

Development of Sciences and Technology Mathematics and Its Applications in the

ISBN 978-979-1797<mark>9-3-1</mark>

Proceedings of the 6th SEAMS-GMU International Conference on Mathematics and Its Applications Yogyakarta - Indonesia, 12th- 15thJuly 2011

> **MATHEMATICS AND ITS APPLICATIONS IN THE DEVELOPMENT OF SCIENCES AND TECHNOLOGY**

> > **Department of Mathematics** Faculty of Mathematics & Natural Sciences **Universitas Gadjah Mada** Sekip Utara Yogyakarta - INDONESIA 55281 Phone: +62 - 274 - 552243; 7104933 Fax.: +62 - 274 555131

PROCEEDINGS OF THE 6TH SOUTHEAST ASIAN MATHEMATICAL SOCIETY GADJAH MADA UNIVERSITY INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2011

Yogyakarta, Indonesia, 12th – 15th July 2011

DEPARTMENT OF MATHEMATICS FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS GADJAH MADA YOGYAKARTA, INDONESIA 2012

Published by

Department of Mathematics Faculty of Mathematics and Natural Sciences Universitas Gadjah Mada Sekip Utara, Yogyakarta, Indonesia Telp. +62 (274) 7104933, 552243 Fax. +62 (274) 555131

PROCEEDINGS OF

THE 6TH SOUTHEAST ASIAN MATHEMATICAL SOCIETY-GADJAH MADA UNIVERSITY INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2011 Copyright @ 2012 by Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia

ISBN 978-979-17979-3-1

PROCEEDINGS OF THE 6TH SOUTHEAST ASIAN MATHEMATICAL SOCIETY-GADJAH MADA UNIVERSITY INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2011

Chief Editor:

Sri Wahyuni

Managing Editor :

Indah Emilia Wijayanti

Dedi Rosadi

Managing Team :

Ch. Rini Indrati Herni Utami Nur Khusnussa'adah Noorma Yulia Megawati Irwan Endrayanto A. Dewi Kartika Sari Indarsih Rianti Siswi Utami Hadrian Andradi

Supporting Team :

Parjilan Siti Aisyah Susiana Tutik Kristiastuti Tri Wiyanto Sukir Widodo Warjinah Emiliana Sunaryani Yuniastuti Karyati Sudarmanto Wira Kurniawan Sumardi

EDITORIAL BOARDS

Algebra, Graph and Combinatorics

Budi Surodjo Ari Suparwanto

Analysis

Supama Atok Zulijanto

Applied Mathematics

Fajar Adi Kusumo Salmah

Computer Science

Edi Winarko MHD. Reza M.I. Pulungan

Statistics and Finance

Subanar Abdurakhman

LIST OF REVIEWERS

Abdurakhman Universitas Gadjah Mada, Indonesia Achmad Muchlis Institut Teknologi Bandung, Indonesia Adhitya Ronnie Effendi Universitas Gadjah Mada, Indonesia Agus Buwono Institut Pertanian Bogor, Indonesia Agus Maman Abadi Universitas Negeri Yogyakarta, Indonesia Agus Yodi Gunawan Institut Teknologi Bandung, Indonesia Ari Suparwanto Universitas Gadjah Mada, Indonesia Asep. K. Supriatna Universitas Padjadjaran, Indonesia Atok Zulijanto Universitas Gadjah Mada, Indonesia Azhari SN Universitas Gadjah Mada, Indonesia Budi Nurani Universitas Padjadjaran, Indonesia Budi Santosa Institut Teknologi Sepuluh Nopember, Indonesia Budi Surodjo Universitas Gadjah Mada, Indonesia Cecilia Esti Nugraheni Universitas Katolik Parahyangan, Indonesia Ch. Rini Indrati Universitas Gadjah Mada, Indonesia Chan Basarrudin Universitas Indonesia Danardono Universitas Gadjah Mada, Indonesia Dedi Rosadi

Universitas Gadjah Mada, Indonesia

Insap Santosa Universitas Gadjah Mada, Indonesia Intan Muchtadi-Alamsyah Institut Teknologi Bandung, Indonesia Irawati Institut Teknologi Bandung, Indonesia Irwan Endrayanto A. Universitas Gadjah Mada, Indonesia Jailani Universitas Negeri Yogyakarta, Indonesia Janson Naiborhu Institut Teknologi Bandung, Indonesia Joko Lianto Buliali Institut Teknologi Sepuluh Nopember, Indonesia Khreshna Imaduddin Ahmad S. Institut Teknologi Bandung, Indonesia Kiki Ariyanti Sugeng Universitas Indonesia Lina Aryati Universitas Gadjah Mada, Indonesia M. Farchani Rosyid Universitas Gadjah Mada, Indonesia Mardiyana Universitas Negeri Surakarta, Indonesia MHD. Reza M. I. Pulungan Universitas Gadjah Mada, Indonesia Miswanto Universitas Airlangga, Indonesia Netty Hernawati Universitas Lampung, Indonesia Noor Akhmad Setiawan Universitas Gadjah Mada, Indonesia Nuning Nuraini Institut Teknologi Bandung, Indonesia **Rieske Hadianti** Institut Teknologi Bandung, Indonesia

Deni Saepudin Institut Teknologi Telkom, Indonesia Diah Chaerani Universitas Padjadjaran, Indonesia Edy Soewono Institut Teknologi Bandung, Indonesia Edy Tri Baskoro Institut Teknologi Bandung, Indonesia Edi Winarko Universitas Gadjah Mada, Indonesia Endar H Nugrahani Institut Pertanian Bogor, Indonesia Endra Joelianto Institut Teknologi Bandung, Indonesia Eridani Universitas Airlangga, Indonesia Fajar Adi Kusumo Universitas Gadjah Mada, Indonesia Frans Susilo Universitas Sanata Dharma, Indonesia Gunardi Universitas Gadjah Mada, Indonesia Hani Garminia Institut Teknologi Bandung, Indonesia Hartono Universitas Negeri Yogyakarta, Indonesia Hengki Tasman Universitas Indonesia I Wayan Mangku Institut Pertanian Bogor, Indonesia Indah Emilia Wijayanti Universitas Gadjah Mada, Indonesia

Roberd Saragih Institut Teknologi Bandung, Indonesia Salmah Universitas Gadjah Mada, Indonesia Siti Fatimah Universitas Pendidikan Indonesia Soeparna Darmawijaya Universitas Gadjah Mada, Indonesia Sri Haryatmi Universitas Gadjah Mada, Indonesia Sri Wahyuni Universitas Gadjah Mada, Indonesia Subanar Universitas Gadjah Mada, Indonesia Supama Universitas Gadjah Mada, Indonesia Survanto Universitas Negeri Yogyakarta, Indonesia Suyono Universitas Negeri Jakarta, Indonesia **Tony Bahtiar** Institut Pertanian Bogor, Indonesia Wayan Somayasa Universitas Haluoleo, Indonesia Widodo Priyodiprojo Universitas Gadjah Mada, Indonesia Wono Setyo Budhi Institut Teknologi Bandung, Indonesia Yudi Soeharyadi Institut Teknologi Bandung, Indonesia

PREFACE

It is an honor and great pleasure for the Department of Mathematics – Universitas Gadjah Mada, Yogyakarta – INDONESIA, to be entrusted by the Southeast Asian Mathematical Society (SEAMS) to organize an international conference every four years. Appreciation goes to those who have developed and established this tradition of the successful series of conferences. The SEAMS - Gadjah Mada University (SEAMS-GMU) 2011 International Conference on Mathematics and Its Applications took place in the Faculty of Mathematics and Natural Sciences of Universitas Gadjah Mada on July $12^{th} - 15^{th}$, 2011. The conference was the follow up of the successful series of events which have been held in 1989, 1995, 1999, 2003 and 2007.

The conference has achieved its main purposes of promoting the exchange of ideas and presentation of recent development, particularly in the areas of pure, applied, and computational mathematics which are represented in Southeast Asian Countries. The conference has also provided a forum of researchers, developers, and practitioners to exchange ideas and to discuss future direction of research. Moreover, it has enhanced collaboration between researchers from countries in the region and those from outside.

More than 250 participants from over the world attended the conference. They come from USA, Austria, The Netherlands, Australia, Russia, South Africa, Taiwan, Iran, Singapore, The Philippines, Thailand, Malaysia, India, Pakistan, Mongolia, Saudi Arabia, Nigeria, Mexico and Indonesia. During the four days conference, there were 16 plenary lectures and 217 contributed short communication papers. The plenary lectures were delivered by Halina France-Jackson (South Africa), Jawad Y. Abuihlail (Saudi Arabia), Andreas Rauber (Austria), Svetlana Borovkova (The Netherlands), Murk J. Bottema (Australia), Ang Keng Cheng (Singapore), Peter Filzmoser (Austria), Sergey Kryzhevich (Russia), Intan Muchtadi-Alamsyah (Indonesia), Reza Pulungan (Indonesia), Salmah (Indonesia), Yudi Soeharyadi (Indonesia), Subanar (Indonesia) Supama (Indonesia), Asep K. Supriatna (Indonesia) and Indah Emilia Wijayanti (Indonesia). Most of the contributed papers were delivered by mathematicians from Asia. We would like to sincerely thank all plenary and invited speakers who warmly accepted our invitation to come to the Conference and the paper contributors for their overwhelming response to our call for short presentations. Moreover, we are very grateful for the financial assistance and support that we received from Universitas Gadjah Mada, the Faculty of Mathematics and Natural Sciences, the Department of Mathematics, the Southeast Asian Mathematical Society, and UNESCO.

