(k)=$ fuzzy arrival time of k th customer at server i,

$$
\begin{aligned}
\tilde{d}_{i}(k) & =\text { fuzzy departure time of } k \text { th customer at server } i, \\
\tilde{t}_{i} & =\text { fuzzy service time of } k \text { th customer at server } i .
\end{aligned}
$$

for $k=1,2, \ldots$ and $i=1,2, \ldots, n$.
The dynamical of queuing at server i can be written as

$$
\begin{align*}
& \tilde{d}_{i}(k)=\max \left(\tilde{t}_{i}+\tilde{a}_{i}(k), \tilde{t}_{i}+\tilde{d}_{i}(k-1)\right) \tag{1}\\
& \tilde{a}_{i}(k)=\left\{\begin{array}{l}
\tilde{d}_{n}(k-1) \text { if } i=1 \\
\tilde{d}_{i-1}(k-1) \text { if } i=2, \ldots, n
\end{array}\right. \tag{2}
\end{align*}
$$

Using fuzzy number max-plus algebra notation, equation (1) can be written as

$$
\begin{equation*}
\tilde{d}_{i}(k)=\left(\tilde{t}_{i} \tilde{\otimes}^{2} \tilde{a}_{i}(k)\right) \widetilde{\oplus}\left(\tilde{t}_{i} \bar{\otimes} \tilde{d}_{i}(k-1)\right) . \tag{3}
\end{equation*}
$$

Let $\tilde{\boldsymbol{d}}(k)=\left[\tilde{d}_{1}(k), \tilde{d}_{2}(k), \ldots, \tilde{d}_{n}(k)\right]^{\mathrm{T}}, \tilde{\boldsymbol{a}}(k)=\left[\tilde{a}_{1}(k), \tilde{a}_{2}(k), \ldots, \tilde{a}_{n}(k)\right]^{\mathrm{T}}$ and $\tilde{T}=$ $\left[\begin{array}{lll}\tilde{t}_{1} & & \tilde{\varepsilon} \\ & \ddots & \\ \tilde{\varepsilon} & & \tilde{t}_{n}\end{array}\right]$, then equations (3) and (2) can be written as

$$
\begin{align*}
& \tilde{\boldsymbol{d}}(k)=(\tilde{T} \widetilde{\otimes} \tilde{\boldsymbol{a}}(k)) \widetilde{\oplus}(\tilde{T} \widetilde{\otimes} \tilde{\boldsymbol{d}}(k-1) . \tag{4}\\
& \tilde{\boldsymbol{a}}(k)=\tilde{G} \tilde{\otimes} \tilde{\boldsymbol{d}}(k-1) \tag{5}
\end{align*}
$$

with matrix $\tilde{G}=\left[\begin{array}{cccc}\tilde{\varepsilon} & \ldots & \tilde{\varepsilon} & \tilde{0} \\ \tilde{0} & \ddots & \tilde{\varepsilon} & \tilde{\varepsilon} \\ & \ddots & \ddots & \vdots \\ \tilde{\varepsilon} & & \tilde{0} & \tilde{\varepsilon}\end{array}\right]$.
Substituting equation (5) to the equation (4), can be obtained the equation

$$
\begin{align*}
\tilde{\boldsymbol{d}}(k) & =\tilde{T} \tilde{\otimes} \tilde{G} \tilde{\otimes} \tilde{\boldsymbol{d}}(k-1) \tilde{\oplus} \tilde{T} \tilde{\otimes} \tilde{\boldsymbol{d}}(k-1) \\
& =\tilde{T} \widetilde{\otimes}(\tilde{G} \tilde{\oplus} \tilde{E}) \tilde{\otimes} \tilde{\boldsymbol{d}}(k-1) \\
& =\tilde{A} \widetilde{\otimes} \tilde{\boldsymbol{d}}(k-1) \tag{6}
\end{align*}
$$

