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Abstract: This paper describes the use of the 14-channel Emotiv as a low-cost method of acquiring raw EEG signals, 
for human-machine interfaces as a possible aid for persons with disabilities. To demonstrate the feasibility of 
using raw EEG signals obtained using the Emotiv system, a classification algorithm based on Fuzzy logic is 
implemented as an example. The proposed algorithm has been found to be effective in detecting and 
classifying brain signals which can then be translated into valid commands for the human-machine interface. 
The performance of the proposed approach is studied using fuzzy logic. The results obtained indicate a high 
level of classification accuracy, therefore, indicating that the Emotiv EPOC can be used as a valid tool for 
research. 

1 INTRODUCTION 

The research presented here is a continuation of 
research that has been carried out using a type of 
neurosky mindset sensor which is a Brain Computer 
Interface (BCI) (Siswoyo, Arief, & Sulistijono, 
2015). The BCI refer to a type of system that 
combines electroencephalographic (EEG) activity 
measurement technology with computational 
development to convert brain activity into real 
applications. The EEG sensor type Emotiv 14-
channel, which has a difference in the number of 
points on the electrodes, is used in this study. This 
study maps study data by application (BCI, signal 
processing, experimental research, and validation) 
and location of signal use. 

The interest in BCI has mainly focused on medical 
applications (Mahajan & Bansal, 2017); (Saifuddin 
Saif, Ryhan Hossain, Ahmed, & Chowdhury, 2019); 
(Cincotti et al., 2008). However, due to the increasing 
desire of scientists and engineers to develop new 
technologies, it is now also possible to find BCI in 
applications such as video games, vehicle 
manipulation, and psychological research. Related 
work explaining how BCI can be used to control 
drones to help people with disabilities can be found 
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in (Marin, Al-Battbootti, & Goga, 2020); (Abiyev, 
Akkaya, Aytac, Günsel, & Çaǧman, 2016). A review 
paper (Alotaiby, El-Samie, Alshebeili, & Ahmad, 
2015), discussed some EEG channel selection 
techniques for different applications taking into 
consideration the different criteria developed in the 
literature for channel selection evaluation. Of course, 
there are many possibilities for BCI-EEG 
applications (Banach, Małecki, Rosół, & Broniec, 
2021); (Megalingam, Thulasi, & Krishna, 2013). 

The classification of EEG signals is of significant 
importance in BCI systems. Aiming to achieve 
intelligent classification of EEG, a classification 
methodology using sparse representation and fast 
compression residual convolutional neural networks 
is proposed (Huang, Li, Chen, Lin, & Yao, 2020). 
This study propose an EEG classification system of 
rule-based Emotiv Epoc signal output to identify 
signals for moving wheelchair speeds. Therefore, we 
believe that applying the Emotiv Epoc signal 
classification to wheelchair speed movements, has 
better results than the signals obtained from the 
neurosky mindset.  
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2 MATERIALS AND METHODS 

2.1 EEG Data Recording 

The raw EEG data were obtained from the 14-channel 
electrode EEG data record of Emotiv Epoc (Figure 1). 
The EEG is recorded when the test user thinks about 
certain mental commands by imagining the 
movement of objects. The test subject must be 
focused, relaxed, and not have many distracting 
movements when performing mental commands. The 
experiment uses the "Mental Command Suite" to help 
test subjects perform mental commands that allow 
test subjects to control the movement of a 3-
dimensional cube using their minds. The 3D cube can 
move up, down, left and right according to the mind 
of the test subject. 

 

Figure 1: Emotiv Epoc 14 channel. 

 
Figure 2: Location of 14 Emotiv electrode channels. 

2.2 Test Procedure and Environment 

The use of the sensor is first given a saline solution 
on the foam which is located at each electrode (Figure 
2). Then do a check using the built-in software for the 
connectivity of the electrodes with the location on the 
scalp. When ready, a red colour will appear on the 
indicator in the default software application.  

2.3 EEG Data Analyses 

All Emotiv 14 channel EEG data files were processed 
and analyzed with MATLAB software (The 
Mathworks, Inc.). 

 

 

Figure 3: Experiment and data analysis. 

EEG data preprocessing gets input from reading 
the EEG signal which then forwards it to data 
classification as shown in Figure 3 (Alabboudi, 
Majed, Hassan, & Nassif, 2020). The processed raw 
EEG data files are first labelled for each trial as 
number "1" representing "slow wheelchair speed 
trial" then number "2" representing "moderate 
wheelchair speed trial" and number "3" represents "a 
fast wheelchair speed trial" 

The experimental results of this study continue 
processing on the filtered data. EEG signal has weak 
time-frequency-spatial characteristics, non-
stationary, non-linear, and weak intensity, so to 
extract adaptive features reflecting frequency and 
spatial characteristics, it is very important to adopt 
feature extraction method. For this study, we 
converted the time domain EEG data into the 
frequency domain of the segments converted into 
their respective frequency domains. 

3 CLASSIFICATION MODELS 

3.1 Classification Models and Metrics 

When trying to collect signal data from Emotiv, data 
will be displayed on the Emotiv default application. 
There are 14 brain signal outputs, namely signals, 
AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, 
F8, and AF4. 

 

Figure 4: Run setup during data acquisition. 

iCAST-ES 2022 - International Conference on Applied Science and Technology on Engineering Science

484



The subjects were asked to sit and comfortable 
armchair with their upper limbs placed on the 
armrests of the armchair (Figure 4). The EEG signal 
Emotiv Epoc device was placed in each subject, some 
of the technical descriptions include a sampling 
frequency of 128 Hz, this device has 14 electrodes 
and two ground references, and then data distributed 
to the computer as shown in the Figure 5. 