We would like also to extend our appreciation and deepest gratitude to all invited speakers, all participants, and referees for the wonderful cooperation, the great coordination, and the fascinating efforts. Appreciation and special thanks are addressed to our colleagues and staffs who help in editing process. Finally, we acknowledge and express our thanks to all friends, colleagues, and staffs of the Department of Mathematics UGM for their help and support in the preparation during the conference.

The Editors October, 2012

CONTENTS

Title	i
Publisher and Copyright	ii
Managerial Boards	iii
Editorial Boards	iv
List of Reviewers	v
Preface	vii
Paper of Invited Speakers	
On Things You Can't Find : Retrievability Measures and What to do with Them Andreas Rauber and Shariq Bashir	1
A Quasi-Stochastic Diffusion-Reaction Dynamic Model for Tumour Growth Ang Keng Cheng	9
*-Rings in Radical Theory H. France-Jackson	19
Clean Rings and Clean Modules Indah Emilia Wijayanti	29
Research on Nakayama Algebras Intan Muchtadi-Alamsyah	41
Mathematics in Medical Image Analysis: A Focus on Mammography Murk J. Bottema, Mariusz Bajger, Kenny MA, Simon Williams	51
The Order of Phase-Type Distributions Reza Pulungan	65
The Linear Quadratic Optimal Regulator Problem of Dynamic Game for Descriptor System Salmah	79
Chaotic Dynamics and Bifurcations in Impact Systems Sergey Kryzhevich	89
Contribution of Fuzzy Systems for Time Series Analysis Subanar and Agus Maman Abadi	121

Contributed Papers

Algebra	
Degenerations for Finite Dimensional Representations of Quivers Darmajid and Intan Muchtadi-Alamsyah	137
On Sets Related to Clones of Quasilinear Operations Denecke, K. and Susanti, Y.	145
Normalized $\mathcal{H}_{_\infty}$ Coprime Factorization for Infinite-Dimensional SystemsFatmawati, Roberd Saragih, Yudi Soeharyadi	159
Construction of a Complete Heyting Algebra for Any Lattice Harina O.L. Monim, Indah Emilia Wijayanti, Sri Wahyuni	169
The Fuzzy Regularity of Bilinear Form Semigroups Karyati, Sri Wahyuni, Budi Surodjo, Setiadji	175
The Cuntz-Krieger Uniqueness Theorem of Leavitt Path Algebras Khurul Wardati, Indah Emilia Wijayanti, Sri Wahyuni	183
Application of Fuzzy Number Max-Plus Algebra to Closed Serial Queuing Network with Fuzzy Activitiy Time	193
Enumerating of Star-Magic Coverings and Critical Sets on Complete Bipartite Graphs M. Roswitha, E. T. Baskoro, H. Assiyatun, T. S. Martini, N. A. Sudibyo	205
Construction of Rate s/2s Convolutional Codes with Large Free Distance via Linear System Approach Ricky Aditya and Ari Suparwanto	213
Characteristics of IBN, Rank Condition, and Stably Finite Rings Samsul Arifin and Indah Emilia Wijayanti	223
The Eccentric Digraph of $P_n \times P_m$ Graph Sri Kuntarti and Tri Atmojo Kusmayadi	233
On ${\mathcal M}$ -Linearly Independent Modules Suprapto, Sri Wahyuni, Indah Emilia Wijayanti, Irawati	241
The Existence of Moore Penrose Inverse in Rings with Involution Titi Udjiani SRRM, Sri Wahyuni, Budi Surodjo	249

Analysis

An Application of Zero Index to Sequences of Baire-1 Functions Atok Zulijanto	259
Regulated Functions in the <i>n</i> -Dimensional Space Ch. Rini Indrati	267
Compactness Space Which is Induced by Symmetric Gauge Dewi Kartika Sari and Ch. Rini Indrati	275
A Continuous Linear Representation of a Topological Quotient Group Diah Junia Eksi Palupi, Soeparna Darmawijaya, Setiadji, Ch. Rini Indrati	281
On Necessary and Sufficient Conditions for ℓ_{ϕ}^{L} into ℓ_{1} Superposition Operator Elvina Herawaty, Supama, Indah Emilia Wijayanti	289
A DRBEM for Steady Infiltration from Periodic Flat Channels with Root Water Uptake Imam Solekhudin and Keng-Cheng Ang	297
Boundedness of the Bimaximal Operator and Bifractional Integral Operators in Generalized Morrey Spaces Wono Setya Budhi and Janny Lindiarni	309
Applied Mathematics	
A Lepskij-Type Stopping-Rule for Simplified Iteratively Regularized Gauss-Newton Method Agah D. Garnadi	317
Asymptotically Autonomous Subsystems Applied to the Analysis of a Two-Predator One- Prey Population Model Alexis Erich S. Almocera, Lorna S. Almocera, Polly W.Sy	323
Sequence Analysis of DNA H1N1 Virus Using Super Pair Wise Alignment Alfi Yusrotis Zakiyyah, M. Isa Irawan, Maya Shovitri	331
Optimization Problem in Inverted Pendulum System with Oblique Track Bambang Edisusanto, Toni Bakhtiar, Ali Kusnanto	339
Existence of Traveling Wave Solutions for Time-Delayed Lattice Reaction-Diffusion Systems Cheng-Hsiung Hsu, Jian-Jhong Lin, Ting-Hui Yang	347

Effect of Rainfall and Global Radiation on Oil Palm Yield in Two Contrasted Regions of Sumatera, Riau and Lampung, Using Transfer Function Divo D. Silalahi, J.P. Caliman, Yong Yit Yuan	365
Continuously Translated Framelet Dylmoon Hidayat	379
Multilane Kinetic Model of Vehicular Traffic System Endar H. Nugrahani	386
Analysis of a Higher Dimensional Singularly Perturbed Conservative System: the Basic Properties Fajar Adi Kusumo	395
A Mathematical Model of Periodic Maintence Policy based on the Number of Failures for Two-Dimensional Warranted Product Hennie Husniah, Udjianna S. Pasaribu, A.H. Halim	403
The Existence of Periodic Solution on STN Neuron Model in Basal Ganglia I Made Eka Dwipayana	413
Optimum Locations of Multi-Providers Joint Base Station by Using Set-Covering Integer Programming: Modeling & Simulation I Wayan Suletra, Widodo, Subanar	419
Expected Value Approach for Solving Multi-Objective Linear Programming with Fuzzy Random Parameters Indarsih, Widodo, Ch. Rini Indrati	427
Chaotic S-Box with Piecewise Linear Chaotic Map (PLCM) Jenny Irna Eva Sari and Bety Hayat Susanti	435
Model of Predator-Prey with Infected Prey in Toxic Environment Lina Aryati and Zenith Purisha	449
On the Mechanical Systems with Nonholonomic Constraints: The Motion of a Snakeboard on a Spherical Arena Muharani Asnal and Muhammad Farchani Rosyid	459
Safety Analysis of Timed Automata Hybrid Systems with SOS for Complex Eigenvalues Noorma Yulia Megawati, Salmah, Indah Emilia Wijayanti	471
Global Asymptotic Stability of Virus Dynamics Models and the Effects of CTL and Antibody Responses	481

A Simple Diffusion Model of Plasma Leakage in Dengue Infection Nuning Nuraini, Dinnar Rachmi Pasya, Edy Soewono	499
The Sequences Comparison of DNA H5N1 Virus on Human and Avian Host Using Tree Diagram Method Siti Fauziyah, M. Isa Irawan, Maya Shovitri	505
Fuzzy Controller Design on Model of Motion System of the Satellite Based on Linear Matrix Inequality Solikhatun and Salmah	515
Unsteady Heat and Mass Transfer from a Stretching Suface Embedded in a Porous Medium with Suction/injection and Thermal Radiation Effects Stanford Shateyi and Sandile S Motsa	529
Level-Set-Like Method for Computing Multi-Valued Solutions to Nonlinear Two Channels Dissipation Model Sumardi, Soeparna Darmawijaya, Lina Aryati, F.P.H. Van Beckum	547
Nonhomogeneous Abstract Degenerate Cauchy Problem: The Bounded Operator on the Nonhomogen Term Susilo Hariyanto, Lina Aryati, Widodo	559
Stability Analysis and Optimal Harvesting of Predator-Prey Population Model with Time Delay and Constant Effort of Harvesting	567
Dynamic Analysis of Ethanol, Glucose, and Saccharomyces for Batch Fermentation Widowati, Nurhayati, Sutimin, Laylatusysyarifah	579
Computer Science, Graph and Combinatorics	
Survey of Methods for Monitoring Association Rule Behavior Ani Dijah Rahajoe and Edi Winarko	589
A Comparison Framework for Fingerprint Recognition Methods Ary Noviyanto and Reza Pulungan	601
The Global Behavior of Certain Turing System Janpou Nee	615
Logic Approach Towards Formal Verification of Cryptographic Protocol D.L. Crispina Pardede, Maukar, Sulistyo Puspitodjati	621
A Framework for an LTS Semantics for Promela	631

