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ABSTRACT 
 
 

In this paper we study the generalized mixed fractional Brownian motion in the white noise 
analysis framework, in particular how to realize and analyze generalized mixed fractional Brownian 
motion in the white noise space. Explicit expressions for the S-transform of the generalized mixed 
fractional Brownian motion and for its distributional derivative are also obtained. 
 
Keywords:  generalized mixed fractional Brownian motion, white noise analysis 
 
 

ABSTRAK 
 
 

Dalam tulisan ini kita mempelajari gerak Brown fraksional campur tergeneralisir dalam 
kerangka analisis white noise, khususnya bagaimana mewujudkan dan menganalisis gerak gerak 
Brown fraksional campur tergeneralisir di ruang white noise. Ekspresi eksplisit untuk transformasi S 
dari gerak Brown berperingkat campur tergeneralisir dan derivatif distribusional juga diperoleh. 
 
Kata kunci: gerak Brown berperingkat campur tergeneralisir, analisis white noise 
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INTRODUCTION 
 
 

 It is well known that the fractional Brownian motion of Hurst parameter (0,1)∈H  is a 

centered Gaussian process ( )
0

H H
t t

B B
≥

=  defined on some probability space ( ), ,F PΩ  with the 

covariance function ( )22 21
2( ) .HH H H H

t sE B B t s t s= + − −  This generalization of Brownian motion was 

introduced by Mandelbrot and Van Ness in (Mandelbrot & Van Ness, 1968) and satisfies the 
following properties: 
 

− 0 0HB =  almost surely,  

− its variance ( )2 2H H
tE B t⎛ ⎞ =⎜ ⎟

⎝ ⎠
 for all 0t ≥ , 

− HB  is self-similar of order H  and its increments are stationary, 
− the sample paths of HB  are almost surely Hölder continuous of order Hγ < , and nowhere 

differentiable. 
 

 The first application of this process was made by climatologist H.E. Hurst in 1951 who used it 
to model the long term storage capacity of reservoir along the Nile river. Nowadays fractional 
Brownian motions have been widely accepted in mathematical modeling in science and engineering 
such as hydrology, telecommunication traffic, queueing theory and mathematical finance, see for 
example (Chakravarti & Sebastian, 1997; Hu & Oksendal, 2003; Leland, Taqqu, Willinger, & Wilson 
et al, 1994; Scheffer, 2001). 
 

 Cheridito in (Cheridito, 2001) generalized the concept of fractional Brownian motion to the 
so-called mixed fractional Brownian motion. Let a and b  be two real numbers such that 
( , ) (0,0)a b ≠ . 
 
Definition 1.1.  
 

 A mixed fractional Brownian motion (MFBM) of parameter H , a , and b  is a stochastic 
process ( ) ( ), ,

0 0
H H H a b

t tt t
M M M

≥ ≥
= =  defined on some probability space ( ), ,F PΩ by  

 

 
, ,H H a b H

t t t tM M aB bB= = +   
 
where ( ) 0t tB

≥
 is a Brownian motion and ( )

0
H
t t

B
≥

 is an independent fractional Brownian motion of 

Hurst parameter H .  
 
 This process was introduced to present a stochastic model of the discounted stock price in 
some arbitrage-free and complete financial markets. The model is the process ( ), ,

[0,1]
H a b
t t

X
∈

 defined by 

( ), , , , , ,
0 exp ,H a b H a b H a b

t tX X t Mυ σ= + where ,υ σ  are real constants, 0, 1a b> = , and , ,H a b
tM  is a 

MFBM of parameter H , a , and b . Zili in (Zili, 2006) proved some stochastic and analytic properties 
of MFBM. Another application of MFBM to the computer network traffic was investigated in the 
recent paper (Filatova, 2008). 
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 Recently MFBM has been further generalized by Thäle in (Thäle, 2009) to the generalized 
mixed fractional Brownian motion. Let 1, , ,n n Nα α ∈K  be real numbers and not all equal to zero. 
 
