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PREFACE  

 

It is an honor and great pleasure for the Department of Mathematics – 

Universitas Gadjah Mada, Yogyakarta – INDONESIA, to be entrusted by the 

Southeast Asian Mathematical Society (SEAMS) to organize an international 

conference every four years. Appreciation goes to those who have developed and 

established this tradition of the successful series of conferences. The SEAMS - 

Gadjah Mada University (SEAMS-GMU) 2011 International Conference on 

Mathematics and Its Applications took place in the Faculty of Mathematics and 

Natural Sciences of Universitas Gadjah Mada on July 12th – 15th, 2011. The 

conference was the follow up of the successful series of events which have been 

held in 1989, 1995, 1999, 2003 and 2007. 

 The conference has achieved its main purposes of promoting the exchange 

of ideas and presentation of recent development, particularly in the areas of pure, 

applied, and computational mathematics which are represented in Southeast Asian 

Countries. The conference has also provided a forum of researchers, developers, 

and practitioners to exchange ideas and to discuss future direction of research. 

Moreover, it has enhanced collaboration between researchers from countries in the 

region and those from outside. 

 More than 250 participants from over the world attended the conference. 

They come from USA, Austria, The Netherlands, Australia, Russia, South Africa, 

Taiwan, Iran, Singapore, The Philippines, Thailand, Malaysia, India, Pakistan, 

Mongolia, Saudi Arabia, Nigeria, Mexico and Indonesia. During the four days 

conference, there were 16 plenary lectures and 217 contributed short 

communication papers. The plenary lectures were delivered by  Halina France-

Jackson (South Africa), Jawad Y. Abuihlail (Saudi Arabia), Andreas Rauber  (Austria), 

Svetlana Borovkova (The Netherlands), Murk J. Bottema (Australia), Ang Keng Cheng 

(Singapore), Peter Filzmoser (Austria),  Sergey Kryzhevich (Russia),  Intan Muchtadi-

Alamsyah (Indonesia), Reza Pulungan (Indonesia), Salmah (Indonesia), Yudi 

Soeharyadi (Indonesia), Subanar (Indonesia) Supama (Indonesia), Asep K. Supriatna 

(Indonesia) and Indah Emilia Wijayanti (Indonesia). Most of the contributed papers 

were delivered by mathematicians from Asia. 



We would like to sincerely thank all plenary and invited speakers who 

warmly accepted our invitation to come to the Conference and the paper 

contributors for their overwhelming response to our call for short presentations. 

Moreover, we are very grateful for the financial assistance and support that we 

received from  Universitas Gadjah Mada, the Faculty of Mathematics and Natural 

Sciences, the Department of Mathematics, the  Southeast Asian Mathematical 

Society, and UNESCO.  

We would like also to extend our appreciation and deepest gratitude to all 

invited speakers, all participants, and referees for the wonderful cooperation, the 

great coordination, and the fascinating efforts. Appreciation and special thanks are 

addressed to our colleagues and staffs who help in editing process. Finally, we 

acknowledge and express our thanks to all friends, colleagues, and staffs of the 

Department of Mathematics UGM for their help and support in the preparation 

during the conference.  

 

The Editors 

October, 2012 
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APPLICATION OF FUZZY NUMBER MAX-PLUS ALGEBRA 

TO CLOSED SERIAL QUEUING NETWORK WITH FUZZY 

ACTIVITY TIME 

M. ANDY RUDHITO, SRI WAHYUNI, ARI SUPARWANTO,  

F. SUSILO 

Abstract.  The activity times in a queuing network are seldom precisely known, and then 

could be represented into the fuzzy number, that is called fuzzy activity times. This paper 

aims to determine the dynamical model of a closed serial queuing network with fuzzy 
activity time and its periodic properties using max-plus algebra approach. The finding 

shows that the dynamics of the network can be modeled as a recursive system of fuzzy 

number max-plus linear equations. The periodic properties of the network can be obtained 
from the fuzzy number max-plus eigenvalue and eigenvector of matrix in the system. In the 

network, for a given level of risk, it can be determined the earliest of early departure time 

of a customer, so that the customer's departure interval time will be in the sma llest interval 
where the lower bound and upper bound are periodic.  