 

 
Figure 5: Emotiv Epoc output. 

 

 

Figure 6: Signal F8, Frontal. 

From the experimental results users, observing the 
output of 14 signals, the F8 signal gives a significant 
response when wheelchair users think to increase 
speed (Figure 6). 
 

 

Figure 7: Signal AF3, Frontal. 

Then the AF3 signal sometimes appears to have a 
significant spike in response at certain times of the 
user (Figure 7). 

The data totalling 14 channels is sent to 
MATLAB, and then the data will be processed to 
MATLAB (Figure 8). 

 

Figure 8: Data output Emotiv in Matlab. 

Classification of brain signals using fuzzy logic 
(Siswoyo, Arief, & Sulistijono, 2017). From the 
results of the Emotiv signal reading data, then the 
signal data will be fuzzy. The research methodology 
uses Fuzzy Logic Controller in this study Fuzzy used 
the mamdani method, the input will be processed to 
get the F8 value from the user, and this value is used 
as a reference. 

A complete fuzzy system consists of three main 
components, namely: 

1) Fuzzification 
Fuzzification is a process of mapping input values 
(crisp input) from a controlled system (non-fuzzy 
quantities) into fuzzy sets according to their 
membership functions from the emotive sensor itself. 
To change the crisp input to fuzzy input, you must 
first determine the membership function for each 
crisp input, then the fuzzification process will take the 
crisp input and compare it with the existing 
membership function to generate fuzzy input values.   

 
Figure 9: Membership fuzzy input Signal F8. 

The F8 signal size indicates the level of focus. The 
value ranges from 0 to 1000 (Figure 9). The level of 
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mind focus increases when the user focuses his/her 
mind. 

 

Figure 10: Membership fuzzy input Signal AF3. 

The size of the AF3 signal indicates the level of 
focus. The values range from 0 to 1000 (Figure 10). 
The level of focus increases when the user focuses 
his/her mind. Figure 11 shows a variable output with 
a range from 0 to 255.  

 
Figure 11: Membership fuzzy wheelchair. 

2) Design Rule Base 
Here is the design rule of fuzzy logic that we can use 
as shown in Table 1. 

Table 1: Design rule of fuzzy logic. 

Rules 

 F8 Signal 

A
F

3 S
ign

al 

 Low Middle High 

Slow Minimum 
Averag

e 
Maximu

m 

Normal Average 
Averag

e 
Average 

Quick Minimum 
Averag

e 
Average 

3) Defuzzification 

From Table 1 we can get the defuzzification as: 

a) If (F8 is LOW) and (AF3 is SLOW) then 
(SpeedMotor is MINIMUM) 

b) If (F8 is LOW) and (AF3 is NORMAL) then 
(SpeedMotor is AVERAGE) 

c) If (F8 is LOW) and (AF3 is QUICK) then 
(SpeedMotor is MINIMUM) 

d) If (F8 is MIDDLE) and (AF3 is SLOW) then 
(SpeedMotor is AVERAGE) 

e) If (F8 is MIDDLE) and (AF3 is NORMAL) then 
(SpeedMotor is AVERAGE) 

f) If (F8 is MIDDLE) and (AF3 is QUICK) then 
(SpeedMotor is AVERAGE) 

g) If (F8 is HIGH) and (AF3 is SLOW) then 
(SpeedMotor is MAXIMUM) 

h) If (F8 is HIGH) and (AF3 is NORMAL) then 
(SpeedMotor is AVERAGE) 

i) If (F8 is HIGH) and (AF3 is QUICK) then 
(SpeedMotor is AVERAGE) 

Nine rules were created for the system controller 
to make up the rule base. The use of this fuzzy logic 
method will follow a trial and error model. 

4 CONCLUSIONS 

Table 2 summarizes the selection criteria for the type 
of EEG sensor for comparative analysis. Selection 
criteria including the accuracy, sampling rate, ease of 
use, number of channel, software application used, 
communication method, learnability, and 
performances. 

Table 2: EEG Sensor type comparison. 

No Compare 
Neurosky 
Mindset 

Emotiv 
Epoc 

1 Accuracy Moderate High 

2 Sampling rate 512Hz 128 Hz 

3 Ease of use Easy Easy 

4 Signal input channel 4 14 

5 Software application Open Licence 

6 Communication Bluetooth Wireless 

7 Learnability Moderate Easy 

8 Performance Moderate High 

New users of Emotiv Epoc can gain control over 
a single action fairly quickly. Learning to control 
multiple actions usually takes practice and becomes 
increasingly difficult as additional actions are added. 
The user learns to train a reproducible mental state for 
each action; detection becomes more and more 
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precise. Most users usually achieve their best results 
after practicing each action several times. Practice 
and experience will help determine the ideal amount 
of training required for each individual user to 
successfully control wheelchair speed.  

In this research, a two input from signal Emotiv 
Epoc sensor, one output MFIS in fuzzy tool box of 
Matlab software was used for control speed 
wheelchair. Grading results obtained from fuzzy logic 
showed a good general agreement (91%) with the 
results from the human experts, providing good 
flexibility in reflecting the expert expectations and 
grading standards into the results. This model 
demonstrated that, control speed evaluation based on 
this method is more exact than experts, and provides 
a better representation control speed grading. 

Another topic for future work is the effectiveness 
of EEG signals used for the needs of people with 
disabilities. Different users allow different responses 
to the same stimulus. Ease of extracting task-relevant 
EEG patterns from recordings signal. 
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