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AN ANALYTICAL SOLUTION TO THE

PROBLEM OF PLANAR OSCILLATION OF

WATER IN A PARABOLIC CANAL

Sudi Mungkasi

Abstract. The problem of planar oscillation of water in a parabolic canal in two
dimension has been analytically solved by Thacker [Some exact solutions to the
nonlinear shallow water equations, Journal of Fluid Mechanics, 107(1981):499–
508]. However, for the one dimensional case, Thacker did not present the solution
of the problem. Therefore, we derive here an analytical solution to the problem of
planar oscillation of water in a parabolic canal for the one dimensional case.

1. INTRODUCTION

The exact solutions to the oscillations of water in a parabolic canal
considered by Thacker [6] are of two types, planar and paraboloid. Those
analytical solutions have been widely applied by a number of authors, such
as Balzano [1], Casulli [2], Murillo and Garćıa-Navarro [3], to test some
numerical methods used to solve the shallow water equations.

Thacker [6] has solved the problem of planar oscillation of water in a
parabolic canal in two dimension, but not derived the solution for the one
dimensional case. In addition to the presentation of Thacker [6], Sampson
et al [4] have derived analytical solutions for the one dimensional case based
on the characteristic equation of an ordinary differential equation. Taking
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the presentations of Thacker [6], and Sampson et al [4] into account, in
this paper we present an alternative derivation for the problem with some
specific conditions or assumptions. Our derivation, which is for the one
dimensional case, follows step by step from the derivation of Thacker [6] for
two dimensional problems.

2. DERIVATION OF THE SOLUTION

This section presents an analytical solution to time-dependent motion of
water in a parabolic canal without friction and without Coriolis force. The
solution presented here is in conjunction to the work of Thacker [6]. An
interesting feature of the solution is that no shock forms as the water flows
up and down the sloping sides of the canal.

The motion of water in a shallow canal, as illustrated in Figure 1, is
governed by the mathematical equations

ηt +
[

u(D + η)
]

x
= 0

ut + uux = −gηx

}

(1)

called the shallow water equations. Here, x is the one dimensional spatial
variable; t is the time variable; η(x, t) is the vertical measure from the
horizontal reference passing the origin O1 to the water surface; D(x) is the
vertical measure from the horizontal reference passing the origin O1 to the
bed topography; u(x, t) is the water velocity; and g is a constant representing
the acceleration due to the gravity. The derivation of (1) can be found in
some text books, such as that written by Stoker [5]. According to (1), the
instantaneous shoreline is determined by D + η = 0 . The moving shoreline
separates a region in which the total depth is positive from another region
in which it is negative. It follows from the continuity equation, which is the
first equation in (1), that the volume of water within the region for which
the total depth is positive remains constant in time as the shoreline moves
about.

We assume that there exists a solution for u of the form

u = u0 + uxx (2)

where u0 and ux are functions only of time. Substitution (2) into (1) leads
to an idea that the solution for η have the form

η = η0 + ηxx +
1

2
ηxxx2 (3)
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Figure 1: An illustration of a planar free surface in a parabolic canal.

where

ηx = −
1

g

[du0

dt
+ u0ux

]

, (4)

ηxx = −
1

g

[dux

dt
+ u2

x

]

(5)

and η0 is a function only of t .

In order to satisfy the continuity equation, D must be a polynomial
similar to η . In particular, it can be assumed that the canal is a parabola
of the form

D = D0

(

1 −
x2

L2

)

. (6)

Furthermore, the equilibrium shoreline is determined by the condition D = 0
which means

x = ±L . (7)

Substitution (2) and (3) into the continuity equation leads to

[

η0 + ηxx +
1

2
ηxxx2

]

t

·

[

(u0 + uxx)(D0 −
x2

L2
+ η0 + ηxx +

1

2
ηxxx2)

]

x

= 0 (8)
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which is equivalent to

[

η0 + ηxx +
1

2
ηxxx2

]

t

·

[

[

ux(D0 + η0) + u0ηx

]

+
[

u0(ηxx − 2
D0

L2
) + 2uxηx

]

x +
3

2
ux(ηxx − 2

D0

L2
)x2

]

= 0 . (9)

Since the last equation holds for all points, then the time-varying coefficients
of the linearly independent terms must separately equal to zero. This means
that

dη0

dt
+ ux(D0 + η0) + u0ηx = 0 , (10)

and

dηx

dt
+ u0

(

ηxx − 2
D0

L2

)

+ 2uxηx = 0 , (11)

and also
dηxx

dt
+ 3ux

(

ηxx − 2
D0

L2

)

= 0 . (12)

These three equations can determine the corresponding three unknown func-
tions (η0 , ηx , and ηxx) of time.