Keywords and Phrases: max-plus algebra, queuing network, fuzzy activity times, periodic. 

 
 

 

 

1. INTRODUCTION 
 

We will discuss the closed serial queuing network of n single-server, with a infinite 

buffer capacity and n customers (Krivulin [4]). The network works with the principle of First-

In First-Out (FIFO). In the system, the customers have to pass through the queues 

consecutively so as to receive service at each server. One cycle of network services is the 

process of entry of customers into the buffer of 1st server to leave the nth server. After 

completion of service to the nth server, customers return to the first queue for a new cycle of 

network services. Suppose at the initial time of observation, all the servers do not give 

service, in which the buffer of ith server contains one customer, for each i = 1, 2, ..., n. It is 

assumed that the transition of customers from a queue to the next one requires no time.  
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Figure 1 (Krivulin [5]) gives the initial state of the closed serial queuing network, 

where customers are expressed by "•". 

 

 

 

 

The closed serial queuing network can be found in the assembly plant systems, such as 

assembling cars and electronic goods. Customers in this system are palettes while the server 

is a machine assembler. Palette is a kind of desk or place where the components or semi-

finished goods are placed and moved to visit machines assemblers. At first, 1st pallete enters 

to the buffer of 1st engine and then enters to the 1st machine and the 2nd pallete enters to the 

buffer of 1st engine. In the 1st engine, components are placed and prepared for assembly in 

the next machine. Next, 1st palette enters buffer of 2nd machine and 2nd pallette enter 1st 

machine. And so forth for n palettes are available, so that it reaches the state as in Figure 1 

above, where the initial state observation is reached. After assembly is completed in the nth 

machine, the assembly of goods will leave the network, while the palette will go back to the 

buffer of 1st engine, to begin a new cycle of network services, and so on. 

Max-plus algebra (Baccelli, et al. [1]; Heidergott, B. B, et. al. [3]), namely the set of 

all real numbers R with the operations max and plus, has been used to model a closed serial 

queuing network algebraically, with a deterministic time activity (Krivulin [4]; Krivulin 

[5]). In the problem of modeling and analysis of a network sometimes its activity times is 

not known, for instance due to its design phase, data on time activity or distribution are not 

fixed. This activity can be estimated based on the experience and opinions from experts and 

network operators. This network activity times are modeled using fuzzy number, that is 

called fuzzy activity times. Scheduling problems involving fuzzy number can be seen in 

Chanas and Zielinski [2], and Soltoni and Haji [9]. As for the issue network model 

involving fuzzy number can be seen in Lüthi and Haring [6]. 

In this paper we determine the dynamical model of a closed serial queuing network 

with fuzzy activity time and its periodic properties using max-plus algebra approach. This 

approach will use some concepts such as: fuzzy number max-plus algebra, fuzzy number 

max-plus eigenvalue and eigenvector (Rudhito [8]). We will discuss a closed serial queuing 

network as discussed in Krivulin [4] and Krivulin [5], where crisp activity time will be 

replaced with fuzzy activity time, where can be modeled by fuzzy number. The dynamical 

model of the network can be obtained analogous with crisp activity time case. The periodic 

properties of the network can be obtained from the fuzzy number max-plus eigenvalue and 

eigenvector of matrix in the system. We will use some concepts and result on max-plus 

algebra, interval max-plus algebra and fuzzy number max-plus algebra. 
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Figure 1 Closed Serial Queuing Network 
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2. MAX-PLUS ALGEBRA 

In this section we will review some concepts and results of max-plus algebra, matrix 

over max-plus algebra and max-plus eigenvalue. Further details can be found in Baccelli, et 

al. [1].  

Let R : = R { } with R is the set of all real numbers and  : = . Define two 

operations  and  such that  

a  b := max(a, b)  and  a  b : = a  b 

for every a, b  R  . 

We can show that (R , , ) is a commutative idempotent semiring with  neutral element  = 

 and  unity element e = 0. Moreover, (R, , ) is a semifield, that is (R, , ) is a 

commutative semiring, where for every a  R there exists a such that a  (a)  = 0. Then, 

(R, , ) is called max-plus algebra, and is written as Rmax. The relation “ m ” defined on 

Rmax as x m  y iff x  y = y.  In  Rmax,  operations  and  are consistent with respect to the 

order m , that is for every a, b, c  Rmax, if a m b, then a  c m b  c, and a  c m  b 

 c. Define 
0x := 0 , 

k
x

:= x  
1k

x  and 
k : = ,  for k = 1, 2, ... . 