Mathematics Education

Modelling On Lecturers' Performance with Hotteling-Harmonic-Fuzzy H. A. Parhusip and A. Setiawan	647
Differences in Creativity Qualities Between Reflective and Impulsive Students in Solving Mathematics	659
Statistics and Finance	
Two-Dimensional Warranty Policies Using Copula Adhitya Ronnie Effendie	671
Consistency of the Bootstrap Estimator for Mean Under Kolmogorov Metric and Its Implementation on Delta Method Bambang Suprihatin, Suryo Guritno, Sri Haryatmi	679
Multivariate Time Series Analysis Using RcmdrPlugin.Econometrics and Its Application for Finance Dedi Rosadi	689
Unified Structural Models and Reduced-Form Models in Credit Risk by the Yield Spreads Di Asih I Maruddani, Dedi Rosadi, Gunardi, Abdurakhman	697
The Effect of Changing Measure in Interest Rate Models Dina Indarti, Bevina D. Handari, Ias Sri Wahyuni	705
New Weighted High Order Fuzzy Time Seriesfor Inflation Prediction Dwi Ayu Lusia and Suhartono	715
Detecting Outlier in Hyperspectral Imaging UsingMultivariate Statistical Modeling and Numerical Optimization Edisanter Lo	729
Prediction the Cause of Network Congestion Using Bayesian Probabilities Erwin Harapap, M. Yusuf Fajar, Hiroaki Nishi	737
Solving Black-Scholes Equation by Using Interpolation Method with Estimated Volatility F. Dastmalchisaei, M. Jahangir Hossein Pour, S. Yaghoubi	751
Artificial Ensemble Forecasts: A New Perspective of Weather Forecast in Indonesia	763

Second Order Least Square for ARCH Model Herni Utami, Subanar, Dedi Rosadi, Liqun Wang	773
Two Dimensional Weibull Failure Modeling Indira P. Kinasih and Udjianna S. Pasaribu	781
Simulation Study of MLE on Multivariate Probit Models Jaka Nugraha	791
Clustering of Dichotomous Variables and Its Application for Simplifying Dimension of Quality Variables of Building Reconstruction Process	801
Valuing Employee Stock Options Using Monte Carlo Method Kuntjoro Adji Sidarto and Dila Puspita	813
Classification of Epileptic Data Using Fuzzy Clustering Nazihah Ahmad, Sharmila Karim, Hawa Ibrahim, Azizan Saaban, Kamarun Hizam Mansor	821
Recommendation Analysis Based on Soft Set for Purchasing Products R.B. Fajriya Hakim, Subanar, Edi Winarko	831
Heteroscedastic Time Series Model by Wavelet Transform Rukun Santoso, Subanar, Dedi Rosadi, Suhartono	849
Parallel Nonparametric Regression Curves Sri Haryatmi Kartiko	859
Ordering Dually in Triangles (Ordit) and Hotspot Detection in Generalized Linear Model for Poverty and Infant Health in East Java Yekti Widyaningsih, Asep Saefuddin, Khairil Anwar Notodiputro, Aji Hamim Wigena	865
Empirical Properties and Mixture of Distributions: Evidence from Bursa Malaysia Stock Market Indices	879
An Improved Model of Tumour-Immune System Interactions <i>Trisilowati, Scott W. Mccue, Dann Mallet</i>	895

Proceedings of "The 6th SEAMS-UGM Conference 2011" Algebra, pp. 193 – 204.

APPLICATION OF FUZZY NUMBER MAX-PLUS ALGEBRA TO CLOSED SERIAL QUEUING NETWORK WITH FUZZY ACTIVITY TIME

M. ANDY RUDHITO, SRI WAHYUNI, ARI SUPARWANTO, F. SUSILO

Abstract. The activity times in a queuing network are seldom precisely known, and then could be represented into the fuzzy number, that is called fuzzy activity times. This paper aims to determine the dynamical model of a closed serial queuing network with fuzzy activity time and its periodic properties using max-plus algebra approach. The finding shows that the dynamics of the network can be modeled as a recursive system of fuzzy number max-plus linear equations. The periodic properties of the network can be obtained from the fuzzy number max-plus eigenvalue and eigenvector of matrix in the system. In the network, for a given level of risk, it can be determined the earliest of early departure time of a customer, so that the customer's departure interval time will be in the smallest interval where the lower bound and upper bound are periodic.

Keywords and Phrases: max-plus algebra, queuing network, fuzzy activity times, periodic.

1. INTRODUCTION

We will discuss the closed serial queuing network of n single-server, with a infinite buffer capacity and *n* customers (Krivulin [4]). The network works with the principle of First-In First-Out (FIFO). In the system, the customers have to pass through the queues consecutively so as to receive service at each server. One cycle of network services is the process of entry of customers into the buffer of 1st server to leave the nth server. After completion of service to the nth server, customers return to the first queue for a new cycle of network services. Suppose at the initial time of observation, all the servers do not give service, in which the buffer of ith server contains one customer, for each i = 1, 2, ..., n. It is assumed that the transition of customers from a queue to the next one requires no time.

193

Figure 1 (Krivulin [5]) gives the initial state of the closed serial queuing network, where customers are expressed by "•".

The closed serial queuing network can be found in the assembly plant systems, such as assembling cars and electronic goods. Customers in this system are palettes while the server is a machine assembler. Palette is a kind of desk or place where the components or semi-finished goods are placed and moved to visit machines assemblers. At first, 1st pallete enters to the buffer of 1st engine and then enters to the 1st machine and the 2nd pallete enters to the buffer of 1st engine. In the 1st engine, components are placed and prepared for assembly in the next machine. Next, 1st palette enters buffer of 2nd machine and 2nd pallette enter 1st machine. And so forth for n palettes are available, so that it reaches the state as in Figure 1 above, where the initial state observation is reached. After assembly is completed in the nth machine, the assembly of goods will leave the network, while the palette will go back to the buffer of 1st engine, to begin a new cycle of network services, and so on.

Max-plus algebra (Baccelli, et al. [1]; Heidergott, B. B, et. al. [3]), namely the set of all real numbers \mathbf{R} with the operations max and plus, has been used to model a closed serial queuing network algebraically, with a deterministic time activity (Krivulin [4]; Krivulin [5]). In the problem of modeling and analysis of a network sometimes its activity times is not known, for instance due to its design phase, data on time activity or distribution are not fixed. This activity can be estimated based on the experience and opinions from experts and network operators. This network activity times are modeled using fuzzy number, that is called fuzzy activity times. Scheduling problems involving fuzzy number can be seen in Chanas and Zielinski [2], and Soltoni and Haji [9]. As for the issue network model involving fuzzy number can be seen in Lüthi and Haring [6].

In this paper we determine the dynamical model of a closed serial queuing network with fuzzy activity time and its periodic properties using max-plus algebra approach. This approach will use some concepts such as: fuzzy number max-plus algebra, fuzzy number max-plus eigenvalue and eigenvector (Rudhito [8]). We will discuss a closed serial queuing network as discussed in Krivulin [4] and Krivulin [5], where crisp activity time will be replaced with fuzzy activity time, where can be modeled by fuzzy number. The dynamical model of the network can be obtained analogous with crisp activity time case. The periodic properties of the network can be obtained from the fuzzy number max-plus eigenvalue and eigenvector of matrix in the system. We will use some concepts and result on max-plus algebra, interval max-plus algebra and fuzzy number max-plus algebra.

Application of Fuzzy Number Max-Plus Algebra to Closed Serial Queuing Network ... 195

2. MAX-PLUS ALGEBRA

In this section we will review some concepts and results of max-plus algebra, matrix over max-plus algebra and max-plus eigenvalue. Further details can be found in Baccelli, et al. [1].

Let $\mathbf{R}_{\varepsilon} := \mathbf{R} \cup \{\varepsilon\}$ with \mathbf{R} is the set of all real numbers and $\varepsilon := -\infty$. Define two operations \oplus and \otimes such that

$$a \oplus b := \max(a, b)$$
 and $a \otimes b := a + b$

for every $a, b \in \mathbf{R}_{\varepsilon}$.

We can show that $(\mathbf{R}_{\varepsilon}, \oplus, \otimes)$ is a commutative idempotent semiring with neutral element $\varepsilon = -\infty$ and unity element e = 0. Moreover, $(\mathbf{R}_{\varepsilon}, \oplus, \otimes)$ is a semifield, that is $(\mathbf{R}_{\varepsilon}, \oplus, \otimes)$ is a commutative semiring, where for every $a \in \mathbf{R}$ there exists -a such that $a \otimes (-a) = 0$. Then, $(\mathbf{R}_{\varepsilon}, \oplus, \otimes)$ is called *max-plus algebra*, and is written as \mathbf{R}_{\max} . The relation " \leq_{m} " defined on \mathbf{R}_{\max} as $x \leq_{\mathrm{m}} y$ iff $x \oplus y = y$. In \mathbf{R}_{\max} , operations \oplus and \otimes are *consistent* with respect to the order \leq_{m} , that is for every $a, b, c \in \mathbf{R}_{\max}$, if $a \leq_{\mathrm{m}} b$, then $a \oplus c \leq_{\mathrm{m}} b \oplus c$, and $a \otimes c \leq_{\mathrm{m}} b \otimes c$. Define $x^{\otimes 0} := 0$, $x^{\otimes k} := x \otimes x^{\otimes k-1}$ and $\varepsilon^{\otimes k} := \varepsilon$, for k = 1, 2, ...