Now, assume that ux = 0 , so that according to (5) it is clear that ηxx =
0 . Then only two functions, u0 and h0 , must be determined. Equation
(12) is identically satisfied, and equations (10) and (11) can be written
respectively as

dη0

dt
+ ηxu0 = 0 (13)

and
dηx

dt
−

2D0

L2
u0 = 0 . (14)

Substitution (4) into (13) and (14) yields, respectively,

dη0

dt
−

u0

g

du0

dt
= 0 , (15)

d2u0

dt2
+

2gD0

L2
u0 = 0 . (16)

The general solution of (16) is

u0 = c1 sin(ωt) + c2 cos(ωt) (17)
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where ω =
√

2gD0/L2 , and c1 and c2 are constants. Using the initial
condition that u0 = 0 for t = 0 , we obtain that c2 = 0 . Therefore,

u0 = c1 sin(ωt) . (18)

This implies that the horizontal displacement δ , which is the integral of the
velocity, has the form of

δ = −
c1

ω
cos(ωt) + c3 (19)

where c3 is another constant. Applying the conditions δ(0) = A and δ( π
2ω

) =
0 , where the constant A determines the amplitude of the motion, we get
c1 = −Aω and c3 = 0 . Hence, the horizontal displacement is

δ = A cos(ωt) ; (20)

the shorelines has the formula

x = δ ± L = A cos(ωt) ± L ; (21)

and the velocity has the form

u = u0 = −Aω sin(ωt) . (22)

To determine the form of the surface elevation η , the quantities ηx and
η0 need to be specified. Based on equation (14) and (22), we have

dηx

dt
=

2D0u0

L2
=

2D0(−Aω sin(ωt))

L2
= −

2AωD0

L2
sin(ωt) (23)

and this yields

ηx =
2AD0

L2
cos(ωt) + c4 (24)

for some constant c4 . Based on (15) and (22), we have

dη0

dt
=

u0

g

du0

dt
=

A2ω3

2g
sin(2ωt) (25)

and this yields

η0 = −
A2ω2

4g
cos(2ωt) + c5 (26)

for some constant c5 . As a result, it can be evaluated that

η = η0 + ηxx

=
A2D0

2L2
[1 − 2 cos2(ωt)] + c5 +

[2AD0

L2
cos(ωt) + c4

]

x . (27)
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For x = 0 and t = π
2ω

, we have that η = 0 ; this implies c5 = −
A2D0

2L2 . In
addition, for x = A cos(ωt) + L and t = π

2ω
, the water surface is horizontal

which means η = 0 ; this implies c4 = 0 . Therefore, the closed form of the
water surface is given by

η =
2AD0

L2
cos(ωt)

[

x −
A

2
cos(ωt)

]

. (28)

Here the angular frequency of oscillation and the period are given by ω =
√

2gD0

L
and T = 2π

ω
respectively. It should be stessed that the solution (28),

(22) obtained above is under the assumption that the origin point is O1 , as
given in Figure 1.

If the origin is O2 , then a linear transformation is needed. Considering
O2 as the origin, we have that the canal profile is then given by

z =
D0

L2
x2 , (29)

the velocity and the shorelines are, still the same as before, given by

u = −Aω sin(ωt) , (30)

and
x = A cos(ωt) ± L , (31)

while the water stage w has the form

w = D0 +
2AD0

L2
cos(ωt)

[

x −
A

2
cos(ωt)

]

. (32)

Here, the water stage w is the vertical measure from the horizontal reference
passing O2 to the water surface, that is, w(x, t) = z(x) + h(x, t) where
h(x, t) = D(x) + η(x, t) , as illustrated in Figure 1. In short, the equations
(32), (30) are the solution to the problem if the origin is O2 , as illustrated
in Figure 1.

3. CONCLUSION

We have derived an analytical solution to the problem of planar oscillation
of water in a parabolic canal for the one dimensional case. This analytical
solution can be applied to test the performance of numerical methods used
to solve the one dimensional shallow water equations.



Sudi Mungkasi – A solution to the problem of planar oscillation of water 109

ACKNOWLEDGEMENT

The author thanks Associate Professor Stephen Roberts at The Australian
National University (ANU) for his advice. This work was done when the
author was undertaking a masters program at the ANU.

REFERENCES

1. A. Balzano, Evaluation of methods for numerical simulation of wetting
and drying in shallow water flow models Coastal Engineering, 34(1998),
83–107.

2. V. Casulli, A high-resolution wetting and drying algorithm for free-surface
hydrodynamics International Journal for Numerical Methods in Fluids,
60(2009), 391–408.
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