Define 
nm

max
R : = {A = (Aij)Aij  Rmax, i = 1, 2, ..., m and j = 1, 2, ..., n}, that is  set of 

all matrices over max-plus algebra.  Specifically, for A, B  
nn

max
R   and   Rmax we define  

(  A)ij =   Aij , (A  B)ij = Aij  Bij and  (A  B)ij = 
kjik

n

k

BA 
1

. 

We define matrix E 
nn

max
R , (E )ij : =









ji

ji

 if

 if0


 and matrix  

nn

max
R , ( )ij :=   for every i 

and j . For any matrix A 
nn

maxR , one can define 
0A  = En and 

k

A
= A  

1k

A  for   k = 1, 

2, ... . The relation “ m ”defined on 
nm

max
R  as A m B iff A  B = B. In  (

nn

maxR , , ), 

operations  and   are consistent with respect to the order m , that is for every A, B, C  

nn

maxR , if  A m B , then A  C m B  C, and A  C m  B  C . 

Define 
n

max
R := { x = [ x1, x2, ... , xn]

T
 | xi  Rmax, i = 1, 2, ... , n}. Note that 

n

max
R can be 

viewed as 
1

max

n
R . The elements of 

n

max
R are called vectors over Rmax or shortly vectors. A 

vector x 
n

max
R  is said to be not equal to vector , and is written as x  , if there exists i  

{1, 2, ..., n} such that xi  .  

Let G = (V, A) with V = {1, 2,  ... , p} is non empty finite set which is its elements is 

called node and A is a set of ordered pairs of nodes. A directed graph G is said to be weighted 

if every arch (j, i)  A  corresponds to a real number Aij. The real number Aij is called the 

weight of arch (j, i), and is written as w(j, i). In pictorial representation of weighted directed 

graph, archs are labelled by its weight. Define a precedence graph of a matrix A  
nn

max


R   as 

weighted directed graph G(A) = (V, A) with V = {1, 2, ... , n},  A = {(j, i) | w(i, j) = Aij   }. 
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Conversely, for every weighted directed graph G = (V, A), can be defined a matrix A  
nn

max


R , which is called the weighting matrix of graph G, where        

   Aij = 








. ),( if

 ),( if ),(

A

A

ij

ijijw


. The mean weight of a path is defined as the sum of the 

weights of the individual arcs of this path, divided by the length of this path. If such a path is 

a circuit one talks about the mean weight of the circuit, or simply the cycle mean. It follow 

that a formula for maximum mean cycle mean max(A) in G(A) is max(A) = 




n

k 1
(

k

1
ii

k
n

A )(
1i




 ).. 

The matrix A  
nn

max
R  is said to be irreducible if its precedence graph        G = (V, A) is 

strongly connected, that is for every i, j  V, i  j, there is a path from i  to j. We can show 

that matrix A 
nn

max
R  is irreducible if and only if        (A 

2A  ... 
1n

A )ij     for 

every i, j where i  j (Schutter, 1996). 

Given A 
nn

max
R . Scalar   Rmax is called the max-plus eigenvalue of matrix A if there 

exists a vector  v 
n

max
R with v  n1 such that A  v =   v. Vector v is called  max-plus 

eigenvector of matrix A associated with . We can show that max(A) is a max-plus eigenvalue 

of matrix A. For matrix B = max(A)  A, if 


ii
B = 0, then  i-th column of matrix 

*B is an 

eigenvector corresponding with eigenvalue max(A). The eigenvector is called fundamental 

max-plus eigenvector associated with eigenvalues max(A) (Bacelli, et al., 2001). A linear 

combination of fundamental max-plus eigenvector of matrix A is also an eigenvector 

assosiated with max(A). We can show that if matrix A 
nn

maxR is irreducible, then max(A) is 

the unique max-plus egenvalue of A and the max-plus eigenvector associated with max(A) is 

v, where vi    for every  i  {1, 2, ..., n} (Bacelli, et al., 2001). 