with fuzzy number matrix $\tilde{A}=\tilde{T} \tilde{\otimes}(\tilde{G} \tilde{\oplus} \tilde{E})=\left[\begin{array}{ccccc}\tilde{t}_{1} & \tilde{\varepsilon} & \cdots & \tilde{\varepsilon} & \tilde{t}_{1} \\ \tilde{t}_{2} & \tilde{t}_{2} & \tilde{\varepsilon} & \cdots & \tilde{\varepsilon} \\ \tilde{\varepsilon} & \ddots & \ddots & & \vdots \\ \vdots & & \tilde{t}_{n-1} & \tilde{t}_{n-1} & \tilde{\varepsilon} \\ \tilde{\varepsilon} & \cdots & \tilde{\varepsilon} & \tilde{t}_{n} & \tilde{t}_{n}\end{array}\right]$.
The equation (6) is dynamical model of the closed serial queuing network.

6. PERIODIC PROPERTIES OF A CLOSED SERIAL QUEUING NETWORK WITH FUZZY ACTIVITIY TIME

Dynamical model recursive equation of the closed serial queuing network (6) can be represented through the early departure time of customer $\tilde{\boldsymbol{d}}(0)$, with its α-cut $\boldsymbol{d}^{\alpha}(0) \approx$ $\left[\underline{\boldsymbol{d}^{\alpha}}(0), \overline{\boldsymbol{d}^{\alpha}}(0)\right]$ for every $\alpha \in[0,1]$. For every $\alpha \in[0,1]$ hold $\boldsymbol{d}^{\alpha}(k)=A^{\alpha} \bar{\otimes} \boldsymbol{d}^{\alpha}(k-1) \approx$ $\left[\underline{A^{\alpha}} \otimes \underline{\boldsymbol{d}}^{\alpha}(k-1), \overline{A^{\alpha}} \otimes \overline{\boldsymbol{d}}^{\alpha}(k-1)\right]=\left[\left(\underline{A^{\alpha}}\right)^{\otimes^{k}} \otimes \underline{\boldsymbol{d}}^{\alpha}(0),\left(\overline{A^{\alpha}}\right)^{\otimes^{k}} \otimes \overline{\boldsymbol{d}}^{\alpha}(0)\right] \approx\left(\mathrm{A}^{\alpha}\right)^{\bar{ब}^{k}} \bar{\otimes}$ $\mathbf{d}^{\alpha}(0)$. Thus, for every $\alpha \in \quad[0,1]$ hold $\boldsymbol{d}^{\alpha}(k)=\left(\mathrm{A}^{\alpha}\right)^{\bar{\otimes}^{k}} \bar{\otimes} \mathbf{d}^{\alpha}(0)$. Hence we have $\tilde{\boldsymbol{d}}(k)$ $=\tilde{A}^{\tilde{\otimes}^{k}} \tilde{\otimes} \tilde{\boldsymbol{d}}(0)$. Since the early departure time of customer can be determined exactly, it is a crisp time, that is a point fuzzy number $\tilde{\boldsymbol{d}}(0)$, with $\boldsymbol{d}^{\alpha}(0) \approx\left[\underline{\boldsymbol{d}}^{\alpha}(0), \overline{\boldsymbol{d}}^{\alpha}(0)\right]$ where $\underline{\boldsymbol{d}}^{\alpha}(0)$ $=\overline{\boldsymbol{d}}^{\alpha}(0)$ for every $\alpha \in[0,1]$.

Since precedence of matrix $\underline{A^{0}}$ in the model of the closed serial queuing network (Figure 1) is strongly connected, the matrix $\underline{A^{0}}$ is irredusible. Hence, matrix \tilde{A} in the equation (6) is irredusibel. Thus, matrix \tilde{A} has unique fuzzy number max-plus eigenvalue, that is $\tilde{\lambda}_{\text {max }}(\tilde{A})$ where $\tilde{\boldsymbol{v}}$ is the fundamental fuzzy number max-plus eigenvector associated with $\tilde{\lambda}_{\text {max }}(\tilde{A})$, where $\tilde{v}_{i} \neq \widetilde{\varepsilon}$ for every $i \in\{1,2, \ldots, n\}$.

