

2011 International Conference on Advanced Computer Science and Information Systems (Proceedings)

> Mercure Convention Centre, Jakarta December 17th-18th, 2011

> > Published by:

Faculty of Computer Science Universitas Indonesia

Welcome Message from General Chairs

On behalf of the Organizing Committee of this International Conference on Advanced Computer Science and Information Systems 2011 (ICACSIS 2011), we would like to extend our warm welcome to all of the presenter and participants, and in particular, we would like to express our sincere gratitude to our plenary and invited speakers.

This international conference is organized by the Faculty of Computer Science, Universitas Indonesia, and is intended to be the first step towards a top class

conference on Computer Science and Information Systems. We believe that this international conference will give opportunities for sharing and exchanging original research ideas and opinions, gaining inspiration for future research, and broadening knowledge about various fields in advanced computer science and information systems, amongst members of Indonesian research communities, together with researchers from Germany, United Kingdom, Rusia, Australia, Japan, South Korea, Malaysia, Thailand, Vietnam and other countries.

This conference focuses on the development of computer science and information systems. Along with 5 plenary and 3 invited speeches, the proceedings of this conference contains 66 papers which have been selected from a total of 134 papers from fourteen different countries. These selected papers will be presented during the conference.

We also want to express our sincere appreciation to the members of the Program Commitee for their critical review of the submitted papers, as well as the Organizing Commitee for the time and energy they have devoted to editing the proceedings and arranging the logistics of holding this conference. We would also like to give appreciation to the authors who have submitted their excellent works to this conference. Last but not least, we would like to extend our gratitude to the Ministry of Education of the Republic of Indonesia, the Rector of Universitas Indonesia, and the Dean of the Faculty of Computer Science for their continued support towards the the ICACSIS 2011 conference.

Sincerely yours, General Chairs Ito Wasito

Welcome Message from the Dean of Faculty of Computer Science, Universitas Indonesia

On behalf of all the academic staff and students of the Faculty of Computer Science, Universitas Indonesia, I would like to extend our warmest welcome to all the participants to the Mercure Convention Centre in Ancol, Jakarta on the occasion of the 2011 International Conference on Advanced Computer Science and Information Systems (ICACSIS).

Just like the previous two events in this series (2009 in Depok and 2010 in Bali), I am confident that ICASIS 2011 will play an important role in encouraging activities in research and development of computer science and information technology in Indonesia, and give an excellent opportunity to forge collaborations between research institutions both within the country and with international partners. The broad scope of this event, which includes both theoretical aspects of computer science and practical, applied experience of developing information systems, provides a unique meeting ground for researchers spanning the whole spectrum of our discipline. I hope that over the next two days, some fruitful collaborations can be established.

I also hope that the special attention devoted this year to the field of pervasive computing, including the very exciting area of wireless sensor networks, will ignite the development of applications in this area to address the various needs of Indonesia's development.

I would like to express my sincere gratitude to the distinguished invited speakers for their presence and contributions to the conference. I also thank all the program committee members for their efforts in ensuring a rigorous review process to select high quality papers.

Finally, I sincerely hope that all the participants will benefit from the technical contents of this conference, and wish you a very successful conference and an enjoyable stay in Jakarta.

Sincerely, Professor T. Basaruddin Ph.D Dean of the Faculty of Computer Science Universitas Indonesia

Welcome Message from Vice Minister of Education Ministry of Education and Culture of the Republic of Indonesia

Ladies and Gentlemen, speakers and guests of the 2011 International Conference on Advanced Computer Science and Information Systems, or simply ICACSIS 2011, Good Day, Assalamu'alaikum Wr. Wb.

Allow me to first express my gratitude towards our honorary chairs and our honored speakers from all around the world, who have spared their valuable time to contribute to this conference along with all the other distinguished participants

who have assembled here in Jakarta, over the next two days, for academic discussions on advanced computer science and information systems.

In today's information age, it seems that there is no longer an aspect of life that is unaffected by the advances of information and communication technology, or ICT. The Ministry of Education and Culture of the Republic of Indonesia recognizes that ICT has a huge role to play in addressing national issues and is committed to supporting research on how ICT can further solve these problems.

In recognition of the importance of ICT in national development, the Indonesian government's recently unveiled Master Plan for the Acceleration and Expansion of Indonesia's Economic Development (MP3EI) includes ICT as a crucial component of its 22 primary activities. This master plan is a bold initiative which aims to make Indonesia one of the world's 10 biggest economies by 2025, taking GDP to \$4.5 trillion and increasing the per capita income from \$3000 now to \$15,000. One of the strategic initiatives of this Master Plan is to encourage large scale ICT investment, including the provision of essential infrastructure such as affordable and usable broadband throughout the archipelago.

Such initiatives will be expected to serve as an enabling technology, and the government sees the national education sector – particularly higher education – as one of the catalysts to leverage this technology to directly impact Indonesia's national competitiveness. To that end, the Ministry encourages researchers and academics to improve national competitiveness through outstanding research achievements in the field of ICT. There are many research areas which can improve Indonesia's competitiveness, ranging from e-Government solutions that improve efficiency and effectiveness of public services, to information retrieval systems that are able to support information requirements at lightning speed through various online media, to the state-of-the-art discoveries in fields such as nano technology and pervasive computing, which are expanding the horizons of what can be achieved with ICT.

The Ministry appreciates the efforts conducted by the organizing committee that has worked hard through this conference to achieve two important objectives towards the development of advanced computer science and information systems. Firstly, it is to disseminate the state of the art of research and development in ICT, cognizant of its significant value for Indonesia's future. Secondly, it is intended to provide a media for exchanging ideas and information concerning ICT. I am convinced that the scholars who have gathered here at this conference will bring valuable contributions to this discipline.

Finally, I want to convey my deep appreciation and gratitude to the Faculty of Computer Science, Universitas Indonesia, and all of our distinguished plenary and invited speakers. I hope this conference will be enlightening for all of us, and I hope also that we will be able to continuously collaborate to push the frontiers of science and solve the problems of our nation.