Define $\mathbf{R}_{\max}^{m\times n}$: = { $A = (A_{ij}) | A_{ij} \in \mathbf{R}_{\max}$, i = 1, 2, ..., m and j = 1, 2, ..., n}, that is set of all matrices over max-plus algebra. Specifically, for $A, B \in \mathbf{R}_{\max}^{n\times n}$ and $\alpha \in \mathbf{R}_{\max}$ we define

$$(\alpha \otimes A)_{ij} = \alpha \otimes A_{ij}, (A \oplus B)_{ij} = A_{ij} \oplus B_{ij} \text{ and } (A \otimes B)_{ij} = \bigoplus_{k=1}^{k} A_{ik} \otimes B_{kj}$$

We define matrix $E \in \mathbf{R}_{\max}^{n \times n}$, $(E)_{ij} := \begin{cases} 0 \text{ if } i = j \\ \varepsilon \text{ if } i \neq j \end{cases}$ and matrix $\varepsilon \in \mathbf{R}_{\max}^{n \times n}$, $(\varepsilon)_{ij} := \varepsilon$ for every iand j. For any matrix $A \in \mathbf{R}_{\max}^{n \times n}$, one can define $A^{\otimes^0} = E_n$ and $A^{\otimes^k} = A \otimes A^{\otimes^{k-1}}$ for k = 1, 2, The relation " \preceq_m " defined on $\mathbf{R}_{\max}^{m \times n}$ as $A \preceq_m B$ iff $A \oplus B = B$. In $(\mathbf{R}_{\max}^{n \times n}, \oplus, \otimes)$, operations \oplus and \otimes are consistent with respect to the order \preceq_m , that is for every $A, B, C \in$ $\mathbf{R}_{\max}^{n \times n}$, if $A \preceq_m B$, then $A \oplus C \preceq_m B \oplus C$, and $A \otimes C \preceq_m B \otimes C$.

Define $\mathbf{R}_{\max}^n := \{ \mathbf{x} = [x_1, x_2, ..., x_n]^T | x_i \in \mathbf{R}_{\max}, i = 1, 2, ..., n \}$. Note that \mathbf{R}_{\max}^n can be viewed as $\mathbf{R}_{\max}^{n \times i}$. The elements of \mathbf{R}_{\max}^n are called *vectors* over \mathbf{R}_{\max} or shortly *vectors*. A vector $\mathbf{x} \in \mathbf{R}_{\max}^n$ is said to be *not equal* to vector $\mathbf{\varepsilon}$, and is written as $\mathbf{x} \neq \mathbf{\varepsilon}$, if there exists $i \in \{1, 2, ..., n\}$ such that $x_i \neq \varepsilon$.

Let G = (V, A) with $V = \{1, 2, ..., p\}$ is non empty finite set which is its elements is called *node* and A is a set of ordered pairs of nodes. A directed graph G is said to be *weighted* if every arch $(j, i) \in A$ corresponds to a real number A_{ij} . The real number A_{ij} is called the *weight* of arch (j, i), and is written as w(j, i). In pictorial representation of weighted directed graph, archs are labelled by its weight. Define a *precedence graph* of a matrix $A \in \mathbf{R}_{max}^{n \times n}$ as weighted directed graph G(A) = (V, A) with $V = \{1, 2, ..., n\}$, $A = \{(j, i) | w(i, j) = A_{ij} \neq \varepsilon\}$. Conversely, for every weighted directed graph G = (V, A), can be defined a matrix $A \in \mathbf{R}_{max}^{n \times n}$, which is called the *weighting matrix* of graph G, where

 $A_{ij} = \begin{cases} w(j,i) \text{ if } (j,i) \in \mathcal{A} \\ \varepsilon & \text{ if } (j,i) \notin \mathcal{A}. \end{cases}$. The mean weight of a path is defined as the sum of the

weights of the individual arcs of this path, divided by the length of this path. If such a path is a circuit one talks about the mean weight of the circuit, or simply the cycle mean. It follow that a formula for maximum mean cycle mean $\lambda_{\max}(A)$ in $\mathcal{G}(A)$ is $\lambda_{\max}(A) = \bigoplus_{k=1}^{n} (\frac{1}{k} \bigoplus_{i=1}^{n} (A^{\otimes k})_{ii})$.

The matrix $A \in \mathbf{R}_{\max}^{n \times n}$ is said to be *irreducible* if its precedence graph $G = (\mathcal{V}, \mathcal{A})$ is strongly connected, that is for every $i, j \in \mathcal{V}, i \neq j$, there is a path from i to j. We can show that matrix $A \in \mathbf{R}_{\max}^{n \times n}$ is irreducible if and only if $(A \oplus A^{\otimes^2} \oplus ... \oplus A^{\otimes^{n-1}})_{ij} \neq \varepsilon$ for every i, j where $i \neq j$ (Schutter, 1996).

Given $A \in \mathbf{R}_{\max}^{n \times n}$. Scalar $\lambda \in \mathbf{R}_{\max}$ is called the *max-plus eigenvalue of matrix A* if there exists a vector $\mathbf{v} \in \mathbf{R}_{\max}^n$ with $\mathbf{v} \neq \mathbf{\varepsilon}_{n\times 1}$ such that $A \otimes \mathbf{v} = \lambda \otimes \mathbf{v}$. Vector \mathbf{v} is called *max-plus eigenvector of matrix A associated with* λ . We can show that $\lambda_{\max}(A)$ is a max-plus eigenvalue of matrix *A*. For matrix $B = -\lambda_{\max}(A) \otimes A$, if $B_{ii}^+ = 0$, then *i*-th column of matrix B^* is an eigenvector corresponding with eigenvalue $\lambda_{\max}(A)$. The eigenvector is called *fundamental max-plus eigenvector* associated with eigenvalues $\lambda_{\max}(A)$ (Bacelli, et al., 2001). A linear combination of fundamental max-plus eigenvector of matrix A is also an eigenvector associated with $\lambda_{\max}(A)$. We can show that if matrix $A \in \mathbf{R}_{\max}^{n \times n}$ is irreducible, then $\lambda_{\max}(A)$ is the unique max-plus eigenvalue of A and the max-plus eigenvector associated with $\lambda_{\max}(A)$ is \mathbf{v} , where $v_i \neq \varepsilon$ for every $i \in \{1, 2, ..., n\}$ (Bacelli, et al., 2001).

3. INTERVAL MAX-PLUS ALGEBRA

In this section we will review some concepts and results of interval max-plus algebra, matrix over interval max-plus algebra and interval max-plus eigenvalue. Further details can be found in Rudhito, et al. [7] and Rudhito [8].

The (closed) max-plus interval x in \mathbf{R}_{max} is a subset of \mathbf{R}_{max} of the form

$$\mathbf{x} = [\underline{\mathbf{x}}, \overline{\mathbf{x}}] = \{ x \in \mathbf{R}_{\max} \mid \underline{\mathbf{x}} \preceq_{\mathrm{m}} x \preceq_{\mathrm{m}} \overline{\mathbf{x}} \},\$$

which is shortly called *interval*. The interval $x \subseteq y$ if and only if $\underline{y} \preceq_m \underline{x} \preceq_m \overline{x} \preceq_m \overline{y}$. Especially x = y if and only if $\underline{x} = \underline{y}$ and $\overline{x} = \overline{y}$. The number $x \in \mathbf{R}_{max}$ can be represented as interval [x, x]. Define $\mathbf{I}(\mathbf{R})_{\varepsilon} := \{x = [\underline{x}, \overline{x}] \mid \underline{x}, \overline{x} \in \mathbf{R}, \varepsilon \prec_m \underline{x} \preceq_m \overline{x}\} \cup \{\varepsilon\}$, where $\varepsilon := [\varepsilon, \varepsilon]$. Define $x \bigoplus y = [\underline{x} \oplus \underline{y}, \overline{x} \oplus \overline{y}]$ and $x \boxtimes y = [\underline{x} \otimes \underline{y}, \overline{x} \otimes \overline{y}]$ for every $x, y \in \mathbf{I}(\mathbf{R})_{\varepsilon}$. We can show that $(\mathbf{I}(\mathbf{R})_{\varepsilon}, \bigoplus, \overline{\otimes}, \overline{\otimes})$ is a commutative idempotent semiring with neutral element $\varepsilon = [\varepsilon, \varepsilon]$ and unity element 0 = [0, 0]. This commutative idempotent semiring

196

Application of Fuzzy Number Max-Plus Algebra to Closed Serial Queuing Network ... 197

 $(\mathbf{I}(\mathbf{R})_{\varepsilon}, \overline{\bigoplus}, \overline{\bigotimes})$ is called *interval max-plus algebra*, and is written as $\mathbf{I}(\mathbf{R})_{max}$. Relation " \leq_{Im} " defined on $\mathbf{I}(\mathbf{R})_{max}$ as $x \leq_{Im} y \Leftrightarrow x \overline{\bigoplus} y = y$ is a partial order on $\mathbf{I}(\mathbf{R})_{max}$. Notice that $x \overline{\bigoplus} y = y \Leftrightarrow \underline{x} \leq_{m} \underline{y}$ and $\overline{x} \leq_{m} \overline{y}$.