We construct fuzzy number vector $\tilde{\boldsymbol{v}}^{*}$ where its α-cut vector is $\boldsymbol{v}^{* \alpha} \approx\left[\underline{\boldsymbol{v}^{* \alpha}}, \overline{\boldsymbol{v}^{* \alpha}}\right]$, using the following steps. For every $\alpha \in[0,1]$ dan $i=1,2, \ldots, n$, form 1. $\underline{\boldsymbol{v}^{\prime \alpha}}=\delta_{1} \otimes \underline{\boldsymbol{v}}^{\alpha}, \overline{\boldsymbol{v}^{\prime \alpha}}=\delta_{1} \otimes \overline{\boldsymbol{v}^{\alpha}}$, with $\delta_{1}=-\min _{i}\left(\underline{v}_{i}^{0}\right)$.
2. $\underline{\boldsymbol{v}^{\prime \prime \alpha}}=\delta_{2}(\alpha) \otimes \underline{\boldsymbol{v}^{\prime \alpha}}, \overline{\boldsymbol{v}^{\prime \prime \alpha}}=\delta_{2}(\alpha) \otimes \overline{\boldsymbol{v}^{\prime \alpha}}$, with $\delta_{2}(\alpha)=-\min _{i}\left(\underline{v^{\prime \alpha}}{ }_{i}-{\underline{v^{\prime}}}_{i}\right)$.
3. $\overline{\boldsymbol{v}^{\prime \prime \prime}}=\delta_{3} \otimes \overline{\boldsymbol{v}^{\prime \prime \alpha}}$, with $\delta_{3}=-\min \left({\underline{v^{\prime \prime \prime}}}_{i}-\overline{v^{\prime \prime 0}}{ }_{i}\right)$.
4. $\underline{\boldsymbol{v}}^{* \alpha}=\underline{\boldsymbol{v}^{\prime \prime \alpha}}, \overline{\boldsymbol{v}^{* \alpha}}=\delta_{4}(\alpha) \otimes \overline{\boldsymbol{v}^{\prime \prime \prime \alpha}}$, with $\delta_{4}(\alpha)=-\min _{i}\left(\overline{v^{\prime \prime \prime 0}}{ }_{i}-\overline{v^{\prime \prime \prime}{ }_{i}}\right)$.

The fuzzy number vector $\tilde{\boldsymbol{v}}^{*}$ is also a fuzzy number max-plus eigenvalue associated with $\tilde{\lambda}_{\text {max }}(\tilde{A})$. From construction above, the components of $\underline{\boldsymbol{v}^{* 0}}$, that is $\underline{v}_{i}^{* 0}$ are all non-negative and there exist $i \in\{1,2, \ldots, n\}$ such that ${\underline{v^{* \alpha}}}_{i}=0$ for every $\alpha \in[0,1]$. Meanwhile, its α-cut vector is the smalest interval, in the sense that $\min _{i}\left(\overline{v^{* 0}}{ }_{i}-\underline{v}_{i}^{* 0}\right)=0$ for $i=1,2, \ldots, n$, among all possible fuzzy number max-plus eigenvector, the modification of the fundamental fuzzy
number max-plus eigenvector $\tilde{\boldsymbol{v}}$, where all the lower bounds of its components are nonnegative and at least one zero.

Since the fuzzy number vector $\tilde{\boldsymbol{v}}^{*}$ is a fuzzy number max-plus eigenvector associated with $\tilde{\lambda}_{\text {max }}(\tilde{A})$

$$
\begin{aligned}
& \tilde{A} \widetilde{\otimes} \tilde{\boldsymbol{v}}^{*}=\tilde{\lambda}_{\max }(\tilde{A}) \tilde{\otimes} \tilde{\boldsymbol{v}}^{*} \text { or } A^{\alpha} \bar{\otimes} \boldsymbol{v}^{* \alpha}=\lambda_{\max }\left(A^{\alpha}\right) \bar{\otimes} \boldsymbol{v}^{* \alpha} \text { or } \\
& {\left[\underline{A^{\alpha}} \otimes \underline{\boldsymbol{v}^{* \alpha}}, \overline{A^{\alpha}} \otimes \overline{\boldsymbol{v}^{* \alpha}}\right]=\left[\lambda_{\max }\left(\underline{A^{\alpha}}\right) \otimes \underline{\boldsymbol{v}^{* \alpha}}, \lambda_{\max }\left(\overline{A^{\alpha}}\right) \otimes \overline{\boldsymbol{v}^{* \alpha}}\right] .}
\end{aligned}
$$