 

3. INTERVAL MAX-PLUS ALGEBRA 

In this section we will review some concepts and results of interval max-plus algebra, 

matrix over interval max-plus algebra and interval max-plus eigenvalue. Further details can 

be found in Rudhito, et al. [7] and Rudhito [8].  

The (closed) max-plus interval x in Rmax is a subset of Rmax of the form  

x = [ x , x ] = {x  Rmax  x m  x m x }, 

which is shortly called interval. The interval x  y if and only if y m x m x m y . 

Especially x = y if and only if x  = y and x  = y . The number x  Rmax can be represented 

as interval  [x, x]. Define I(R) := {x = [ x , x ]  x , x   R,   m x  m x }  {  }, where 

:=   [,  ]. Define x   y = [ x  y , x y ] and x   y = [ x  y , x y ] for every x, y 

 I(R). We can show that (I(R), , ) is a commutative idempotent semiring with neutral 

element  = [, ] and unity element 0 = [0, 0]. This commutative idempotent semiring 
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(I(R), , ) is called interval max-plus algebra, and is written as I(R)max. Relation 

“ Im ”defined on I(R)max as x Im y  x   y = y is a partial order on I(R)max. Notice that x 

  y = y  x m y  and  x m y . 

Define I(R)
nm

max  := {A = (Aij)Aij  I(R)max, i = 1, 2, ..., m,  j = 1, 2, ..., n}. The 

elements of I(R)
nm

max  are called matrices over interval max-plus algebra or shortly interval 

matrices. The operations on interval matrices can be defined in the same way with the 

operations on matrices over max-plus algebra. For any matrix A  I(R)
nm

max , Define the 

matrix A  = ( ijA )  R
nm

max  and  A = ( ijA )  R
nm

max , which are called lower bound matrix 

and upper bound matrix of A, respectively. Define a matrix interval of A, that is [ A , A ] = 

{A  R
nm

max  A  m  A m  A  } and I(
nm

maxR )b = { [ A , A ]  A (R)
nn

max }. The matrix 

interval [ A , A ] and [ B , B ]  I(R
nm

max ) b are equal if A  = B  and A  = B . We can show 

that for every matrix interval A  I(R
nm

max )
 

we can determine matrix interval 

[ A , A ]I(
nm

maxR )b and conversely. The matrix interval [ A , A ] is called matrix interval 

associated with the interval matrix A, and is written as     A  [ A , A ]. Moreover, we have 

 A  [A , A ], A B  [ A B , A  B ] and A B  [ A B , A  B ]. 

Define I(R)
n

max := { x = [x1, x2, ... , xn ]
T
 | xi  I(R)max, i = 1, 2, ... , n }. Note that 

I(R)
n

max  can be viewed as I(R)
1

max

n
. The elements of I(R) nmax  are called interval vectors over 

I(R)max or shortly interval vectors. An interval vector x  I(R)
n

max  is said to be not equal to 

interval vector , and is written as x   , if there exists i  {1, 2, ..., n} such that  xi  . 

Interval matrix A  I(R) nn
max , where A  [ A , A ], is said to be irreducible if every 

matrix A  [ A , A ] is irreducible. We can show that interval matrix     A  I(R) nn
max  , where 

A  [ A , A ] is irreducible if and only if A 
nn

maxR is irreducible (Rudhito, et al. [7]). 

 

 

 

4. FUZZY NUMBER MAX-PLUS ALGEBRA 
 

In this section we will review some concepts and results of fuzzy number max-plus 

algebra, matrix over fuzzy number max-plus algebra and fuzzy number max-plus eigenvalue. 

Further details can be found in Rudhito [8]. 