Define $\mathbf{I}(\mathbf{R})_{\max}^{m \times n} := \{\mathbf{A} = (\mathbf{A}_{ij}) \mid \mathbf{A}_{ij} \in \mathbf{I}(\mathbf{R})_{\max}, i = 1, 2, ..., m, j = 1, 2, ..., n\}$. The elements of $\mathbf{I}(\mathbf{R})_{\max}^{m \times n}$ are called *matrices over interval max-plus algebra* or shortly *interval matrices*. The operations on interval matrices can be defined in the same way with the operations on matrices over max-plus algebra. For any matrix $\mathbf{A} \in \mathbf{I}(\mathbf{R})_{\max}^{m \times n}$, Define the matrix $\underline{\mathbf{A}} = (\underline{\mathbf{A}}_{ij}) \in \mathbf{R}_{\max}^{m \times n}$ and $\overline{\mathbf{A}} = (\overline{\mathbf{A}}_{ij}) \in \mathbf{R}_{\max}^{m \times n}$, which are called *lower bound matrix* and *upper bound matrix of* \mathbf{A} , respectively. Define a *matrix interval of* \mathbf{A} , that is $[\underline{\mathbf{A}}, \overline{\mathbf{A}}] = \{A \in \mathbf{R}_{\max}^{m \times n} \mid \underline{\mathbf{A}} \preceq_{m} \overline{\mathbf{A}} \}$ and $\mathbf{I}(\mathbf{R}_{\max}^{m \times n})_{\mathbf{b}} = \{[\underline{\mathbf{A}}, \overline{\mathbf{A}}] \mid \mathbf{A} \in (\mathbf{R})_{\max}^{n \times n}\}$. The matrix interval $[\underline{\mathbf{A}}, \overline{\mathbf{A}}]$ and $[\underline{\mathbf{B}}, \overline{\mathbf{B}}] \in \mathbf{I}(\mathbf{R}_{\max}^{m \times n})_{\mathbf{b}}$ are equal if $\underline{\mathbf{A}} = \underline{\mathbf{B}}$ and $\overline{\mathbf{A}} = \overline{\mathbf{B}}$. We can show that for every matrix interval $\mathbf{A} \in \mathbf{I}(\mathbf{R}_{\max}^{m \times n})$ we can determine matrix interval $[\underline{\mathbf{A}}, \overline{\mathbf{A}}] \in \mathbf{I}(\mathbf{R}_{\max}^{m \times n})_{\mathbf{b}}$ and conversely. The matrix interval $[\underline{\mathbf{A}}, \overline{\mathbf{A}}]$ is called *matrix interval associated with the interval matrix* \mathbf{A} , and is written as $\mathbf{A} \approx [\underline{\mathbf{A}}, \overline{\mathbf{A}}]$. Moreover, we have $\alpha \otimes \mathbf{A} \approx [\underline{\alpha} \otimes \underline{\mathbf{A}}, \overline{\alpha} \otimes \overline{\mathbf{A}}], \mathbf{A} \oplus \mathbf{B} \approx [\underline{\mathbf{A}} \oplus \underline{\mathbf{B}}, \overline{\mathbf{A}} \oplus \overline{\mathbf{B}}]$ and $\mathbf{A} \otimes \mathbf{B} \approx [\underline{\mathbf{A}} \otimes \underline{\mathbf{B}}, \overline{\mathbf{A}} \otimes \overline{\mathbf{B}}]$.

Define $\mathbf{I}(\mathbf{R})_{\max}^{n} := \{ \mathbf{x} = [\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{n}]^{\mathrm{T}} \mid \mathbf{x}_{i} \in \mathbf{I}(\mathbf{R})_{\max}, i = 1, 2, ..., n \}$. Note that $\mathbf{I}(\mathbf{R})_{\max}^{n}$ can be viewed as $\mathbf{I}(\mathbf{R})_{\max}^{n\times 1}$. The elements of $\mathbf{I}(\mathbf{R})_{\max}^{n}$ are called *interval vectors over* $\mathbf{I}(\mathbf{R})_{\max}$ or shortly *interval vectors*. An interval vector $\mathbf{x} \in \mathbf{I}(\mathbf{R})_{\max}^{n}$ is said to be *not equal* to interval vector $\mathbf{\varepsilon}$, and is written as $\mathbf{x} \neq \mathbf{\varepsilon}$, if there exists $i \in \{1, 2, ..., n\}$ such that $\mathbf{x}_{i} \neq \varepsilon$.

Interval matrix $A \in \mathbf{I}(\mathbf{R})_{\max}^{n \times n}$, where $A \approx [\underline{A}, \overline{A}]$, is said to be *irreducible* if every matrix $A \in [\underline{A}, \overline{A}]$ is irreducible. We can show that interval matrix $A \in \mathbf{I}(\mathbf{R})_{\max}^{n \times n}$, where $A \approx [\underline{A}, \overline{A}]$ is irreducible if and only if $\underline{A} \in \mathbf{R}_{\max}^{n \times n}$ is irreducible (Rudhito, et al. [7]).

4. FUZZY NUMBER MAX-PLUS ALGEBRA

In this section we will review some concepts and results of fuzzy number max-plus algebra, matrix over fuzzy number max-plus algebra and fuzzy number max-plus eigenvalue. Further details can be found in Rudhito [8].

Fuzzy set \widetilde{K} in universal set X is represented as the set of ordered pairs $\widetilde{K} = \{(x, \mu_{\widetilde{K}}(x)) | x \in X\}$ where $\mu_{\widetilde{K}}$ is a membership function of fuzzy set \widetilde{K} , which is a mapping

from universal set X to closed interval [0, 1]. Support of a fuzzy set \widetilde{K} is $supp(\widetilde{K}) = \{x \in X \mid \mu_{\widetilde{K}}(x) > 0\}$. Height of a fuzzy set \widetilde{K} is height(\widetilde{K}) = $\sup_{x \in X} \{\mu_{\widetilde{K}}(x)\}$. A fuzzy set \widetilde{K} is said to be normal if height(\widetilde{K}) = 1. For a number $\alpha \in [0, 1]$, α -cut of a fuzzy set \widetilde{K} is cut^{α}(\widetilde{K}) = $K^{\alpha} = \{x \in X \mid \mu_{\widetilde{K}}(x) \ge \alpha\}$. A fuzzy sets \widetilde{K} is said to be convex if K^{α} is convex,

that is contains line segment between any two points in the K^{α} , for every $\alpha \in [0, 1]$, *Fuzzy number* \tilde{a} is defined as a fuzzy set in universal set **R** which satisfies the following properties: *i*) normal, that is $a^1 \neq \emptyset$, *ii*) for every $\alpha \in (0, 1] a^{\alpha}$ is closed in **R**, that is there exists \underline{a}^{α} , $\overline{a}^{\alpha} \in \mathbf{R}$ with $\underline{a}^{\alpha} \leq \overline{a}^{\alpha}$ such that $a^{\alpha} = [\underline{a}^{\alpha}, \overline{a}^{\alpha}] = \{x \in \mathbf{R} \mid \underline{a}^{\alpha} \leq x \leq x \leq x\}$

 $\overline{a^{\alpha}}$ }, *iii*) $supp(\tilde{a})$ is bounded. For $\alpha = 0$, define $a^0 = [inf(supp(\tilde{a})), sup(supp(\tilde{a}))]$. Since every closed interval in **R** is convex, a^{α} is convex for every $\alpha \in [0, 1]$, hence \tilde{a} is convex.

Let $\mathbf{F}(\mathbf{R})_{\tilde{\varepsilon}} := \mathbf{F}(\mathbf{R}) \cup \{\tilde{\varepsilon}\}$, where $\mathbf{F}(\mathbf{R})$ is set of all fuzzy numbers and $\tilde{\varepsilon} := \{-\infty\}$ with the α -cut of $\tilde{\varepsilon}$ is $\varepsilon^{\alpha} = [-\infty, -\infty]$. Define two operations $\tilde{\oplus}$ and $\tilde{\otimes}$ such that for every $\tilde{a}, \tilde{b} \in \mathbf{F}(\mathbf{R})_{\tilde{\varepsilon}}$, with $a^{\alpha} = [\underline{a}^{\alpha}, \overline{a}^{\alpha}] \in \mathbf{I}(\mathbf{R})_{\max}$ and $b^{\alpha} = [\underline{b}^{\alpha}, \overline{b}^{\alpha}] \in \mathbf{I}(\mathbf{R})_{\max}$,

- *i*) Maximum of \tilde{a} and \tilde{b} , written $\tilde{a} \oplus \tilde{b}$, is a fuzzy number whose α -cut is interval $[\underline{a}^{\alpha} \oplus \underline{b}^{\alpha}, \overline{a}^{\alpha} \oplus \overline{b}^{\alpha}]$ for every $\alpha \in [0, 1]$
- *ii*) Addition of \tilde{a} and \tilde{b} , written $\tilde{a} \otimes \tilde{b}$, is a fuzzy number whose α -cut is interval $[\underline{a}^{\alpha} \otimes \underline{b}^{\alpha}, \overline{a}^{\alpha} \otimes \overline{b}^{\alpha}]$ for every $\alpha \in [0, 1]$.