Sincerely, Professor Musliar Kasim Vice Minister of Education Ministry of Education and Culture of the Republic of Indonesia

COMMITTEES

Honorary Chairs:

- T. Basaruddin, Dean of Faculty of Computer Science, Universitas Indonesia, ID
- Z. Bien, Fellow IEEE, KR
- B. Mirkin, University of London, UK / University Moscow, RU
- T. Fukuda, Director IEEE Regional X, JP

General Chairs:

- I. Wasito, Universitas Indonesia, ID
- Z.A. Hasibuan, Universitas Indonesia, ID
- H. Suhartanto, Universitas Indonesia, ID

Program Chairs:

- P. Mursanto, Universitas Indonesia, ID
- S. Yazid, Universitas Indonesia, ID
- W. Jatmiko, Universitas Indonesia, ID

Financial Chairs :

- R. Y. K. Isal, Universitas Indonesia, ID
- S. Louvan, Universitas Indonesia, ID

Program Committee:

- A. Tiu, Australia's National University, AU
- A. Tucker, Brunel University, UK
- A. Litchfield, University of Technology Sydney, AU
- A. Buono, Bogor Agricultural University, ID
- A.Z. Arifin, SepuluhNovember Institute of Technology, ID
- A. Murni, Universitas Indonesia, ID
- A. Srivihok, Kasetsart University, TH
- A. Purwarianti, Bandung Institute of Technology, ID
- B. H. Wijaya, Universitas Indonesia, ID
- B. Yuwono, Universitas Indonesia, ID
- C. Pang, CommonwealthScience and Industrial Research Organization, AU
- D. I. Sensuse, Universitas Indonesia, ID
- D. Jana, Institute of Electronics & Telecommunications Engineers, IN
- E. Suh, Ulsan National Institute of Science and Technology, KR
- H. Sayama, State University of New York, US
- H. Kim, Gwangju Institute of Science and Technology, KR
- K. Sekiyama, Nagoya University, JP
- K. Abdullah, International Islamic University of Malaysia, MY
- M. Adriani, Universitas Indonesia, ID
- M. Ishak, Universiti Teknologi Malaysia, MY
- M. Nakajima, Nagoya University, JP

- Marimin, Bogor Agricultural University, ID
- M. Pechenizkiy, EindhovenUniversity of Technology, NL
- N. Salim, Universiti Teknologi Malaysia, MY
- P. Hitzler, Wright State University, US
- Q. Zhang, CommonwealthScience and Industrial Research Organization, AU
- R. Setiono, National University of Singapore, SG
- S. Bressan, National University of Singapore, SG
- T. Usagawa, Kumamoto, University, JP
- W. Prasetya, Universiteit Utrecht, NL
- W. Chutimaskul, King Mongkut University Thailand, TH
- X. Liu, Brunel University, UK
- X. Li, University of Queensland, AU
- Y. S. Ho, Gwangju Institute of Science and Technology, KR

		Saturday, Dece	mber 17th, 2011 - CONFERENCE	
Time	Event Event Details			Rooms
07.30 – 08.30		Reg	istration	
		08.30–08.35 08.35–08.45	Preparation Greeting from the Dean of Faculty of Computer Science Universitas Indonesia (Prof. T. Basaruddin, Ph.D.)	
08.30 - 09.05	Opening Ceremony	08.45–09.00	Keynote Speech and Official Opening by the Vice Minister of Education and Cultural Affairs (Prof. Musliar Kasim)	
		09.00-09.05	The souvenirs provision ceremony, from the Dean of Faculty of Computer Science, UI, Prof. T. Basaruddin, Ph.D. to the Vice Minister of Education and Cultural Affairs, Prof. Musliar Kasim	Ballroom
09.05 - 09.45	Plenary Speech I	Prof. Boris Mirkin from National Research University Higher School of Economics, Moscow, Russian Federation Birkbeck University of London, UK. Topic : Classical Statistics, Machine Learning, Data Mining and Data Analysis Perspectives: Similarities and Differences		
09.45 – 10.05				
10.10 – 12.30	ParallelIncluded 40 minutes Invited Parallel Speech in Ballroom by Prof. Dr. Eng. Hajime Miyauchi from Kumamoto University, Japan.Parallel sessions.Topic : Electric Power System SimulationSee Technical Program(Parallel Session I Schedule)			Ballroom, Room A, Room B, Room C.
12.30 – 13.30	Lunch			Ballroom

Program At Glance

Saturday, December 17th, 2011 - CONFERENCE			
13.30 – 14.10	Plenary Speech II	Prof. Xue Li from School of Information Technology and Electrical Engineering, The University of Queensland	Ballroom
		Topic : Recommendations based on Information Network Analysis	
14.10– 14.50	Plenary Speech III	Ir. Zainal A. Hasibuan, MLS, Ph.D. from Faculty of Computer Science, Universitas Indonesia Topic : Indonesian E-Cultural Heritage Framework : An Integrated Approach to Digital Preservation	Ballroom
14.50 – 15.20			
15.20 – 16.20	Parallel Session II: Four parallel sessions.	Included 40 minutes Invited Parallel Speech in Ballroom by Bahtiar Alam, Ph.D, Director of Research and Community Services, Universitas Indonesia (DRPM UI) Topic : Current Research Policy and Implementation at Universitas Indonesia See Technical Program (Parallel Session II Schedule)	Ballroom, Room A, Room B, Room C.
16.20 -			
18.20 -		Ballroom	
18.40 – 21.00	Gala Dinner	Dinner, accompanied by music performance and traditional dances	Bailtootti

Sunday, December 18th, 2011 - CONFERENCE			
Time	Event	Event Details	Rooms
07.30 – 08.00	Registration		Ballroom
08.00 – 08.40	Plenary Speech IV	Prof. Elena Gaura from Faculty of Engineering and Computing, Coventry University, UK. Topic : Understanding the World Through Pervasive Sensing	Ballroom
08.40 - 09.00		Workshop registration	Ballroom
09.00 - 10.00	Workshop (hour 1)	See Technical Program (Workshops Schedule)	Ballroom, Room A, Room B, Room C.