Definition 1.2.  
 
 A generalized mixed fractional Brownian motion (GMFBM) of parameter ( )1, , nH H H= K , 

and ( )1, , nα α α= K  is a stochastic process ( ) ( ),
0 0

H H H
t tt t

Z Z Z α

≥ ≥
= =  defined on some probability 

space ( ), ,F PΩ by  

 
,

1

k

n
HH H

t t k t
k

Z Z Bα α
=

= =∑   

where ( )
0

kH
t t

B
≥

 are independent fractional Brownian motions of Hurst parameter , 1, ,kH k n= K .  

 
We collect some properties of the GMFBM. For additional information and proofs see (Thäle, 2009). 
 
Proposition 1.3. (Thäle, 2009) 
 

 The GMFBM ( ),
0

H H
t t

Z Z α

≥
= is a centered Gaussian process with variance 22

1

k

n
H

k
k

tα
=
∑ and 

covariance function ( )22 2, , 2

1

1( )
2

kk k

n
HH HH H

t s k
k

E Z Z t s t sα α α
=

= + − −∑  . HZ has stationary increments 

and these increments are correlated if and only if 1
2kH =  for all .k  HZ is also ( )1 1, , ; , ,n nc c H Hs −K K self 

similar process in the sense that 
1 1

kk k

k

n n
HH H

k k k tc t
k k

c B Bα α−

= =

=∑ ∑ in distribution. HZ  is neither a Markov 

process nor a martingale, unless  1
2kH =  for all k . HZ exhibits a long range dependence if and only 

if there exists k  with 1
2kH > . For all 0T > , with probability one HZ has a version, the sample paths 

of which are Hölder continuous of order 
1
min kk n

Hγ
≤ ≤

<  on the interval [0, ]T . Every sample path of HZ  

is almost surely nowhere differentiable. 
 

The paper is organized as follow. In section 2 we review the necessary background of white 
noise analysis and construct a representation of a GMFBM in the white noise space. In section 3 we 
show that GMFBM is differentiable in some distribution space and its derivative is a generalization of 
the classical white noise process.  
 
Generalized Mixed Fractional Brownian Motion in the White Noise Space 

 
 Let ( ), ,μΩ Β  be the white noise space, i.e. Ω  is the space of tempered distribution ( )S R′ , Β  
is the Borel σ -algebra on ( )S R′ , and the probability measure μ  is uniquely determined by the 
Bochner-Minlos theorem such that  
 ( ) ( )21

2 0
( )

exp , ( ) exp
S R

i f d fω μ ω
′

= −∫                            (1) 
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for all smooth rapidly decreasing function ( )f S R∈ . Here , fω  denotes the dual pairing between 

( )S Rω ′∈  and  ( )f S R∈ , and 0.  is the usual norm in 2 ( )L R . The corresponding inner product in 
2 ( )L R  is denoted by ( )0.,. .  

 

 From (1) we can deduce that ., f  is a centered Gaussian random variable with variance 2
0f . 

Because of the isometry  
 ( )2 2

0., , ( )E f f f S Rμ = ∈  

 

we can extend ., g  to 2 ( )g L R∈ . Hence we have for 2, ( )f g L R∈   

 ( ) ( )0., ., ,E f g f gμ =  (2) 
 

 From (2) it follows that a continuous version of [0, ).,1 t , which exists by the Kolmogorov-

Centsov theorem, is a standard Brownian motion tB  in the white noise space. Because every 
2 ( )f L R∈  can be approximated arbitrarily close by step functions we have  

 ., ( ) t
R

f f t dB= ∫  (3) 

where ( ) t
R

f t dB∫  denotes the classical Wiener integral of a function 2 ( )f L R∈ .  