Fuzzy set K
~

 in universal set X  is represented as the set of ordered pairs K
~

 = {(x, 

K
~ (x)) x  X } where 

K
~  is a membership function of fuzzy set K

~
, which is a mapping 
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from universal set X to closed interval  [0, 1]. Support of a fuzzy set K
~

 is supp( K
~

) = {x  X 

 
K
~ (x)  0}. Height of a  fuzzy set K

~
 is   height( K

~
) = 

Xx

sup {
K
~ (x)}. A fuzzy set K

~
 is 

said to be normal if height( K
~

) = 1. For a number   [0, 1], -cut of a fuzzy set K
~

 is 

cut

( K

~
) = 

K  ={x  X  
K
~ (x)  }. A fuzzy sets K

~
 is said to be convex if 

K  
is convex, 

that is contains line segment between any two points in the 
K , for every   [0, 1],  

Fuzzy number a~  is defined as a fuzzy set in universal set R which satisfies the 

following properties: i )  normal, that is a
1
  , ii ) for every   (0, 1] a


 is closed in R, that 

is there exists
a , 

a  R with 
a  

a  such that a

 = [

a ,
a ] = {x  R  

a  x  

a  }, iii) supp( a~ ) is bounded. For  = 0, define a
0
 = [inf(supp( a~ )), sup(supp( a~ ))]. Since 

every closed interval in R is convex, a
 

 is convex for every   [0, 1], hence a~  is convex. 

Let F(R) ~ := F(R)  {~ }, where F(R) is set of all fuzzy numbers and    ~  : = {} 

with the -cut of ~ is   
= [,]. Define two operations 

~
 and 

~
 such that for every 

a~ , b
~
 F(R) ~ , with a


 = [


a ,

a ]  I(R)max and b

 = [


b ,

b ] I(R)max,  

i) Maximum of a~  and b
~

, written a~ 
~

b
~

, is a fuzzy number whose -cut is interval 

[


a  


b , 
a 

b ] for every   [0, 1] 

ii) Addition of a~  and b
~

, written a~ 
~

b
~

, is a fuzzy number whose -cut is interval 

[


a  


b , 
a  

b ] for every   [0, 1]. 

We can show that (F(R) ~  , 
~

, 
~

) is a commutative idempotent semiring. The 

commutative idempotent semiring F(R)max := (F(R) ~  , 
~

, 
~

) is called  fuzzy number max-

plus algebra, and is written as F(R)max (Rudhito, et al. [8]). 

       Define F(R)
nm

max := { A
~

= ( A
~

ij) A
~

ij  F(R)max, i = 1, 2, ..., m and j = 1, 2, ..., n }.  The 

elements of  F(R) nm 
max  are called matrices over fuzzy number max-plus algebra or shortly 

fuzzy number matrices. The operations on fuzzy number matrices can be defined in the same 

way with the operations on matrices over max-plus algebra. Define matrix E
~
 F(R)

nn 

max , 

with ( E
~

)ij : = 









ji~
ji

~

 if

 if0


, and matrix ~  F(R)

nn

max , with (~ )ij := ~   for every i and j.   

For every A
~

  F(R)
nm 

max  and   [0, 1], define -cut matrix of A
~

 as the interval 

matrix A

 = (



ijA ), with 


ijA is the -cut of A
~

ij for every i and j. Define matrix 
A  = (



ijA ) 


nm

maxR  and 
A = (



ijA )  
nm

maxR  which are called lower bound and upper bound of matrix 

A

, respectively. We can conclude that the matrices A

~
, B

~
  F(R) nm 

max are equal iff A

  = B


, 
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that is 


ijA  = 


ijB  for every   [0, 1] and for every i and j. For every fuzzy number matrix 

A
~

, A

  [


A ,

A ]. Let 
~

  F(R)max, A
~

, B
~

   F(R)
nm 

max . We can show that   A)


   

[
 

A , 
 

A ] and  (A  B)

  [

A 
B ,  

A 
B ] for every    [0, 1]. Let 

A
~

  F(R)
pm 

max , A
~

  F(R)
np

max . We can show that  (A  B)

  [

A 
B ,  

A 
B ] for 

every   [0, 1]. 

Define F(R)
n

max := { x~  = [ 1x~ , 2x~ , ... , nx~ ]
T
 | ix~  F(R)max , i = 1, ... , n }. The 

elements in F(R)
n

max  are called fuzzy number vectors over F(R)max or shortly fuzzy number 

vectors.  A fuzzy number vector x~  F(R)
n

max  is said to be not equal to fuzzy number vector 

ε~ , written x~   ε~ , if there exists i  {1, 2, ..., n} such that ix~   ~ . 