	Sunday, December 18th, 2011 - CONFERENCE				
Time	Event	Rooms			
10.00- 10.30	Coffee Break			Ballroom	
10.30 – 12.30	Workshop (hour 2 and 3)	See Technical P	rogram (Workshops Schedule)	Ballroom, Room A, Room B, Room C.	
12.30 – 13.30	Lunch			Ballroom	
13.30 – 15.30	Parallel Session III: Four parallel sessions.	Included 40 minutes Invited Parallel Speech in Ballroom by Prof.Dr.Ir. Bambang Riyanto Trilaksono, School of Electrical Engineering and Informatics, Bandung Institute of Technology Topic : Bio-inspired Computing for Modeling, Optimization and Control See Technical Program (Parallel Session III Schedule)		Ballroom, Room A, Room B, Room C.	
15.30 – 15.50	Cottee Break				
15.50 – 16.30	Plenary Speech V	Prof. Toshio Fukuda from Center for Micro-Nano Mechatronics Professor, Dept. of Micro-Nano Systems Engineering Nagoya University. Topic : Advanced service robotics for human assistance and support		Ballroom	
16.30 - 17.00	Closing Ceremony (Award Announcement & Photo	16.30-16.55	Closing ceremony and award announcement		
	Session)	16.55 - 17.00	Photo session		

Table of Contents

Welcome Message from General Chairs	i
Welcome Message from Dean of Faculty of Computer Science University of Indonesia	iii
Welcome Message from Vice Minister of National Education and Culture	v
Committee	vii
Program At Glance	ix
Table of Content	xiii
Plenary Lectures	
Data Analysis, Mathematical Statistics, Machine Learning, Data Mining: Similarities and Differences	1
Boris Mirkin	
Recommendations based on Network Analysis	9
Xue Li and Lin Cheng	
Networked Body Sensing: Enabling real-time decisions in health and defence applications	17
Ramona Rednic, John Kemp, Elena Gaura, and James Brusey	
Advanced Service Robotics for Human Assistance and	
Support	25
Toshio Fukuda, Pei Di, Fei Chen, Kousuke Sekiyama, Jian Huang	
Indonesian E-Cultural Heritage Framework : An Integrated Approach to Digital Preservation	31
Zainal A. Hasibuan	

Computer Networks, Architecture & High Performance Computing

Load Frequency Stabilization in two-area Interconnected System using CES and SSSC 37

Saeid Jalilzadeh, Javad Gholinezhad, and Peyman Farhang

Optimization of Knowledge Sharing through Multi-Forum using Cloud Computing Architecture	43
Sriram M.V. and Srivatsan Sankaran	
Mobile Agent Implementation in Location-based Services	47
Rendy Eka Saputra and Sri Wahjuni	
Backscattering Control Logic Component Using FPGA Device	51
Silmina Ulfah, Fiftatianti Hendajani, and Sunny Arief Sudiro	
Optimal Quantization and Energy Allocation Schemes for Distributed Estimation in Wireless Sensor Networks	57
Eni Dwi Wardihani, Wirawan, and Gamantyo Hendrantoro	
An FPGA based Hardware Accelerator for Real Time Video Segmentation System	63
Indra Yasri	
A Distance Vector Algorithm for Wireless Sensor Networks by Combining Resource- Aware Framework	69
Muhammad Ilyas Syarif, Jumadi M. Parenreng, Supeno Djanali, and	
Ary Masharuddin Shiddiqi	
A Comparative Study on Operating System for Wireless Sensor Networks	73
Thang Vu Chien, Hung Nguyen Chan, and Thanh Nguyen Huu	
A Finite Volume Method for Shallow Water Flows on Triangular Computational Grids	79
Sudi Mungkasi and Stephen Gwyn Roberts	
Implementation of Parallel BACON-MVV Method based on Data Decomposition in Intrusion Detection System	85
Lely Hiryanto, Andri Muliawan, and Dyah Erny Herwindiati	
A Real Time Kernel for 16 bit PIC Microcontrollers	91
Syed Kamal Mustafa	
A Distributed Community Approach for Protecting Resources in Digital Ecosystem	95
Ilung Pranata, Geoff Skinner, and Rukshan Athauda	

Effects of Impulsive Noise on Fourier Based OFDM and Wavelet Based OFDM	101
Khaizuran Abdullah, Ahmad Fadzil Ismail, Md Rafiqul Islam, and	
Wahidah Hashim	
Implementation Vehicle Classification On Distributed Traffic Light Control System Neural Network Based	107
Big Zaman, Wisnu Jatmiko, Adi Wibowo, and Elly Matul	
Telecommunication Networks Coverage Area Expansion in Disaster Area using Autonomous Mobile Robots : Hardware and Software Implementation	113
E.Budianto, M.S, Alvissalim, A.Hafidh, A.Wibowo, W.Jatmiko, B.Hardian,	
P.Mursanto, and A.Muis	
FNLVQ Design and Implementation in FPGA to Estimate Trichloroethylene in White Mouse Liver Images	119
A. Febrian, M. Fajar, M.I. Tawakal, Elly Matul, W. Jatmiko,	
D.H. Ramdani, A. Bowolaksono, and P. Mursanto	
Digital Libraries and Distance Learning	
Knowledge Engineering Approach for Constructing Ontology for e-Learning Services	125
M.Farida Begam and Gopinath Ganapathy	
Proposed Intelligent E-Learning System using Semantic Web	133
Iman Paryudi and Sri Rezeki C.N.	

E-Government

Internet User Behavior Analysis in Online Shopping on Indonesia	137
Nanang Husin	
Design and Implementation of e-KTP (Indonesian Electronic Identity Card) Key Management System	143
Aravada Kevindra Darwis and Charles Lim	

A proposed methodology to develop an e-Government system based on Soft Systems Methodology (SSM) and Focus Group Discussion (FGD)	
Arief Ramadhan, Dana Indra Sensuse, and Aniati Murni Arymurthy	
Semantic Web Based Distributed Government Data Center	153
Imairi Eitiveni and Dana Indra Sensuse	

Enterprise Computing

Modeling Serious Games based on Cognitive Skill Classification using Learning Vector Quantization with Petri Net	159
Moh. Aries Syufagi , Mauridhi Hery P, and Mochamad Hariadi	
Analytical Hierarchy Process and PROMETHEE Application in Measuring Object Oriented Software Quality	165
Arwin Halim, Amin Sudrajat, Andry Sunandar, I Ketut Resika Arthana,	
Sunario Megawan, and Petrus Mursanto	
Impact Analysis on Free Online Marketing Using Social Network Facebook: Case Study SMEs in Indonesia	171
Putu Wuri Handayani and Wahyu Lisdianingrum	

Formal Methods in Software Engineering

Multi Objectives Fuzzy Ant Colony Optimization of Palm Oil Based Bioenergy Supply Path Searching	177
Ditdit N. Utama, TaufikDjatna, ErlizaHambali, Marimin, and Dadan Kusdiana	
Computational Model of Social Interaction in Multi-agent Simulation based on Personality Traits	183
Aswin Indraprastha	
Model Simplification in Petri Net Models	189