  
 Now we summarize the construction of a fractional Brownian motion with arbitrary Hurst 
parameter (0,1)H ∈  in the white noise space. This construction was introduced by Bender in (Bender, 
2003). More explanations and detail of proofs can be found in (Bender, 2003) and references therein. 
As GMFBM is a linear combination of independent fractional Brownian motions, its realization in the 
white noise space can be easily derived. Mandelbrot and Van Ness in (Mandelbrot & Van Ness, 1968) 
proved that for 1

2(0,1) \{ }H ∈  a fractional Brownian motion is given by a continuous version of the 
following Wiener integral  

 ( )1 1
2 2

1
2

( ) ( )
( )

H HH H
t s

R

KB t s s dB
H

− −
+ += − − −

Γ + ∫   

 
where HK  is the normalizing constant. Here Γ  denotes Gamma function and ( )x +  denotes the 
positive part of x . 
  
 We will use fractional integral and fractional derivative to obtain a representation of fractional 
Brownian motion in terms of the indicator function. First, for 1

2( ,1)H ∈  we use fractional integrals of 
Weyl’s type. Let (0,1)β ∈ , define  

 ( ) 1 1

0

1 1( ) : ( )( ) ( )
( ) ( )x

I f x f t t x dt f x t t dtβ β β

β β

∞ ∞
− −

− = − = +
Γ Γ∫ ∫  

and  

 ( ) 1 1

0

1 1( ) : ( )( ) ( )
( ) ( )

x

I f x f t x t dt f x t t dtβ β β

β β

∞
− −

+
−∞

= − = −
Γ Γ∫ ∫  

if the integrals exists for all x R∈ . Now for case 1
2(0, )H ∈  we make use of fractional derivatives of 

Marchaud’s type which for (0,1)β ∈  and 0ε >  is given by  
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 ( ) 10

( ) ( )( ) : lim
(1 )

f x f x tD f x dt
t

β
βε

ε

β
β +

∞

± +→

−
=
Γ − ∫

m  

if the limit exists.  
 
Hence by (3) and Kolmogorov-Centsov theorem we have the following.  
 
 
Theorem 2.1.  (Bender, 2003) 
 

For (0,1)H ∈  define operator HN±  as  

 

( )1
2

1
2

1
2

1
2

1
2

(0, )

:

( ,1)

H
H

H

H
H

K D f if H

N f f if H

K I f if H

− −
±

±

−
±

⎧ ∈⎪⎪= =⎨
⎪

∈⎪⎩

 

 
Then a fractional Brownian motion with Hurst parameter H  in white noise space is given by a 
continuous version of [0, )., 1H

tN− . 

 
Thus the following representation of GMFBM  is well defined.   
 
Definition 2.2.  
 

For ( )1, , nH H H= K , and ( )1, , nα α α= K , (0,1),kH ∈  ,k Rα ∈ n N∈  a GMFBM of 
parameter H  and α  in the white noise space is given by the continuous version of 

[0, )
1

. , 1k

n
H

k t
k

Nα −
=
∑ .   

 
The following proposition gives some simple properties of the operator HN± . 
 
Proposition 2.3. (Bender, 2003) 
 
Let (0,1)H ∈  and ( )f S R∈ . Then 

− ( ) ( )[0, ) 0
0

, 1 ( )
t

H H
tf N N f s ds− += ∫  

− HN f+  is continuous 

− ( )[0, ) 0
, 1H

tf N−  is differentiable and ( )[0, ) 0
, 1 ( )H H

t
d f N N f t
dt − +=  

 
Generalized Mixed Fractional White Noise 
  

As we know a GMFBM HZ  is nowhere differentiable on almost every path. However, we are 
going to show that HZ  is differentiable as a mapping from R  into a space of stochastic generalized 
functions, the so-called Hida distributions. The distributional derivative of GMFBM is called 
generalized mixed fractional white noise.  
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According to Wiener-Ito decomposition theorem every ( ) ( )( )2 2: , ,L L S R Bϕ μ′∈ =  can be 

decomposed uniquely as  

 ( )2

0

ˆ: :, ,n n
n n c

n
f f L Rϕ

∞
⊗

=

= ⋅ ∈∑  (4) 

where ( )2ˆ n
cL R  denotes the space of symmetric complex-valued 2L -functions on nR , and : :n⊗⋅  

denotes the n  tensor power of Wick ordered monomial. The above decomposition is called the 
Wiener-Ito expansion of ϕ . Moreover the ( )2L -norm 