We can show that $(\mathbf{F}(\mathbf{R})_{\tilde{\varepsilon}}, \tilde{\oplus}, \tilde{\otimes})$ is a commutative idempotent semiring. The commutative idempotent semiring $\mathbf{F}(\mathbf{R})_{\max} := (\mathbf{F}(\mathbf{R})_{\tilde{\varepsilon}}, \tilde{\oplus}, \tilde{\otimes})$ is called *fuzzy number maxplus algebra*, and is written as $\mathbf{F}(\mathbf{R})_{\max}$ (Rudhito, et al. [8]).

Define $\mathbf{F}(\mathbf{R})_{\max}^{m \times n} := \{ \widetilde{A} = (\widetilde{A}_{ij}) \mid \widetilde{A}_{ij} \in \mathbf{F}(\mathbf{R})_{\max}, i = 1, 2, ..., m \text{ and } j = 1, 2, ..., n \}$. The elements of $\mathbf{F}(\mathbf{R})_{\max}^{m \times n}$ are called *matrices over fuzzy number max-plus algebra* or shortly *fuzzy number matrices*. The operations on fuzzy number matrices can be defined in the same way with the operations on matrices over max-plus algebra. Define matrix $\widetilde{E} \in \mathbf{F}(\mathbf{R})_{\max}^{n \times n}$,

with
$$(\widetilde{E})_{ij} := \begin{cases} \widetilde{0} & \text{if } i = j \\ \widetilde{\varepsilon} & \text{if } i \neq j \end{cases}$$
, and matrix $\widetilde{\varepsilon} \in \mathbf{F}(\mathbf{R})_{\max}^{n \times n}$, with $(\widetilde{\varepsilon})_{ij} := \widetilde{\varepsilon}$ for every *i* and *j*.

For every $\widetilde{A} \in \mathbf{F}(\mathbf{R})_{\max}^{m \times n}$ and $\alpha \in [0, 1]$, define α -cut matrix of \widetilde{A} as the interval matrix $A^{\alpha} = (A_{ij}^{\alpha})$, with A_{ij}^{α} is the α -cut of \widetilde{A}_{ij} for every *i* and *j*. Define matrix $\underline{A}^{\alpha} = (A_{ij}^{\alpha}) \in \mathbf{R}_{\max}^{m \times n}$ and $\overline{A}^{\alpha} = (\overline{A_{ij}^{\alpha}}) \in \mathbf{R}_{\max}^{m \times n}$ which are called *lower bound* and *upper bound of matrix* A^{α} , respectively. We can conclude that the matrices \widetilde{A} , $\widetilde{B} \in \mathbf{F}(\mathbf{R})_{\max}^{m \times n}$ are equal iff $A^{\alpha} = B^{\alpha}$,

Application of Fuzzy Number Max-Plus Algebra to Closed Serial Queuing Network... 199

that is $A_{ij}^{\alpha} = B_{ij}^{\alpha}$ for every $\alpha \in [0, 1]$ and for every *i* and *j*. For every fuzzy number matrix \widetilde{A} , $A^{\alpha} \approx [\underline{A}^{\alpha}, \overline{A}^{\alpha}]$. Let $\widetilde{\lambda} \in \mathbf{F}(\mathbf{R})_{\max}$, \widetilde{A} , $\widetilde{B} \in \mathbf{F}(\mathbf{R})_{\max}^{m \times n}$. We can show that $\lambda \otimes A)^{\alpha} \approx [\underline{\lambda}^{\alpha} \otimes \underline{A}^{\alpha}]$, $\overline{\lambda}^{\alpha} \otimes \overline{A}^{\alpha}$] and $(A \oplus B)^{\alpha} \approx [\underline{A}^{\alpha} \oplus \underline{B}^{\alpha}]$, $\overline{A}^{\alpha} \oplus \overline{B}^{\alpha}$] for every $\alpha \in [0, 1]$. Let $\widetilde{A} \in \mathbf{F}(\mathbf{R})_{\max}^{m \times p}$, $\widetilde{A} \in \mathbf{F}(\mathbf{R})_{\max}^{p \times n}$. We can show that $(A \otimes B)^{\alpha} \approx [\underline{A}^{\alpha} \otimes \underline{B}^{\alpha}]$ for every $\alpha \in [0, 1]$.

Define $\mathbf{F}(\mathbf{R})_{\max}^{n} := \{ \widetilde{\mathbf{X}} = [\widetilde{x}_{1}, \widetilde{x}_{2}, ..., \widetilde{x}_{n}]^{T} | \widetilde{x}_{i} \in \mathbf{F}(\mathbf{R})_{\max}, i = 1, ..., n \}$. The elements in $\mathbf{F}(\mathbf{R})_{\max}^{n}$ are called *fuzzy number vectors over* $\mathbf{F}(\mathbf{R})_{\max}$ or shortly *fuzzy number vectors*. A fuzzy number vector $\widetilde{\mathbf{X}} \in \mathbf{F}(\mathbf{R})_{\max}^{n}$ is said to be *not equal* to fuzzy number vector $\widetilde{\mathbf{\mathcal{E}}}$, written $\widetilde{\mathbf{\mathcal{X}}} \neq \widetilde{\mathbf{\mathcal{E}}}$, if there exists $i \in \{1, 2, ..., n\}$ such that $\widetilde{x}_{i} \neq \widetilde{\mathbf{\mathcal{E}}}$.

Fuzzy number matrix $\widetilde{A} \in \mathbf{F}(\mathbf{R})_{\max}^{n \times n}$ is said to be *irreducible* if $A^{\alpha} \in \mathbf{I}(\mathbf{R})_{\max}^{n \times n}$ is irreducible for every $\alpha \in [0, 1]$. We can show that \widetilde{A} is irreducible if and only if $\underline{A}^{0} \in \mathbf{R}_{\max}^{n \times n}$ is irreducible (Rudhito, et al. [7]).

Let $\widetilde{A} \in \mathbf{F}(\mathbf{R})_{\max}^{n \times n}$. The fuzzy number scalar $\widetilde{\lambda} \in \mathbf{F}(\mathbf{R})_{\max}$ is called *fuzzy number maxplus eigenvalue of matrix* \widetilde{A} if there exists a fuzzy number vector $\widetilde{\mathbf{v}} \in \mathbf{F}(\mathbf{R})_{\max}^{n}$ with $\widetilde{\mathbf{v}} \neq \widetilde{\mathbf{\varepsilon}}_{n \times 1}$ such that $\widetilde{A} \otimes \widetilde{\mathbf{v}} = \widetilde{\lambda} \otimes \widetilde{\mathbf{v}}$. The vector $\widetilde{\mathbf{v}}$ is called *fuzzy number max-plus eigenvectors of matrix* \widetilde{A} associaed with $\widetilde{\lambda}$. Given $\widetilde{A} \in \mathbf{F}(\mathbf{R})_{\max}^{n \times n}$. We can show that the fuzzy number scalar $\widetilde{\lambda}_{\max}(\widetilde{A}) = \bigcup_{\alpha \in [0,1]} \widetilde{\lambda}_{\max}^{\alpha}$, where $\widetilde{\lambda}_{\max}^{\alpha}$ is a fuzzy set in \mathbf{R} with membership function $\mu_{\widetilde{\lambda}_{\max}^{\alpha}}(\mathbf{x}) = \alpha \chi_{\widetilde{\lambda}_{\max}^{\alpha}}(\mathbf{x})$, and $\chi_{\widetilde{\lambda}_{\max}^{\alpha}}$ is the characteristic function of the set $[\lambda_{\max}(\underline{A}^{\alpha}), \lambda_{\max}(\overline{A}^{\alpha})]$, is a fuzzy number max-plus eigenvalues of matrix \widetilde{A} . Based on fundamental max-plus eigenvector associated with eigenvalues $\lambda_{\max}(\underline{A}^{\alpha})$ and $\lambda_{\max}(\overline{A}^{\alpha})$, we can find *fundamental fuzzy number max-plus eigenvector* associated with eigenvalues $\lambda_{\max}(\widetilde{A})$ is the unique fuzzy number max-plus eigenvalue of matrix \widetilde{A} and the fuzzy number max-plus eigenvector associated with $\widetilde{\lambda}_{\max}(\widetilde{A})$ is $\widetilde{\mathbf{v}}$, where $\widetilde{v}_i \neq \widetilde{\varepsilon}$ for every $i \in \{1, 2, ..., n\}$.