Reggie Davidrajuh

A Comparative Study of HNN and Hybrid HNN-PSO Techniques in the Optimization of Distributed Generation (DG) Power Systems	195
Irraivan Elamvazuthi, T. Ganesan, and P. Vasant	
A Short Overview on Modern Parallel SAT-Solvers	201
Steffen Hoʻlldobler, Norbert Manthey, Van Hau Nguyen, Julian Stecklina, and	
Peter Steinke	
Reverse Engineering Using Behavior Tree Approach	207
Iis Solichah and Petrus Mursanto	
Classification of Hospital Pharmaceutical Drugs Inventory Items by Combining ABC Analysis and Fuzzy Classification	215
Mahendrawathi ER, Eliza Nurul Laili, and Renny P. Kusumawardani	
Information Retrieval	
Model Selection For Time Series Forecasting Using Similarity Measure	221
Agus Widodo and Indra Budi	
Enriching Time Series Datasets using Nonparametric Kernel Regression to Improve Forecasting Accuracy	227
Agus Widodo, Mohamad Ivan Fanani, and Indra Budi	
Making Learning Ubiquitous With Mobile Translator Using Optical Character Recognition (OCR)	233
Ariffin Abdul Muthalib, Anas Abdelsatar, Mohammad Salameh, and	
Juhriyansyah Dalle	
Evaluation of Text-to-Speech Synthesizer for Indonesian Language Using Semantically Unpredictable Sentences Test: IndoTTS, eSpeak, and Google Translate TTS	237
Nur Aziza Azis, Rose Maulidiyatul Hikmah, Teresa Vania Tjahja, and	
Anto Satriyo Nugroho	
A Step Towards High Quality One-class Collaborative Filtering using Online Social Relationships	243
Sirawit Sopchoke and Boonserm Kijsirikul	

Application of Document Spelling Checker for Bahasa Indonesia	249
Aqsath Rasyid N., Mia Kamayani, Ridho Reinanda, Simon Simbolon, Moch Yusup Soleh, and Ayu Purwarianti	
LinkedLab: A Linked Data Platformfor Research Communities	253
Fariz Darari and Ruli Manurung	
Towards Data Warehouse Quality through Integrated Requirements Analysis	259
Munawar, Naomie Salim, and Roliana Ibrahim	
Developing Indonesian-English Hybrid Machine Translation System	265
Evi Yulianti, Indra Budi, Achmad N. Hidayanto, Hisar M. Manurung, and	
Mirna Adriani	
From XML view updates to ORSQL updates: Building updatable XML views over ORDBs	271
Anuradha Karunasena and Prasanna S. Haddela	
Wireless Sensor Networks Nodes Localization based on Inter-node RF Range Measurement using Vernier Effect	277
Ali Husein Alasiry, Sang-Il Ko, Hong Phuoc Thanh, Jun-ya Takayama, and	
Shinji Ohyama	
Expected Answer Type Construction using Analogical Reasoning in a Question Answering Task	283
Hapnes Toba, Mirna Adriani, and Ruli Manurung	

IT Governance

The Impact of Information Technology Governance Maturity Level on Corporate Productivity: a Case Study at an Information Technology Services Company	291
Budi Yuwono and Annas Vijaya	
Compliance Analysis of IT Investment Governance Practices to Val IT 2.0 Framework in Indonesian Commercial Bank: The XYZ Bank Case Study	297
Larastri Kumaralalita, Achmad Nizar Hidayanto, and Dina Chahyati	

Factors Influencing Initial Trust Formation in Adopting Internet Banking in Indonesia	305
Aries Susanto, Hwansoo Lee, and Hangjung Zo	
Designing a Tool for IT Governance Risk Compliance: A Case Study	311
Dewi Puspasari, M. Kasfu Hammi, Muhammad Sattar, and Rein Nusa	
Pattern Recognition, Image Processing & Content-Based Image Retrieval System	
Application of a Hybrid Neural Network Model for Multispectral Remotely Sensed Image Classification in the Belopa Area South Sulawesi of Indonesia Muhamad Sadly and Yoke Faisal O.	317
Real-Time Neural Network-Based Network Analyzer for Hotspot Area	323
Rahmadya Trias Handayanto, Haryono, and Jarot Prianggono	
Haar Wavelet Decomposition Based Blockiness Detector and Picture Quality Assessment Method for JPEG Images	331
Irwan Prasetya Gunawan and Antony Halim	
Recursive Text Segmentation for Color Images for Indonesian Automated Document Reader	337
Teresa Vania Tjahja, Anto Satriyo Nugroho, Nur Aziza Azis,	
Rose Maulidiyatul Hikmah, and James Purnama	
Enhancement of Trabecular Bone on Dental Panoramic Radiographs Using Multiscale Line Operator	343
Agus Zainal Arifin, Dwi Izzatul Millah, Imam Cholissodin, and Indra Lukmana	
Automated Status Identification of Microscopic Images Obtained from Malaria Thin Blood Smears using Bayes Decision: A study case in Plasmodium Falciparum	347
Dian Anggraini, Anto Satriyo Nugroho, Christian Pratama,	
Ismail Ekoprayitno Rozi, Vitria Pragesjvara, and Made Gunawan	
Evaluation of Fingerprint Orientation Field Correction Methods	353

Andree A. K. Surya, Anto S. Nugroho, and Charles Lim

A Normalization Method of Converting Online Handwritten Chinese Character to Stroke- Segment-Mesh Glyph	359
Hanquan Huang	
Optimal Selection of Wavelet Thresholding Algorithm for ECG Signal Denoising	365
Sani M. Isa, Ary Noviyanto, and Aniati Murni Arymurthy	
Vision-Based Navigation Using Top-view Transform and Beam-ray Model	371
Qing Lin, Youngjoon Han, and Hernsoo Hahn	
Non-Invasive Intracranial Pressure Classification Using Strong Jumping Emerging Patterns	377
Putu Wira Angriyasa, Zuherman Rustam, and Wismaji Sadewo	
Monitoring of Molten Pool Image during Pipe Welding in Gas Metal Arc Welding (GMAW) Using Machine Vision	381
Ario Sunar Baskoro, Erwanto, and Winarto	
Arrhytmia Classification using Fuzzy-Neuro Generalized Learning Vector Quantization	385
I Made Agus Setiawan, Elly M. Imah, and Wisnu Jatmiko	
Detection of Visual Bearing Defect Using Integrated Artificial Neural Network	391
Agustian K. Herdianta and Aulia M.T. Nasution	
Web-Based Decision Support System Using C4.5 Decision Tree Algorithm	395
Rajesri Govindaraju and Dipta Mahardhika	

Poster Session

On Performance of Kernel Based and Embedded Real-Time Operating System:	
Benchmarking and Analysis	401
Mastura D. Marieska, Paul G. Hariyanto, M. Firda Fauzan,	
Achmad Imam Kistijantoro, and Afwarman Manaf	