0ϕ  of ϕ  is given by  

 ( ) 22 2
0 0

0
: !μϕ ϕ

∞

=

= =∑ n
n

E n f    (5) 

Now consider Hamiltonian of harmonic oscillator 
2

2
2: 1dA x

dx
= − + +  and we define its second 

quantization operator ( )AΤ  in terms of the Wiener-Ito expansion. The domain of ( )AΤ , denoted by 

( )( )D AΤ , is the space of function ϕ  of the form (4) such that ( )n
nf D A⊗∈  and 

2

0
0

! n
n

n
n A f

∞
⊗

=

< ∞∑ . 

Then, we define  

 ( )
0

( ) : : :, , ( )n n
n

n
A A f D Aϕ ϕ

∞
⊗ ⊗

=

Τ = ⋅ ∈ Τ∑ . 

 
Both operators, A  and ( )AΤ , are densely defined on ( )2L R  and ( )2L , respectively. 

Furthermore they are invertible and the inverse operators are bounded. 
 For 0p N∈  and ( )( ) pD Aϕ∈ Τ  we define a more general norm as follow 

 
0

: ( ) p
p Aϕ ϕ= Τ . 

Now define  
 ( ) ( ) ( ){ }2 2: : ( ) ( )p p

pS L A exists and A Lϕ ϕ= ∈ Τ Τ ∈  

and endow ( ) pS  with the norm p⋅ . If we define  

 ( ) :S =  projective limit of ( ){ }0:pS p N∈  

then ( )S  is a nuclear space and it is called the space of Hida test function. The topological dual ( )S ∗  

of ( )S  is called the space of Hida distribution. It can be shown that 

 ( ) ( )
0

p
p

S S∗ ∗

≥

=U  

and the norms on the dual space ( ) pS ∗  of ( ) pS  is given by  

 00
: ( ) ,p

p A p Nϕ ϕ−
−

= Τ ∈ . 

Hence we arrive at the Gelfand triple  ( ) ( ) ( )2S L S ∗⊂ ⊂ . 

Dual pairing of ( )S ∗Φ∈  and ( )Sϕ∈  is denoted by ,ϕΦ . If ( )2LΦ∈  then  

                                ( ), .Eμϕ ϕΦ = Φ                                                   (6) 

For a complete discussion about ( )S  and ( )S ∗  see (Hida et al,1993; Kuo,1996). 
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Definition 3.1. 
 

Let I R⊂  be an interval. A mapping ( ):X I S ∗→  is called a stochastic distribution process. 

A stochastic distribution process X  is said to be differentiable if the limit 
0

lim t h t
h

X X
h

+

→

− exists in ( )S ∗ .  

Note that convergence in ( )S ∗  means convergence in the inductive limit topology.  
 

Now we are in the position to show that GMFBM HZ  is a differentiable stochastic 
distribution process. For 0n N∈  let nξ  be the n th Hermite function. First, recall that tempered 
distribution space ( )S R′  can be reconstructed as an inductive limit as follow. Define a family of 

norms on ( )2L R  by  

 ( ) ( )
22 22

00
0

: 2 2 , ,pp
kp

k
f A f k f p Nξ

∞
−−

−
=

= = + ∈∑ . 

 
The last equation follows from the fact that kξ  is an eigenfunction of A  with eigenvalue 

2 2k + . Then ( )S R′  is the inductive limit of ( )pS R− , p N∈  which is defined as the completion of 
2 ( )L R  with respect to . p−  . Note that convergence in the inductive limit topology coincides with 

both the convergence in the strong and the weak-∗  topology of  ( )S R′ .   
 