5. DYNAMICAL MODEL OF A CLOSED SERIAL QUEUING NETWORK WITH FUZZY ACTIVITIY TIME

We discuss the closed serial queuing network of n single-server, with a infinite buffer capacity and n customers, as in Figure 1.

Let $\widetilde{a}_i(k)$ = fuzzy arrival time of *k*th customer at server *i*,

$$\tilde{d}_i(k)$$
 = fuzzy departure time of *k*th customer at server *i*,

 \tilde{t}_i = fuzzy service time of *k*th customer at server *i*.

for k = 1, 2, ..., and i = 1, 2, ..., n.

The dynamical of queuing at server i can be written as

$$\widetilde{d}_{i}(k) = \max(\widetilde{t}_{i} + \widetilde{a}_{i}(k), \widetilde{t}_{i} + \widetilde{d}_{i}(k-1))$$
(1)

$$\tilde{a}_{i}(k) = \begin{cases} d_{n}(k-1) & \text{if } i=1\\ \tilde{d}_{i-1}(k-1) & \text{if } i=2,...,n \end{cases}$$
(2)

Using fuzzy number max-plus algebra notation, equation (1) can be written as

$$\widetilde{d}_{i}(k) = (\widetilde{t}_{i} \otimes \widetilde{a}_{i}(k)) \oplus (\widetilde{t}_{i} \otimes \widetilde{d}_{i}(k-1)).$$
(3)

Let
$$\widetilde{\boldsymbol{d}}(k) = [\widetilde{d}_1(k), \widetilde{d}_2(k), ..., \widetilde{d}_n(k)]^{\mathrm{T}}, \quad \widetilde{\boldsymbol{a}}(k) = [\widetilde{a}_1(k), \widetilde{a}_2(k), ..., \widetilde{a}_n(k)]^{\mathrm{T}} \text{ and } \widetilde{\boldsymbol{T}} = \begin{bmatrix} \widetilde{t}_1 & \widetilde{\varepsilon} \\ \ddots & \\ \widetilde{\varepsilon} & \widetilde{t}_n \end{bmatrix}$$
, then equations (3) and (2) can be written as

$$\widetilde{\boldsymbol{d}}(k) = (\widetilde{T} \ \widetilde{\otimes} \ \widetilde{\boldsymbol{a}}(k)) \ \widetilde{\oplus} \ (\widetilde{T} \ \widetilde{\otimes} \ \widetilde{\boldsymbol{d}}(k-1).$$
(4)

$$\widetilde{\boldsymbol{a}}(k) = \widetilde{\boldsymbol{G}} \otimes \widetilde{\boldsymbol{d}}(k-1), \tag{5}$$

with matrix
$$\widetilde{G} = \begin{bmatrix} \widetilde{\varepsilon} & \cdots & \widetilde{\varepsilon} & \widetilde{0} \\ \widetilde{0} & \ddots & \widetilde{\varepsilon} & \widetilde{\varepsilon} \\ & \ddots & \ddots & \vdots \\ \widetilde{\varepsilon} & & \widetilde{0} & \widetilde{\varepsilon} \end{bmatrix}$$
.

with fuzzy

Substituting equation (5) to the equation (4), can be obtained the equation $\vec{T}(L) = \vec{T} \stackrel{\sim}{\simeq} \vec{C} \stackrel{\sim}{\simeq} \vec{T}(L-1) \stackrel{\sim}{\simeq} \vec{T} \stackrel{\sim}{\simeq} \vec{T}(L-1)$

$$\boldsymbol{d}(k) = T \otimes G \otimes \boldsymbol{d}(k-1) \oplus T \otimes \boldsymbol{d}(k-1)$$

$$= \widetilde{T} \otimes (\widetilde{G} \oplus \widetilde{E}) \otimes \widetilde{\boldsymbol{d}}(k-1)$$

$$= \widetilde{A} \otimes \widetilde{\boldsymbol{d}}(k-1)$$
(6)
number matrix $\widetilde{A} = \widetilde{T} \otimes (\widetilde{G} \oplus \widetilde{E}) = \begin{bmatrix} \widetilde{t}_{1} & \widetilde{c} & \cdots & \widetilde{c} & \widetilde{t}_{1} \\ \widetilde{t}_{2} & \widetilde{t}_{2} & \widetilde{c} & \cdots & \widetilde{c} \\ \widetilde{c} & \ddots & \ddots & \vdots \\ \vdots & \widetilde{t}_{n-1} & \widetilde{t}_{n-1} & \widetilde{c} \\ \widetilde{c} & \cdots & \widetilde{c} & \widetilde{t}_{n} \end{bmatrix}.$

The equation (6) is dynamical model of the closed serial queuing network.

200

Application of Fuzzy Number Max-Plus Algebra to Closed Serial Queuing Network ... 201

6. PERIODIC PROPERTIES OF A CLOSED SERIAL QUEUING NETWORK WITH FUZZY ACTIVITIY TIME

Dynamical model recursive equation of the closed serial queuing network (6) can be represented through the early departure time of customer $\tilde{d}(0)$, with its α -cut $d^{\alpha}(0) \approx [\underline{d}^{\alpha}(0), \overline{d}^{\alpha}(0)]$ for every $\alpha \in [0, 1]$. For every $\alpha \in [0, 1]$ hold $d^{\alpha}(k) = A^{\alpha} \otimes d^{\alpha}(k-1) \approx [\underline{A}^{\alpha} \otimes \underline{d}^{\alpha}(k-1), \overline{A}^{\alpha} \otimes \overline{d}^{\alpha}(k-1)] = [(\underline{A}^{\alpha})^{\otimes^{k}} \otimes \underline{d}^{\alpha}(0), (\overline{A}^{\alpha})^{\otimes^{k}} \otimes \overline{d}^{\alpha}(0)] \approx (A^{\alpha})^{\overline{\otimes}^{k}} \otimes \overline{d}^{\alpha}(0)$. Thus, for every $\alpha \in [0, 1]$ hold $d^{\alpha}(k) = (A^{\alpha})^{\overline{\otimes}^{k}} \otimes \overline{d}^{\alpha}(0)$. Hence we have $\widetilde{d}(k) = \widetilde{A}^{\otimes^{k}} \otimes \widetilde{d}(0)$. Since the early departure time of customer can be determined exactly, it is a crisp time, that is a point fuzzy number $\widetilde{d}(0)$, with $d^{\alpha}(0) \approx [\underline{d}^{\alpha}(0), \overline{d}^{\alpha}(0)]$ where $\underline{d}^{\alpha}(0) = \overline{d}^{\alpha}(0)$ for every $\alpha \in [0, 1]$.

Since precedence of matrix \underline{A}^0 in the model of the closed serial queuing network (Figure 1) is strongly connected, the matrix \underline{A}^0 is irredusible. Hence, matrix \widetilde{A} in the equation (6) is irredusibel. Thus, matrix \widetilde{A} has unique fuzzy number max-plus eigenvalue, that is $\widetilde{\lambda}_{\max}(\widetilde{A})$ where $\widetilde{\mathbf{v}}$ is the fundamental fuzzy number max-plus eigenvector associated with $\widetilde{\lambda}_{\max}(\widetilde{A})$, where $\widetilde{\mathbf{v}}_i \neq \widetilde{\mathcal{E}}$ for every $i \in \{1, 2, ..., n\}$.

We construct fuzzy number vector $\widetilde{\boldsymbol{\nu}}^*$ where its α -cut vector is ${\boldsymbol{\nu}}^{*\alpha} \approx [\underline{\boldsymbol{\nu}}^{*\alpha}, \overline{\boldsymbol{\nu}}^{*\alpha}]$, using the following steps. For every $\alpha \in [0, 1]$ dan i = 1, 2, ..., n, form 1. $\underline{\boldsymbol{\nu}}^{\prime \alpha} = \delta_1 \otimes \underline{\boldsymbol{\nu}}^{\alpha}$, $\overline{\boldsymbol{\nu}^{\prime \alpha}} = \delta_1 \otimes \overline{\boldsymbol{\nu}}^{\alpha}$, with $\delta_1 = -\min(\underline{\boldsymbol{\nu}}_i^0)$.

- 3. $\overline{\boldsymbol{v}''^{\alpha}} = \delta_3 \otimes \overline{\boldsymbol{v}''^{\alpha}}$, with $\delta_3 = -\min_i(\underline{v''^0}_i \overline{v''^0}_i)$.

4.
$$\underline{\boldsymbol{v}}^{*\alpha} = \underline{\boldsymbol{v}}^{\prime\prime\alpha}$$
, $\overline{\boldsymbol{v}}^{*\alpha} = \delta_4(\alpha) \otimes \overline{\boldsymbol{v}}^{\prime\prime\prime\alpha}$, with $\delta_4(\alpha) = -\min_i(\overline{\boldsymbol{v}^{\prime\prime\prime\prime}}_i - \overline{\boldsymbol{v}^{\prime\prime\prime\prime}}_i)$.