Skin Color Segmentation Using Adaptive PCA and Modified Elliptic Boundary Model 403

Noha A.Hikal and Roumen Kountchev

The Effect of Syllable and Word Stress on the Quality of Indonesian HMM-based Speech Synthesis System 413

Clara Vania and Mirna Adriani

A Finite Volume Method for Shallow Water Flows on Triangular Computational Grids

Sudi Mungkasi^{1,2} and Stephen Gwyn Roberts¹

¹Mathematical Sciences Institute, Australian National University, Canberra, Australia ²Department of Mathematics, Sanata Dharma University, Yogyakarta, Indonesia

E-mail: sudi.mungkasi@anu.edu.au, stephen.roberts@anu.edu.au

Abstract—This paper presents a finite volume method used to solve the two-dimensional shallow water (wave) equations and how the finite volume method is implemented in ANUGA software. This finite volume method is the numerical method underlying the software. ANUGA is open source software developed by Australian National University (ANU) and Geoscience Australia (GA). This software uses the finite volume method with triangular domain discretisation for the computation. Three test cases are considered in order to evaluate the performance of the software. Overall, ANUGA is a robust software to simulate two-dimensional shallow water flows.

I. INTRODUCTION

T HE shallow water (wave) equations have emerged as important mathematical models to describe water flows. Some of its developments and applications are given in [1], [2], [3], [4].

One old work with a big impact is the analytical dam break modelling done by Ritter [5]. The dam break problem is now becoming a standard benchmark to test the performance of numerical methods. Even though this problem is originally modelled for one-dimensional shallow water equations, it can also be treated as a two-dimensional problem, which we present in this paper as a planar dam break problem. In addition, it can also be extended to a circular twodimensional problem.

Another interesting benchmark problem is the oscillation of water on a paraboloid canal (channel) developed by Thacker [6]. This problem involves a wetting and drying process, a process that is wellknown to be very difficult to resolve [7], [8], [9], [10], [11]. We note that Yoon and Cho [12] used this type of problem to test their numerical method.

One open-source software used to simulate twodimensional shallow water flows is ANUGA, named after Australian National University (ANU) and Geoscience Australia (GA). This software uses a finite volume method as the underlying mathematical background. We will present this finite volume method and test the performance of ANUGA using the planar dam break problem, circular dam break problem, and oscillation on a paraboloid channel. ANUGA uses triangular domain discretisation for the computation. The remainder of this paper is organised as follows. In Section II, we present the shallow water equations governing water flows. Section III is devoted to the finite volume method. Section IV briefly describes the ANUGA software. Section V contains three numerical simulations. Finally, Section VI concludes the paper with some remarks.

II. SHALLOW WATER EQUATIONS

The two-dimensional shallow water (wave) equations are [13], [14], [15], [16], [17], [18]

$$\mathbf{q}_t + \mathbf{f}(\mathbf{q})_x + \mathbf{g}(\mathbf{q})_y = \mathbf{s}, \qquad (1)$$

where $\mathbf{q} = [h \ uh \ vh]^T$ is the vector of conserved quantities consisting of water depth h, x-momentum uh, and y-momentum vh. Here, u and v are velocities in the x- and y-direction; $\mathbf{f}(\mathbf{q})$ and $\mathbf{g}(\mathbf{q})$ are flux functions in the x- and y-direction given by

$$\mathbf{f}(\mathbf{q}) = \begin{bmatrix} uh\\ u^2h + \frac{1}{2}gh^2\\ uvh \end{bmatrix}$$
(2)

and

$$\mathbf{g}(\mathbf{q}) = \begin{bmatrix} vh\\ vuh\\ v^2h + \frac{1}{2}gh^2 \end{bmatrix}; \quad (3)$$

the source term including gravity and friction is

$$\mathbf{s} = \begin{bmatrix} 0\\ -gh(z_x + S_{fx})\\ -gh(z_y + S_{fy}) \end{bmatrix}$$
(4)

where z(x,y) is the bed topography, and $S_f = \sqrt{S_{fx}^2 + S_{fy}^2}$ is the bed friction modelled using Manning's resistance law

$$S_{fx} = \frac{u\eta^2 \sqrt{u^2 + v^2}}{h^{4/3}}$$
(5)

and

$$S_{fy} = \frac{v\eta^2 \sqrt{u^2 + v^2}}{h^{4/3}}$$
(6)

in which η is the Manning resistance coefficient. It should be noted that the stage (absolute water level) w is given by w := z + h.

Integrating (1) over an arbitrary closed and connected spatial domain Ω having boundary Γ and applying the Gauss divergence theorem to the flux terms, we get the integral form

$$\frac{\partial}{\partial t} \int_{\Omega} \mathbf{q} \, d\Omega + \oint_{\Gamma} \mathbf{F} \cdot \mathbf{n} \, d\Gamma = \int_{\Gamma} \mathbf{s} \, d\Omega \tag{7}$$

where $\mathbf{F} = [\mathbf{f}(\mathbf{q}) \ \mathbf{g}(\mathbf{q})]^T$ is the flux function, $\mathbf{n} = [\cos(\theta) \ \sin(\theta)]^T$ is the outward normal vector of the boundary, and θ is the angle between \mathbf{n} and the *x*-direction. Equation (7) is called the integral form of the two-dimensional shallow water wave equations.

The rotational invariance property of the shallow water wave equations implies that

$$\mathbf{F} \cdot \mathbf{n} = \mathbf{T}^{-1} \mathbf{f}(\mathbf{T} \mathbf{q}) \tag{8}$$

where ${\bf T}$ is the transformation matrix

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos(\theta) & \sin(\theta)\\ 0 & -\sin(\theta) & \cos(\theta) \end{bmatrix}.$$
 (9)

Therefore, (7) can be rewritten as

$$\frac{\partial}{\partial t} \int_{\Omega} \mathbf{q} \, d\Omega + \oint_{\Gamma} \mathbf{T}^{-1} \mathbf{f}(\mathbf{T}\mathbf{q}) \, d\Gamma = \int_{\Gamma} \mathbf{s} \, d\Omega \,. \quad (10)$$