Lemma 3.2. (Bender, 2003) 
 

Let (0,1)H ∈ . Then ( )[0, )1 :HN R S R− ⋅ ′→  is differentiable and  

 ( )[0, )
0

1 ( )H H
t k k

k

d N N t
dt

ξ ξ
∞

− +
=

=∑ . 

 
From the representation [0, ), 1H H

t tB N−= ⋅  the preceding lemma might suggest that  

 ( )
0

, ( )H H
t k k

k

d B N t
dt

ξ ξ
∞

+
=

= ⋅ ∑ . 

 
Now the integrand in this Wiener integral is no longer an element of ( )2L R but a tempered 

distribution. From (3) and isometry (2) we obtain the following isometry 
 

00
, , p p

pp
f A f A f f− −

−−
⋅ = ⋅ = =                            (7) 

 
Thus the Wiener integral can be extended to ( )pf S R−∈  such that the isometry (7) holds, and 

consequently to ( )f S R′∈ . Note that this extended Wiener integral is a Hida distribution and need not 

to be a random variable. The following theorem enables us to calculate the derivative of HB .  
 
Theorem 3.3. (Bender, 2003) 
 

Let I R⊂ be an interval and let ( ):F I S R′→  be differentiable. Then , ( )F t⋅  is a 
differentiable stochastic distribution process and  
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 , ( ) , ( )d dF t F t
dt dt

⋅ = ⋅ . 

 
Combining this theorem with Lemma 3.2 we see that HB  is differentiable for (0,1)H ∈  and  

 ( )
0

, ( )H H
t k k

k

d B N t
dt

ξ ξ
∞

+
=

= ⋅ ∑ . 

 
Now for t R∈ we define the distribution  
 ( ), : ( )H H

t N f N f tδ + +=o , 

 
where tδ  is Dirac delta function at t . Then  

 ( ) ( ) ( ) ( )
2 2

2
0

0 0 01

( ) 2 2 ( ) , ,

0

H H H H
k k t k k n t n

k k k
N t N n N t Nξ ξ δ ξ ξ ξ δ ξ

∞ ∞ ∞
−

+ + + +
= = =−

⎛ ⎞
− = + −⎜ ⎟

⎝ ⎠
=

∑ ∑ ∑o o
 

Hence we have 

 ,H H
t t

d B N
dt

δ += ⋅ o . 

 
Definition 3.4.  
 

Let ( )1, , nH H H= K , and ( )1, , nα α α= K , (0,1)kH ∈ , ,k Rα ∈  .n N∈  Then the derivative 

of ,H
tZ α  in ( )S ∗   

 ,

1
: , k

n
HH

t k t
k

W Nα α δ +
=

= ⋅ ∑ o  

 
is called generalized mixed fractional white noise (GMFWN).  
 
Note that this is really a generalization of the classical white noise , tδ⋅ .   
  
One of the fundamental tools in white noise analysis is the S-transform. 
 
Definition 3.5.  
 

For  ( )S ∗Φ∈  the S-transform is defined by  

 ( ) ( ) ( )( ) : ,: exp , : ,S S Rη η ηΦ = Φ ⋅ ∈ . 

 
The S-transform is well defined, because the Wick exponential  
 ( ) ( )21

2 0: exp , : exp ,η η η⋅ = ⋅ −  

of the Wiener integral of a smooth rapidly decreasing function is a Hida test function. The S-transform 
also gives a convenient way to characterize an element in ( )S ∗ , see (Kuo, 1996).  Note that by 

definition if : ( )X I S ∗→  is a differentiable stochastic distribution process, then 
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( ) ( )( )t t
d dS X SX
dt dt

η η⎛ ⎞ =⎜ ⎟
⎝ ⎠

. Now we can obtain the explicit expressions of the S-transform of the 

GMFBM and GMFWN. 
 