The fuzzy number vector $\tilde{\boldsymbol{v}}^*$ is also a fuzzy number max-plus eigenvalue associated with $\tilde{\lambda}_{\max}(\tilde{A})$. From construction above, the components of $\underline{\boldsymbol{v}}^{*0}$, that is $\underline{\boldsymbol{v}}^{*0}_{i}$ are all non-negative and there exist $i \in \{1, 2, ..., n\}$ such that $\underline{\boldsymbol{v}}^{*\alpha}_{i} = 0$ for every $\alpha \in [0, 1]$. Meanwhile, its α -cut vector is the smalest interval, in the sense that $\min_{i}(\overline{\boldsymbol{v}^{*0}}_{i} - \underline{\boldsymbol{v}}^{*0}_{i}) = 0$ for i = 1, 2, ..., n, among all possible fuzzy number max-plus eigenvector, the modification of the fundamental fuzzy

M. ANDY RUDHITO ET AL

number max-plus eigenvector $\widetilde{\nu}$, where all the lower bounds of its components are non-negative and at least one zero.

Since the fuzzy number vector \tilde{v}^* is a fuzzy number max-plus eigenvector associated with $\tilde{\lambda}_{\max}(\tilde{A})$

$$\widetilde{A} \quad \widetilde{\otimes} \quad \widetilde{\boldsymbol{v}}^* = \widetilde{\lambda}_{\max}(\widetilde{A}) \quad \widetilde{\otimes} \quad \widetilde{\boldsymbol{v}}^* \text{ or } A^{\alpha} \quad \overline{\otimes} \quad \boldsymbol{v}^{*\alpha} = \lambda_{\max}(A^{\alpha}) \quad \overline{\otimes} \quad \boldsymbol{v}^{*\alpha} \text{ or} \\ [\underline{A^{\alpha}} \otimes \underline{\boldsymbol{v}}^{*\alpha}, \quad \overline{A^{\alpha}} \otimes \overline{\boldsymbol{v}}^{*\alpha}] = [\lambda_{\max}(\underline{A^{\alpha}}) \otimes \underline{\boldsymbol{v}}^{*\alpha}, \quad \lambda_{\max}(\overline{A^{\alpha}}) \otimes \overline{\boldsymbol{v}}^{*\alpha}].$$
Hence
$$\underline{A^{\alpha}} \otimes \underline{\boldsymbol{v}}^{*\alpha} = \lambda_{\max}(\underline{A^{\alpha}}) \otimes \underline{\boldsymbol{v}}^{*\alpha} \text{ and } \quad \overline{A^{\alpha}} \otimes \overline{\boldsymbol{v}}^{*\alpha} = \lambda_{\max}(\overline{A^{\alpha}}) \otimes \overline{\boldsymbol{v}}^{*\alpha}.$$

for every $\alpha \in [0, 1]$.

For some $\alpha \in [0, 1]$, we can take the early departure time of customer $\tilde{d}(0) = \underline{v}^{*\alpha}$, that is the earliest of early departure time of a customer, such that the lower bound of customer departure time intervals are periodic. This is because there exist $i \in \{1, 2, ..., n\}$ such that $\underline{v}^{*\alpha}_{i} = 0$ for every $\alpha \in [0, 1]$. Since the operation \oplus and \otimes on matrix are consistent with respect to the order " $\leq_{\rm m}$ ", then

$$(\underline{A}^{\alpha})^{\otimes^{k}} \otimes \underline{\boldsymbol{v}}^{*\alpha} \preceq_{m} (\overline{A}^{\alpha})^{\otimes^{k}} \otimes \underline{\boldsymbol{v}}^{*\alpha} \preceq_{m} (\overline{A}^{\alpha})^{\otimes^{k}} \otimes \overline{\boldsymbol{v}}^{*\alpha}.$$

This resulted

$$d^{\alpha}(k) \approx [(\underline{A}^{\alpha})^{\otimes^{k}} \otimes \underline{\boldsymbol{v}}^{*\alpha}, (\overline{A}^{\alpha})^{\otimes^{k}} \otimes \underline{\boldsymbol{v}}^{*\alpha}] \subseteq [(\underline{A}^{\alpha})^{\otimes^{k}} \otimes \underline{\boldsymbol{v}}^{*\alpha}, (\overline{A}^{\alpha})^{\otimes^{k}} \otimes \overline{\boldsymbol{v}}^{*\alpha}]$$

$$= [(\lambda_{\max}(\underline{A}^{\alpha}))^{\otimes^{k}} \otimes \underline{\boldsymbol{v}}^{*\alpha}, (\lambda_{\max}(\overline{A}^{\alpha}))^{\otimes^{k}} \otimes \overline{\boldsymbol{v}}^{*\alpha}]$$

$$= [(\lambda_{\max}(\underline{A}^{\alpha}))^{\otimes^{k}}, (\lambda_{\max}(\overline{A}^{\alpha}))^{\otimes^{k}}] \boxtimes [\underline{\boldsymbol{v}}^{*\alpha}, \overline{\boldsymbol{v}}^{*\alpha}]$$

$$= [\lambda_{\max}(\underline{A}^{\alpha}), \lambda_{\max}(\overline{A}^{\alpha})]^{\otimes^{k}} \boxtimes [\underline{\boldsymbol{v}}^{*\alpha}, \overline{\boldsymbol{v}}^{*\alpha}] \text{ for every } k = 1, 2, 3, \dots.$$

Thus for some $\alpha \in [0, 1]$, vector $\underline{\underline{v}^{*\alpha}}$ is the earliest of early departure time of a customer, so that the customer's departure interval time will be in the smallest interval where the lower bound and upper bound are periodic with the period $\lambda_{\max}(\underline{A}^{\alpha})$ and $\lambda_{\max}(\overline{A}^{\alpha})$, respectively.

In the same way as above, we can show that for some $\alpha \in [0, 1]$, if we take the early departure time $\tilde{d}(0) = v$, where $\underline{v}^{*\alpha} \leq \underline{v}^{*\alpha} v \leq \overline{v}^{\alpha}$, then we have

$$\boldsymbol{d}^{\alpha}(k) \approx [(\underline{A}^{\alpha})^{\otimes^{k}} \otimes \boldsymbol{v}, (\overline{A}^{\alpha})^{\otimes^{k}} \otimes \boldsymbol{v}] \subseteq [(\underline{A}^{\alpha})^{\otimes^{k}} \otimes \underline{\boldsymbol{v}}^{*\alpha}, (\overline{A}^{\alpha})^{\otimes^{k}} \otimes \overline{\boldsymbol{v}}^{*\alpha}]$$
$$= [\lambda_{\max}(\underline{A}^{\alpha}), \lambda_{\max}(\overline{A}^{\alpha})]^{\otimes^{k}} \overline{\otimes} [\underline{\boldsymbol{v}}^{*\alpha}, \overline{\boldsymbol{v}}^{*\alpha}].$$

References

- BACCELLI, F., COHEN, G., OLSDER, G.J. AND QUADRAT, J.P., Synchronization and Linearity, John Wiley & Sons, New York, 2001.
- [2] CHANAS, S. AND ZIELINSKI, P., Critical path analysis in the network with fuzzy activity times, Fuzzy Sets and Systems, 122, 195–204, 2001.

202

Application of Fuzzy Number Max-Plus Algebra to Closed Serial Queuing Network ... 203

- [3] HEIDERGOTT, B., OLSDER, J. G AND WOUDE, J., Max Plus at Work, Princeton, Princeton University Press, 2005.
- [4] KRIVULIN, N.K., A Max-Algebra Approach to Modeling and Simulation of Tandem Queuing Systems. Mathematical and Computer Modeling, 22, N.3, 25-31, 1995.
- [5] KRIVULIN, N.K., The Max-Plus Algebra Approach in Modelling of Queueing Networks, Proc. 1996 Summer Computer Simulation Conf., Portland, OR, July 21-25, 485-490, 1996.
- [6] LÜTHI, J. AND HARING, G., Fuzzy Queueing Network Models of Computing Systems, Proceedings of the 13th UK Performance Engineering Workshop, Ilkley, UK, Edinburgh University Press, July 1997.
- [7] RUDHITO, A., WAHYUNI, S., SUPARWANTO, A. AND SUSILO, F., Matriks atas Aljabar Max-Plus Interval. *Jurnal Natur Indonesia* 13, No. 2., 94-99, 2011.
- [8] RUDHITO, A., Aljabar Max-Plus Bilangan Kabur dan Penerapannya pada Masalah Penjadwalan dan Jaringan Antrian Kabur, Disertasi: Program S3 Matematika FMIPA Universitas Gadjah Mada, Yogyakarta, 2011.
- [9] SOLTONI, A. AND HAJI, R., A Project Scheduling Method Based on Fuzzy Theory, Journal of Industrial and Systems Engineering, 1, No.1, 70 – 80, 2007.

M. ANDY RUDHITO

Department of Mathematics and Natural Science Education, Sanata Dharma University, Yogyakarta, Indonesia. e-mail: arudhito@yahoo.co.id

SRI WAHYUNI

Department of Mathematics, Gadjah Mada University, Yogyakarta, Indonesia. e-mail: swahyuni@ugm.ac.id

ARI SUPARWANTO

Department of Mathematics, Gadjah Mada University, Yogyakarta, Indonesia. e-mail: ari_suparwanto@yahoo.com

F. SUSILO

Department of Mathematics, Sanata Dharma University, Yogyakarta, Indonesia. e-mail: fsusilo@staff.usd.ac.id