III. FINITE VOLUME METHOD

After the spatial domain is discretized, we have the equation constituting the finite volume method over each triangular cell of the grids [14]

$$\frac{d\mathbf{q}_i}{dt} + \frac{1}{A_i} \sum_{j \in \mathcal{N}(i)} \mathbf{H}_{ij} \, l_{ij} = \mathbf{s}_i \tag{11}$$

where \mathbf{q}_i is the vector of conserved quantities averaged over the *i*th cell, \mathbf{s}_i is the source term associated with the *i*th cell, \mathbf{H}_{ij} is the outward normal flux of material across the *ij*th edge, and l_{ij} is the length of the *ij*th edge. Here, the *ij*th edge is the interface between the *i*th and *j*th cells. The flux \mathbf{H}_{ij} is evaluated using a numerical flux function $\mathbf{H}(\cdot, \cdot; \cdot)$ such that for all conservation vectors \mathbf{q} and normal vectors \mathbf{n}

$$\mathbf{H}(\mathbf{q},\mathbf{q};\mathbf{n}) = \mathbf{F} \cdot \mathbf{n} \,. \tag{12}$$

Furthermore,

$$\mathbf{H}_{ij} = \mathbf{H}(\mathbf{q}_i(m_{ij}), \mathbf{q}_j(m_{ij}); \mathbf{n}_{ij})$$
(13)

where m_{ij} is the midpoint of the ijth edge and \mathbf{n}_{ij} is the outward normal vector, with respect to the *i*th cell, on the ijth edge. The function \mathbf{q}_i is obtained from the averaged values of quantities in the *i*th and neighbouring cells.

Now let $\mathbf{n}_{ij} = [n_{ij}^{(x)} \ n_{ij}^{(y)}]^T$. From (12) and (13), we have

$$\mathbf{H}_{ij} = \mathbf{f}[\mathbf{q}_i(m_{ij})]n_1 + \mathbf{g}[\mathbf{q}_j(m_{ij})]n_2 \qquad (14)$$

Here, we recall the algorithm to solve the two-dimensional shallow water equations given by Guinot [13]. In the semi-discrete framework, four steps are considered as follows:

For each interface (i, j), transform the quantity q_i and q_j in the global coordinate system (x, y) into the quantity q̂_i and q̂_j in the local coordinate system system (x̂, ŷ). The water depth h is unchanged as it is a scalar variable, while the velocities u and v are transformed into û and v̂. Therefore, the new quantities in the local coordinate system are

$$\hat{\mathbf{q}}_i = \mathbf{T}\mathbf{q}_i \quad \text{and} \quad \hat{\mathbf{q}}_j = \mathbf{T}\mathbf{q}_j , \qquad (15)$$

where $\mathbf{q}_i = [h_i \ (hu)_i \ (hv)_i]$ and $\mathbf{q}_j = [h_j \ (hu)_j \ (hv)_j]$ are, respectively, the quantities in the global coordinate system. The matrices \mathbf{T} and \mathbf{T}^{-1} are

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0\\ 0 & n_{ij}^{(x)} & n_{ij}^{(y)}\\ 0 & -n_{ij}^{(y)} & n_{ij}^{(x)} \end{bmatrix}$$
(16)

and

$$\mathbf{T}^{-1} = \begin{bmatrix} 1 & 0 & 0\\ 0 & n_{ij}^{(x)} & -n_{ij}^{(y)}\\ 0 & n_{ij}^{(y)} & n_{ij}^{(x)} \end{bmatrix} .$$
 (17)

2) Compute the flux \hat{f} at the interface (i, j). In the local coordinate system, the problem is merely a one-dimensional Riemann problem, as the flux vector is parallel with the normal vector of the interface. Therefore, the equations to be solved are

$$\hat{\mathbf{q}}_t + \hat{\mathbf{f}}(\hat{\mathbf{q}})_{\hat{x}} = \mathbf{s} \tag{18}$$

with initial condition given by $\hat{\mathbf{q}}_i$ on one side of the interface (i, j) and $\hat{\mathbf{q}}_j$ on the other side of the interface (i, j). It should be stressed that at this step, we do not need to integrate (18) for the quantity $\hat{\mathbf{q}}$, but all we need is the value of the flux \hat{f} . Hence, applying either the exact or approximate Riemann solvers to compute the flux \hat{f} at the interface (i, j) is enough. Note that here the source term does not need to be transformed in the local coordinate system, since it involves scalar variables only.

3) Transform the flux $\hat{\mathbf{f}}$ back to the global coordinate system (x, y), so the flux at the midpoint of the interface (i, j) in the global coordinate system is

$$\begin{aligned} \mathbf{H}_{ij} &= \mathbf{T}_{ij}^{-1} \mathbf{\hat{f}} \\ &= \mathbf{T}_{ij}^{-1} \mathbf{\tilde{f}}(\mathbf{\hat{q}}_{i}; \mathbf{\hat{q}}_{j}; \mathbf{s}_{i}; \mathbf{s}_{j}) \\ &= \mathbf{T}_{ij}^{-1} \mathbf{\tilde{f}}(\mathbf{T}_{ij} \mathbf{q}_{i}; \mathbf{T}_{ij} \mathbf{q}_{j}; \mathbf{s}_{i}; \mathbf{s}_{j}) . \end{aligned}$$

Here, $\tilde{\mathbf{f}}$ is the flux computed with a Riemann solver for the one-dimensional problem stated in step [ii].

4) Finally, solve (11) where N(i) = {0,1,2}, as triangular grids are considered, for q_i. We multiply H_{ij} with l_{ij} in order to get the flux over the interface (i, j). This is because the flux

IV. ANUGA SOFTWARE

ANUGA is an open source (free software) developed by Australian National University (ANU) and Geoscience Australia (GA) to be used for simulating shallow water flows, such as floods and tsunamis. The mathematical background underlying the software is the finite volume method presented in the previous section. The interface of this software is in Python language, but the mostly expensive computation parts, such as flux computation, are written in C language. A combination of these two languages provides two different advantages: Python has the flexibility in terms of software engineering, while C gives a very fast computation.

A simple simulation using ANUGA generally has five steps in the interface code. These five steps are importing necessary modules, setting-up the computational domain, setting-up initial conditions, setting-up boundary conditions, and evolving the system through time [14]. The necessary modules to be imported are anuga¹ and some standard libraries such as numpy, scipy, pylab, and time. The simplest creation of the triangular computational domain is in the rectangularcross framework, which returns points, vertices, and boundary for the computation. The initial condition includes the definition of the topography, friction, and stage. The boundary conditions can be chosen in several ways depending on the needs: reflective boundary is for solid reflective wall; transmissive boundary is for continuing all values on the boundary; Dirichlet boundary is for constant boundary values; and time boundary is for time dependent boundary.

A thorough description of this software is available at http://datamining.anu.edu.au/anuga.