Hence $\quad \underline{A^{\alpha}} \otimes \underline{\boldsymbol{v}^{* \alpha}}=\lambda_{\max }\left(\underline{A^{\alpha}}\right) \otimes \underline{\boldsymbol{v}}^{* \alpha}$ and $\overline{A^{\alpha}} \otimes \overline{\boldsymbol{v}^{* \alpha}}=\lambda_{\max }\left(\overline{A^{\alpha}}\right) \otimes \overline{\boldsymbol{v}^{* \alpha}}$ for every $\alpha \in[0,1]$.

For some $\alpha \in[0,1]$, we can take the early departure time of customer $\tilde{\boldsymbol{d}}(0)=\underline{\boldsymbol{v}^{* \alpha}}$, that is the earliest of early departure time of a customer, such that the lower bound of customer departure time intervals are periodic. This is because there exist $i \in\{1,2, \ldots, n\}$ such that ${\underline{v^{* \alpha}}}_{i}=0$ for every $\alpha \in[0,1]$. Since the operation \oplus and \otimes on matrix are consistent with respect to the order " \preceq_{m} ", then

$$
\left(\underline{A^{\alpha}}\right)^{\otimes^{k}} \otimes \underline{\boldsymbol{v}^{* \alpha}} \preceq_{\mathrm{m}}\left(\overline{A^{\alpha}}\right)^{\otimes^{k}} \otimes \underline{\boldsymbol{v}}^{* \alpha} \preceq_{\mathrm{m}}\left(\overline{A^{\alpha}}\right)^{\otimes^{k}} \otimes \overline{\boldsymbol{v}^{* \alpha}}
$$

This resulted

$$
\begin{aligned}
\boldsymbol{d}^{\alpha}(k) & \approx\left[\left(\underline{A^{\alpha}}\right)^{\otimes^{k}} \otimes \underline{\boldsymbol{v}^{* \alpha}},\left(\overline{A^{\alpha}}\right)^{\otimes^{k}} \otimes \underline{\boldsymbol{v}^{* \alpha}}\right] \subseteq\left[\left(\underline{A^{\alpha}}\right)^{\otimes^{k}} \otimes \underline{\boldsymbol{v}^{* \alpha}},\left(\overline{A^{\alpha}}\right)^{\otimes^{k}} \otimes \overline{\boldsymbol{v}^{* \alpha}}\right] \\
& =\left[\left(\lambda_{\max }\left(\underline{A^{\alpha}}\right)\right)^{\otimes^{k}} \otimes \underline{\boldsymbol{v}^{* \alpha}},\left(\lambda_{\max }\left(\overline{A^{\alpha}}\right)\right)^{\otimes^{k}} \otimes \overline{\boldsymbol{v}^{* \alpha}}\right] \\
& =\left[\left(\lambda_{\max }\left(\underline{A^{\alpha}}\right)\right)^{\otimes^{k}},\left(\lambda_{\max }\left(\overline{A^{\alpha}}\right)\right)^{\otimes^{k}}\right] \bar{\otimes}\left[\underline{\boldsymbol{v}^{* \alpha}}, \boldsymbol{v}^{* \alpha}\right] \\
& =\left[\lambda_{\max }\left(\underline{A^{\alpha}}\right), \lambda_{\max }\left(\overline{A^{\alpha}}\right)\right]^{\otimes^{k}} \bar{\otimes}\left[\underline{\boldsymbol{v}^{* \alpha}}, \overline{\boldsymbol{v}^{* \alpha}}\right] \text { for every } k=1,2,3, \ldots
\end{aligned}
$$

Thus for some $\alpha \in[0,1]$, vector $\underline{v}^{* \alpha}$ is the earliest of early departure time of a customer, so that the customer's departure interval time will be in the smallest interval where the lower bound and upper bound are periodic with the period $\lambda_{\max }\left(\underline{A^{\alpha}}\right)$ and $\lambda_{\max }\left(\overline{A^{\alpha}}\right)$, respectively.