Proposition 3.6.  
 

Let (0,1)H ∈ . Then for every ( )S Rη∈  

− ( ) ( ),
[0, ) 0

1
( ) : , 1k

n
HH

t k t
k

SZ Nα η α η −
=

=∑  

− ( ) ( ),

1
( ) : ( )k

n
HH

t k
k

SW N tα η α η+
=

=∑  

 
Proof.  
 

− By (6) and the polarization of (5) we get 

 
( ) ( ) ( )

( )

, ,
[0, )

1

[0, ) 0
1

( ) : ,: exp , : . , 1 : exp , :

, 1 .

k

k

n
HH H

t t k t
k

n
H

k t
k

SZ Z E N

N

α α
μη η α η

α η

−
=

−
=

⎛ ⎞
= ⋅ = ⋅⎜ ⎟⎜ ⎟

⎝ ⎠

=

∑

∑
 

− This immediately follows from Proposition 2.3 and the fact that ,H
tW α  is the derivative of 

,H
tZ α .  

 
 

CONCLUSION 
 
 
 A representation of generalized mixed fractional Brownian motion in white noise space has 
been constructed. We also show that this stochastic distribution process is differentiable in 
distributional sense. Moreover we provide the formula for the S-transform of these processes. In the 
white noise analysis framework we are interested in the Donsker’s delta of GMFBM,  self-intersection 
local times of GMFBM, generalization to arbitrary spatial dimension, stochastic integral with respect 
to GMFBM and stochastic differential equations driven by GMFBM  as further investigations. 
 
 

REFERENCES 
 
 
Bender, C. (2003) An Ito formula for generalized functionals of a fractional Brownian motion with 

arbitrary Hurst parameter, Stoch. Proc. Appl. , vol. 104, 81-106. 
 

Chakravarti, C., & Sebastian, K. L. (1997). Fractional Brownian motion models for polymers, 
Chemical Physics Letter. vol. 267, 9-13. 
 

Cheridito, P. (2001). Mixed fractional Brownian motion, Bernoulli, vol. 7, no. 6, 913-934. 
 
Filatova, D. (2008).  Mixed fractional Brownian motion: some related questions for computer network 

traffic modelling, International Conference on Signal and Electronic System, 393-396. 



Generalized Mixed Fractional …... (Herry Pribawanto Suryawan) 19 

Hida, T., Kuo, H-H., Potthoff, J. and Streit, L. (1993). White Noise: an Infinite Dimensional Calculus. 
Dordrecht: Kluwer. 
 

Hu, Y., & Oksendal, B. (2003) Fractional white noise calculus and applications to finance”, Infinite 
Dimensional Analysis, Quantum Probability and Related Topics, vol. 6, 1-32. 
 

Kuo, H-H. (1996), White Noise Distribution Theory, Boca Raton: CRC Press. 
 
Leland, W. E., Taqqu, M.S., Willinger, W., & Wilson, D. V. (1994). On the self-similar nature of 

ethernet traffic, IEEE/ACM Trans. Networking, vol. 2, 1-15. 
 

Mandelbrot, B., & Van Ness, J. (1968) Fractional Brownian motion, fractional noise and applications, 
SIAM Review,  vol. 10, 422-437. 
 

Scheffer, R. & Maciel, F. R. (2001). “he fractional Brownian motion as a model for an industrial airlift 
reactor, Chemical Engineering Science, vol. 56, 707-711. 
 

Thäle, C., (2009). Further remarks on mixed fractional Brownian motion, Applied Mathematical 
Sciences, vol. 3, no. 28, 1885-1901. 
 

Zili, M. (2006) On the mixed fractional Brownian motion, Journal of Applied Mathematics and 
Stochastic Analysis, vol. 2006, Article ID 32435, 1-9. 
 
 
 
 