V. COMPUTATIONAL EXPERIMENTS

This section presents some computational experiments using the finite volume method with ANUGA as the software used to perform the simulation. For simplicity of the experiments, frictionless topography is assumed. Three different test cases are considered: a planar dam break problem, circular dam break problem, and water oscillation on a paraboloid channel.

The numerical settings are as follows. Even though ANUGA is capable to do the computations with unstructured triangular grids, we limit our presentation only to the structured triangular grids for brevity with rectangular-cross as the basis. The spatial reconstruction and temporal discretisation are both second order with edge limiter. A reflective boundary is imposed. The numerical flux is due to Kurganov et al.[19]. SI units are used in the measurements of the quantities.

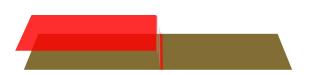


Fig. 1. Initial condition for the planar dam break problem.

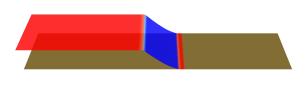


Fig. 2. Water flows 0.5 second after the planar dam is broken.

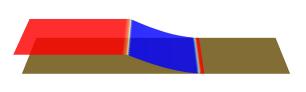


Fig. 3. Water flows 1.0 second after the planar dam is broken.

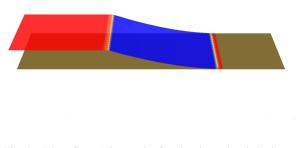


Fig. 4. Water flows 1.5 seconds after the planar dam is broken.

¹Uppercased word 'ANUGA' refers to the name of the software, whereas lowercased word 'anuga' refers to the name of ANUGA module in programming. See ANUGA User Manual [14] for the details of anuga.

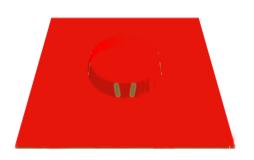


Fig. 5. Initial condition for the circular dam break problem.

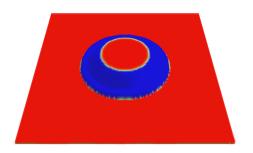


Fig. 6. Water flows 0.5 second after the circular dam is broken.

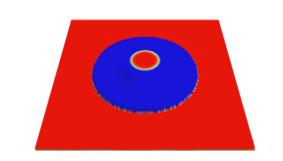


Fig. 7. Water flows 1.0 second after the circular dam is broken.

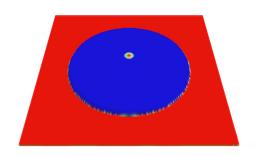


Fig. 8. Water flows 1.5 seconds after the circular dam is broken.

A. Planar dam break problem

Consider a flat topography without friction on a spatial domain $\{(x, y) | (x, y) \in [-50, 50] \times [-10, 10]\}$. Suppose that we are given a planar dam break problem with wet/dry interface bewtween the dam, where we have 10 meters water depth on the left of the dam, but dry area on the right. The dam is at $\{(0, y) | y \in [-10, 10]\}$. The simulation is then done to predict the flow of water after the dam is removed. Note that this dam break problem is actually a one-dimensional dam-break problem, but here we treat this as a two-dimensional problem.

The domain setting is as follows. The spatial domain is discretised into 100 by 20 rectangular-crosses, where each rectangular cross has 4 uniform triangles. This means that we have $8 \cdot 10^3$ structured triangles as the discretisation of the spatial domain.

The water surface and topography are shown in Figures 1 to 4. In particular, Figure 1 shows the initial condition, that is, the water profile at time t = 0.0 s. After the dam is broken, the profiles at time t = 0.5, 1.0, 1.5 s are illustrated in Figure 2, Figure 3, and Figure 4 respectively. At 1.5 seconds after dam break, the water flows to the right for a distance almost 30 m. This agrees with the analytical solution (30 m) for the one-dimensional dam break problem.

B. Circular dam break problem

Now suppose that we have a circular dam break problem with wet/wet interface between the dam. Consider a circular dam, where the point of origin is the centre, having 20 m as its radius. The water depth inside the circular dam is 10 m, while outside is 1 m. The spatial domain of interest is $\{(x, y) | (x, y) \in [-50, 50] \times [-50, 50]\}$. Similar to the planar dam break problem, the simulation of this test case is then done to predict the flow of water, after the dam is removed.

The domain setting is as follows. The spatial domain is discretised into 100 by 100 rectangular-crosses, where each rectangular cross has 4 uniform triangles. This means that we have $4 \cdot 10^4$ structured triangles as the discretisation of the spatial domain.

The water surface and topography are shown in Figures 5 to 8. In particular, Figure 5 shows the initial condition, that is, the water profile at time t = 0.0 s. After the dam is broken, the profiles at time t = 0.5, 1.0, 1.5 s are illustrated in Figure 6, Figure 7, and Figure 8 respectively. At 1.5 seconds after dam break, the water floods to the surrounding area approximately 25 m outwards.

C. Oscillation on a paraboloid channel

This test case is adapted from the work of Thacker [6] and Yoon and Chou [12]. Suppose that we have a spatial domain $\{(x, y) | (x, y) \in [-4000, 4000] \times [-4000, 4000]\}$. We define some parameters $D_0 =$

Fig. 9. Initial condition for the oscillation problem.

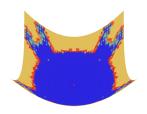


Fig. 10. Water flows at time t = 0.5T for the oscillation problem.

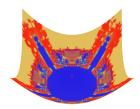


Fig. 11. Water flows at time t = T for the oscillation problem.

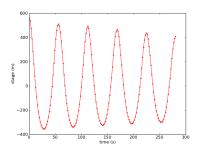


Fig. 12. The water surface corresponding to the origin until t = 5T for the oscillation problem.

$$1000, L = 2500, R_0 = 2000$$
 such that

$$A = \frac{L^4 - R_0^4}{L^4 + R_0^4},$$
 (20)

$$\omega = \frac{2}{L\sqrt{2gD_0}},\tag{21}$$

$$T = \frac{2\pi}{\omega} \tag{22}$$

are the amplitude of oscillation at the origin, the angular frequency, and the period of oscillation. Furthermore, the topography is given by

$$z(x,y) = -D_0\left(1 - \frac{r^2}{L^2}\right)$$
(23)

and the initial water level (the initial wet region) is

$$h(x,y) = D_0 \left[\frac{\sqrt{1-A^2}}{1-A\cos(\omega t)} - 1 - \frac{r^2}{L^2} \left(\frac{1-A^2}{(1-A\cos(\omega t))^2} - 1 \right) \right] (24)$$

where

$$=\sqrt{x^2+y^2}.$$
 (25)

The domain setting is as follows. The spatial domain is discretised into 50 by 50 rectangular-crosses, where each rectangular cross has 4 uniform triangles. This means that we have 10^4 structured triangles as the discretisation of the spatial domain.

r

The simulation is then done to perdict the flow of the water. According to Thacker [6], the flow will be a periodic oscillation. The simulation, using the numerical method and software discussed in this paper, indeed shows this periodic motion. The water profiles at time t = 0, T/2, T are shown in Figure 9, Figure 10, and Figure 11 respectively. In addition, the periodic motion of the water surface corresponding to the origin is depicted in Figure 12. From the numerical results, we see a minor damping of the oscillation. However, a perfect method or software should not produce this damping. Although it may be impossible to have a perfect method, we take this for future research for the ANUGA software to minimise or eliminate this kind of damping. We also see from the numerical results that a negligible amount of water is left over in the supposed-dry area.