Fuzzy number matrix A
~

  F(R) nn
max  is said to be irreducible if A

 
 I(R)

nn 

max  is 

irreducible for every   [0, 1]. We can show that A
~

 is irreducible if and only if 
0A  

R nn
max  is irreducible (Rudhito, et al. [7]). 

Let A
~
 F(R) nn

max . The fuzzy number scalar 
~
 F(R)max  is called  fuzzy number max-

plus eigenvalue of matrix A
~

 if there exists a fuzzy number vector v~   F(R) n
max with v~   

ε~ n1 such that  A
~

 
~

 v~  = 
~

~

 v~ . The vector v~  is called  fuzzy number max-plus 

eigenvectors of matrix A
~

 associaed with 
~

. Given A
~
 F(R) nn

max . We can show that the 

fuzzy number scalar max
~

( A
~

) = 
1][0,

max




~

, where 
max

~
is a fuzzy set in R with membership 

function 


max

~ (x) =  


max

~ (x), and 


max

~ is the characteristic function of the set [max(
A ), 

max(
A )], is a fuzzy number max-plus eigenvalues of matrix A

~
. Based on fundamental 

max-plus eigenvector associated with eigenvalues max(
A ) and max(

A ), we can find 

fundamental fuzzy number max-plus eigenvector associated with 
max

~
(Rudhito [8]). 

Moreover, if matrix A
~

 is irreducible, then max
~

( A
~

)  is the unique fuzzy number max-plus 

eigenvalue of matrix A
~

 and the fuzzy number max-plus eigenvector associated with 

max( A
~

) is v~ , where iv~   ~  for every     i  {1, 2, ..., n}. 

 

5.  DYNAMICAL MODEL OF A CLOSED SERIAL QUEUING NETWORK 

WITH FUZZY ACTIVITIY TIME 
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We discuss the closed serial queuing network of n single-server, with a infinite buffer 

capacity and n customers, as in Figure 1.  

Let  )(ka~
i

 = fuzzy arrival time of kth customer at server i, 

)(kd
~

i
 = fuzzy departure time of kth customer at server i, 

    
i
t
~

   = fuzzy service time of kth customer at server i. 

for k = 1, 2, ... and i = 1, 2, ..., n. 

The dynamical of queuing at server i can be written as  

   )(kd
~

i
 = max( it

~
 + )(ka~

i
, it

~
 + )1( kd

~
i

)           (1) 

                )(ka~
i

 = 











 2 if )1(

1 if)1(

1
n...,,ikd

~
ikd

~

i

n .          (2) 

Using fuzzy number max-plus algebra notation, equation (1) can be written as    

   )(kd
~

i
 = (

i
t
~

 
~

 )(ka~
i

) 
~

 (
i
t
~

   )1( kd
~

i
).         (3) 

Let )(k
~
d  = [ )(

1
kd

~
, )(

2
kd

~
, ... , )(kd

~
n

]
T
,  )(k~a = [ )(

1
ka~ , )(

2
ka~ , ... , )(ka~

n
]

T
 and T

~
 = 

















n
t
~

ε~

ε~t
~


1

, then equations (3) and (2) can be written as  

)(k
~
d  = (T

~

~

)(k~a ) 
~

 (T
~

~

1) ( k
~
d .           (4) 

)(k~a  = G
~

~

 1) ( k
~
d ,             (5) 

 

with matrix G
~

  = 





















ε~
~

ε~

ε~ε~
~

~
ε~ε~

0

0

0







.  

 

Substituting equation (5) to the equation (4), can be obtained the equation 

)(k
~
d  = T

~

~

G
~

~

1) ( k
~
d 

~
T
~

~

1) ( k
~
d   

          = T
~

~

( G
~

~

E
~

) 
~

 1) ( k
~
d   

          = A
~

~

 1) ( k
~
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The equation (6) is dynamical model of the closed serial queuing network. 
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6.  PERIODIC PROPERTIES OF A CLOSED SERIAL QUEUING 

NETWORK WITH FUZZY ACTIVITIY TIME 

Dynamical model recursive equation of the closed serial queuing network (6) can be 

represented through the early departure time of customer (0)d
~

, with its -cut (0)
d  

[ (0)
d , (0)

d ] for every   [0, 1]. For every   [0, 1] hold )(k
d  = A


  )1( k

d  

[
A  )1( k


d , 

A  )1( k
d ] = [

k

A )( 
 (0)


d , 

k

A )( 
 (0)

d ]  
k

)(A   

d

(0). Thus, for every      [0, 1] hold )(k

d = 
k

)(A   d

(0). Hence we have )(k

~
d  

= 
k~

A
~ 

~
(0)d

~
. Since the early departure time of customer can be determined exactly, it is a 

crisp time, that is a point fuzzy number (0)d
~

, with (0)
d   [ )0(


d , (0)

d ] where )0(


d  

= (0)
d  for every   [0, 1]. 