In the same way as above, we can show that for some $\alpha \in[0,1]$, if we take the early departure time $\tilde{\boldsymbol{d}}(0)=\boldsymbol{v}$, where $\underline{\boldsymbol{v}^{* \alpha}} \preceq_{\mathrm{m}} \boldsymbol{v} \preceq_{\mathrm{m}} \overline{\boldsymbol{v}^{\alpha}}$, then we have

$$
\begin{aligned}
& \boldsymbol{d}^{\alpha}(k) \approx\left[\left(\underline{A^{\alpha}}\right)^{\otimes^{k}} \otimes \boldsymbol{v},\left(\overline{A^{\alpha}}\right)^{\otimes^{k}} \otimes \boldsymbol{v}\right] \subseteq\left[\left(\underline{A^{\alpha}}\right)^{\otimes^{k}} \otimes \underline{\boldsymbol{v}^{* \alpha}},\left(\overline{A^{\alpha}}\right)^{\otimes^{k}} \otimes \overline{\boldsymbol{v}^{* \alpha}}\right] \\
& =\left[\lambda_{\max }\left(\underline{A^{\alpha}}\right), \lambda_{\max }\left(\overline{A^{\alpha}}\right)\right]^{\otimes^{k}} \bar{\otimes}\left[\underline{\boldsymbol{v}^{* \alpha}}, \overline{\boldsymbol{v}^{* \alpha}}\right] .
\end{aligned}
$$

References

[1] Baccelli, F., Cohen, G., Olsder, G.J. And Quadrat, J.P., Synchronization and Linearity, John Wiley \& Sons, New York, 2001.
[2] Chanas, S. And Zielinski, P., Critical path analysis in the network with fuzzy activity times, Fuzzy Sets and Systems, 122, 195-204, 2001.
[3] Heidergott, B., Olsder, J. G And Woude, J., Max Plus at Work, Princeton, Princeton University Press, 2005.
[4] Krivulin, N.K., A Max-Algebra Approach to Modeling and Simulation of Tandem Queuing Systems. Mathematical and Computer Modeling, 22 , N.3, 25-31, 1995.
[5] Krivulin, N.K., The Max-Plus Algebra Approach in Modelling of Queueing Networks, Proc. 1996 Summer Computer Simulation Conf., Portland, OR, July 21-25, 485-490, 1996.
[6] LÜthi, J. And Haring, G., Fuzzy Queueing Network Models of Computing Systems, Proceedings of the 13th UK Performance Engineering Workshop, Ilkley, UK, Edinburgh University Press, July 1997.
[7] Rudhito, A., Wahyuni, S., Suparwanto, A. And Susilo, F., Matriks atas Aljabar Max-Plus Interval. Jurnal Natur Indonesia 13, No. 2., 94-99, 2011.
[8] Rudhito, A., Aljabar Max-Plus Bilangan Kabur dan Penerapannya pada Masalah Penjadwalan dan Jaringan Antrian Kabur, Disertasi: Program S3 Matematika FMIPA Universitas Gadjah Mada, Yogyakarta, 2011
[9] Soltoni, A. And Haji, R., A Project Scheduling Method Based on Fuzzy Theory, Journal of Industrial and Systems Engineering, 1, No.1, 70 - 80, 2007
M. Andy Rudhito

Department of Mathematics and Natural Science Education, Sanata Dharma University, Yogyakarta, Indonesia.
e-mail: arudhito@yahoo.co.id

SRI WAHYUNI

Department of Mathematics, Gadjah Mada University, Yogyakarta, Indonesia.
e-mail: swahyuni@ugm.ac.id

ARI SUPARWANTO

Department of Mathematics, Gadjah Mada University, Yogyakarta, Indonesia. e-mail: ari_suparwanto@yahoo.com
F. SUSILO

Department of Mathematics, Sanata Dharma University, Yogyakarta, Indonesia.
e-mail: fsusilo@staff.usd.ac.id