VI. CONCLUSIONS

This paper has presented a finite volume method used to solve the shallow water equations. The method underlies ANUGA software. ANUGA was tested using three numerical simulations. We infer from the simulation results that ANUGA can solve nicely the wetting problem. For the drying problem, some very small amount of water, which is negligible, may be left over on the supposed-dry area. Regardless of what we have investigated, we need to note that different parameters or numerical settings generally lead to different results.

ACKNOWLEDGMENT

The work of Sudi Mungkasi was supported by ANU PhD and ANU Tuition Scholarships.

REFERENCES

- J. D. Jakeman, N. Bartzis, O. M. Nielsen, and S. Roberts, "Inundation modelling of the december 2004 indian ocean tsunami," *Proceedings of MODSIM07*, pp. 1667–1673, 2007, http://www.mssanz.org.au/MODSIM07/papers/26_s32/ Inundation_s32_Jakeman_.pdf.
- [2] S. Mungkasi and S. G. Roberts, "On the best quantity reconstructions for a well balanced finite volume method used to solve the shallow water wave equations with a wet/dry interface," ANZIAM Journal, vol. 51(EMAC2009), pp. C48–C65, 2010, http://journal.austms.org.au/ojs/index.php/ ANZIAMJ/article/view/2576/1289.
- [3] S. G. Roberts, O. M. Nielsen, and J. Jakeman, "Simulation of tsunami and flash floods," *Modeling Simulation and Optimization of Complex Processes: Proceedings of the International Conference on High Performance Scientific Computing 6– 10 March 2006, Hanoi, Vietnam*, pp. 489–498, 2008, http: //dx.doi.org/10.1007/978-3-540-79409-7_35.
- [4] J. J. Stoker, *Water Waves: The Mathematical Theory with Application.* New York: Interscience Publishers, 1957.
- [5] A. Ritter, "Die fortpflanzung der wasserwellen," Zeitschrift des Vereines Deutscher Ingenieure, vol. 36, no. 33, pp. 947–954, 1892.
- [6] W. C. Thacker, "Some exact solutions to the nonlinear shallow water equations," *Journal of Fluid Mechanics*, vol. 107, pp. 499–508, 1981, http://dx.doi.org/10.1017/ S0022112081001882.
- [7] K. Ganeshamoorthy, D. N. Ranasinghe, K. P. M. K. Silva, and R. Wait, "Performance of shallow water equations model on the computational grid with overlay memory architectures," *Proceedings of the Second International Conference on Industrial and Information Systems, ICIIS 2007, 8–11 August* 2007, Sri Lanka, pp. 415–420, 2007, http://dx.doi.org/10.1109/ ICIINFS.2007.4579213.
- [8] S. Guangcai, W. Wenli, and Y. L. Liu, "Numerical scheme for simulation of 2d flood waves," *Proceedings of the International Conference on Computational and Information Sciences*, pp. 846–849, 2010, http://dx.doi.org/10.1109/ICCIS.2010.210.

- [9] J. D. Jakeman, O. M. Nielsen, K. V. Putten, R. Mleczko, D. Burbidge, and N. Horspool, "Towards spatially distributed quantitative assessment of tsunami inundation models," *Ocean Dynamics*, vol. 60, no. 5, pp. 1115–1138, 2010, http://dx.doi. org/10.1007/s10236-010-0312-4.
- [10] C. Lu, Y. Chen, and G. Li, "Weighted essential non-oscillatory schemes for simulations of shallow water equations with transport of pollutant on unstructured meshes," *Proceedings of the Fourth International Conference on Information and Computing*, pp. 174–177, 2011, http://dx.doi.org/10.1109/ICIC.2011. 143.
- [11] S. Mungkasi and S. G. Roberts, "Approximations of the carrier–greenspan periodic solution to the shallow water wave equations for flows on a sloping beach," *International Journal for Numerical Methods in Fluids*, p. in press, 2011, http: //doi.wiley.com/10.1002/fld.2607.
- [12] S. B. Yoon and J. H. Cho, "Numerical simulation of coastal inundation over discontinuous topography," *Water Engineering Research*, vol. 2, no. 2, pp. 75–87, 2001, http://en. scientificcommons.org/49094905.
- [13] V. Guinot, Wave propagation in fluids: models and numerical techniques. London (and Hoboken): ISTE Ltd (and John Wiley & Sons, Inc), 2008.
- [14] S. Roberts, O. Nielsen, D. Gray, and J. Sexton, "ANUGA User Manual," Geoscience Australia, 2010, http://datamining.anu. edu.au/anuga.
- [15] W. Tan, *Shallow water hydrodynamics*. Amsterdam: Elsevier Science Publishers, 1992.
- [16] C. Zoppou and S. Roberts, *Shallow water wave equations*. Australian National University: *book in preparation*.
- [17] —, "Catastrophic collapse of water supply reservoirs in urban areas," *Journal of Hydraulic Engineering, American Society of Civil Engineers*, vol. 125, no. 7, pp. 686–695, 1999, http://dx.doi.org/10.1061/(ASCE)0733-9429(1999)125:7(686).
- [18] —, "Explicit schemes for dam-break simulations," Journal of Hydraulic Engineering, American Society of Civil Engineers, vol. 129, no. 1, pp. 11–34, 2003, http://dx.doi.org/10. 1061/(ASCE)0733-9429(2003)129:1(11).
- [19] A. Kurganov, S. Noelle, and G. Petrova, "Semidiscrete central-upwind schemes for hyperbolic conservation laws and hamilton-jacobi equations," *SIAM Journal of Scientific Computing*, vol. 23, no. 3, pp. 707–740, 2001, http://dx.doi.org/10. 1137/S1064827500373413.