Since precedence of matrix 
0A  in the model of the closed serial queuing network 

(Figure 1) is strongly connected, the matrix 
0A is irredusible. Hence, matrix A

~
 in the 

equation (6) is irredusibel. Thus, matrix A
~

 has unique fuzzy number max-plus eigenvalue, 

that is 
max

~

( A
~

) where v~  is the fundamental fuzzy number max-plus eigenvector associated 

with max
~

( A
~

), where iv~   ~  for every  i  {1, 2, ..., n}. 

 We construct fuzzy number vector 
*~v where its -cut vector is 

*
v   [

*
v ,

*
v ], 

using the following steps. For every   [0, 1] dan  i = 1, 2, ..., n, form 

1. 
v = 1   


v , 


v = 1   


v , with 1 = )(min 0

i
i

v . 

2. 
v  = 2()   


v , 


v  = 2()    


v , with 2()  = )(min 0

ii
i

vv  
. 

3. 
v  = 3  


v  , with 3  = )(min 00

ii
i

vv  . 

4. 
*

v  = 


v   , 
*

v = 4()   


v  , with 4()    = )(min 0
ii

i
vv  . 

The fuzzy number vector 
*~v is also a fuzzy number max-plus eigenvalue associated with 

max

~

( A
~

). From construction above, the components of 
0*

v , that is 
i

*v
0

 are all non-negative 

and there exist i  {1, 2, ..., n } such that 
i

*v


 = 0 for every   [0, 1]. Meanwhile, its -cut 

vector is the smalest interval, in the sense that )(min
00

i

*
i

*

i
vv   = 0 for i = 1, 2, ..., n, among 

all possible fuzzy number max-plus eigenvector, the modification of the fundamental fuzzy 
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number max-plus eigenvector v~ , where all the lower bounds of its components are non-

negative and at least one zero. 

Since the fuzzy number vector 
*~v is a fuzzy number max-plus eigenvector associated 

with  
max

~

( A
~

) 

A
~

 
~

 
*~v  = 

max

~

( A
~

) 
~

 
*~v  or A


 

*
v = max(A


) 

*
v or  

[
A 

*
v , 

A  
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v ] = [max(
A )  

*
v  , max(

A )  
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v ].  

Hence  
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*
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A )  
*

v  and 
A  

*
v = max(

A )  
*

v  

for every   [0, 1]. 

For some   [0, 1], we can take the early departure time of customer (0)d
~

 = 
*

v , 

that is the earliest of early departure time of a customer, such that the lower bound of 

customer departure time intervals are periodic. This is because there exist i  {1, 2, ..., n } 

such that i

*v


 = 0 for every   [0, 1]. Since the operation  and  on matrix are consistent 

with respect to the order “ m ”, then   

k

A )( 
  

*
v  m  

k

A )( 
 

*
v  m

k

A )( 
 
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This resulted  

)(k
d   [

k

A )( 


*
v , 

k

A )( 


*
v ]  [

k

A )( 

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
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  
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             = [
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    [
*

v ,
*

v ] for every k = 1, 2, 3 , ... .  

Thus for some   [0, 1], vector 
*

v  is the earliest of early departure time of a customer, so 

that the customer's departure interval time will be in the smallest interval where the lower 

bound and upper bound are periodic with the period max(
A ) and max(

A ), respectively. 

In the same way as above, we can show that for some    [0, 1], if we take  the early 

departure time (0)d
~

 = v , where 
*

v  m  v m


v , then we have  

)(k
d   [

k

A )( 
 v, 

k

A )( 
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A )( 

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k
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
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k
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   [
*

v ,
*

v ]. 
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