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AN ALTERNATIVE DERIVATION OF THE
SHALLOW WATER EQUATIONS

Sudi Mungkasi

Abstract. The one dimensional shallow water equations consist of the equation
of mass conservation and that of momentum conservation. In this paper, those
equations are derived. We utilize a constant approximation of integration in the
derivation. We call our derivation an alternative derivation since it is different
from the classical derivation. The classical derivation of the shallow water equations
involves a velocity-potential function, while our derivation does not.

1. INTRODUCTION

The shallow water equations, or SWE for short, model shallow water flows
as the name suggest. These equations are according to the transport of
mass and momentum, and based on conservation laws. These equations
form a nonlinear hyperbolic system, and often admit discontinuous solution
even when the initial condition is smooth. They have been widely used
for many applications, for example: dam-breaks, tsunamis, river flows, and
flood inundation. The SWE also known as the Saint-Venant system, for the
one dimensional case, can be written as two simultaneous equations

ht + (hu)x = 0 , (1)
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Figure 1: Shallow water flow in one-dimension

(hu)t + (hu2 +
1
2
gh2)x = −ghzx . (2)

Here, we have that: x represents the distance variable along the water flow, t
represents the time variable, z(x) is the fixed water bed, h(x, t) is the height
of the water at point x and at time t, and u(x, t) denotes the velocity of the
water flow at point x and at time t. In addition, g is a constant denoting
the acceleration due to the gravity. The shallow water flow is illustrated in
Figure 1, where the water stage w is defined by w(x, t) = z(x) + h(x, t) .

In this paper, we present an alternative derivation of the one dimen-
sional SWE (1), (2) using a constant approximation of integration. We call
our derivation as ”an alternative derivation”, because our derivation is dif-
ferent from the classical derivation, which usually uses a velocity-potential
function (see Stoker [3] for the classical derivation). Note that LeVeque [2]
has derived some conservation laws, but also in a different way. We start
from an arbitrary control volume, then derive the shallow water equations
based on the considered control volume. Since the control volume is arbi-
trary, the shallow water equations hold for an arbitrary domain.

This paper is organized as follows. Section 2 recalls a constant ap-
proximation for integral form, and also presents the derivation of the SWE
consisting of equation (1) of mass conservation and equation (2) of momen-
tum conservation. We provide some concluding remarks in Section 3.

2. DERIVATION OF THE SWE

In this section, we derive equation (1) of mass conservation and equation (2)
of momentum conservation. These two equations form the SWE simulta-
neously. In the derivations, we apply a constant approximation for integral
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Figure 2: The inflow and outflow of the control volume

form. The properties of the approximations are given in the following the-
orem, where the proof has been provided by Laney [1, pp.176–177].

Theorem 2.1 Suppose that we are given an arbitrary interval [x1, x2] . Let
∆x = x2 − x1 . If x0 ∈ [x1, x2] but x0 is not the centroid of the interval,
then ∫ x2

x1

f(x) dx = f(x0)∆x + O(∆x2) . (3)

If x0 is the centroid of the interval [x1, x2] , then∫ x2

x1

f(x) dx = f(x0)∆x + O(∆x3) . (4)

2.1. Conservation of mass

Conservation of mass means that the mass is neither created nor de-
stroyed. Several assumptions, involved in the derivation of the equation of
mass conservation, follows. First, the water flow is assumed to be laminar
that is the turbulent velocity is neglected. Second, the water is incompress-
ible so that the density, ρ, of the water at each point is constant. In addition,
because the conservation of mass is applied and it is assumed that the water
bed is impermeable, the mass in any control volume can change only due to
the flow acrossing the end points of the control volume.

The total mass m of water in an arbitrary control volume [x1, x2] is
given by

m =
∫ x2

x1

ρh(x, t) dx (5)

The total mass given by (5) holds because the mass density over the depth
at an arbitrary point (x, t) is ρh(x, t) which can be calculated by integration
of ρ from z(x) to w(x, t) , where we know that w(x, t) = z(x) + h(x, t) .
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The rate of flow of water past any point (x, t) over the depth is called
the mass flux which is given by

mass flux = ρh(x, t)u(x, t) . (6)

Using (6), we obtain that the rate of change of the total mass is

d

dt

∫ x2

x1

ρh(x, t) dx = ρh(x1, t)u(x1, t)− ρh(x2, t)u(x2, t) . (7)

For smooth solutions, (7) is equivalent to∫ x2

x1

h(x, t + ∆t)dx =
∫ x2

x1

h(x, t)dx +
∫ t+∆t

t
h(x1, s)u(x1, s)ds

−
∫ t+∆t

t
h(x2, s)u(x2, s)ds . (8)

Equation (8) means that the mass at time step t + ∆t is equal to the mass
at time t added by the total amount of mass moving into the control volume
during ∆t-period, as illustrated in Figure 2.

Let ∆x and ∆t be small quantities. Using a constant approximation
(4) of integration, we can rewrite equation (8) as

h(x, t + ∆t)∆x = h(x, t)∆x + h(x− ∆x

2
, t)u(x− ∆x

2
, t)∆t

−h(x +
∆x

2
, t)u(x +

∆x

2
, t)∆t

+O(∆t3) + O(∆x3) (9)

which can be rewritten as

h(x, t + ∆t)− h(x, t)
∆t

= −
(hu)|(x+∆x

2
,t) − (hu)|(x−∆x

2
,t)

∆x
, (10)

in which O(∆t3) and O(∆x3) terms are neglected. As ∆x and ∆t approach
zero, equation (10) becomes

ht + (uh)x = 0 (11)

Equation (11) is then called the equation of mass conservation.

2.2. Conservation of momentum
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Figure 3: Pressure in a slope area

In this subsection, the conservation of momentum equation using Newton’s
second law of motion is presented. The law can be mathematically written
as

F =
dp

dt
, (12)

where the inertial force F is defined as the rate of change of the momentum
p with respect to time t .

The total momentum of water movement in any control volume from
x1 to x2 at time t is

p(t) =
∫ x2

x1

ρh(x, t)u(x, t) dx . (13)

The forces at points x1 and x2 over the depth at time t are

F1(t) =
1
2
ρgh2(x1, t) (14)

and
F2(t) = −1

2
ρgh2(x2, t) (15)

respectively, where g > 0 is constant denoting the acceleration due to the
gravity as we have stated in the introduction section. Furthermore, the force
over ∆z as shown in Figure 3 is

∆F3 = −ρgh(x, t)∆z (16)
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or can be written as
∆F3 = −ρgh(x, t)

∆z

∆x
∆x (17)

and therefore the force over the bottom of the control volume is

F3 =
∫ x2

x1

−ρgh(x, t)zxdx (18)

Hence, the total force over the control volume denoted by F is the sum of
F1 , F2 , and F3 , that is,

F =
1
2
ρgh2(x1, t)−

1
2
ρgh2(x2, t)−

∫ x2

x1

ρgh(x, t)
dz

dx
dx . (19)

Using Leibniz’s rule for differentiation under the integral sign, we ob-
tain that the first derivative of p with respect to t is

dp

dt
=

d

dt

∫ x2

x1

ρh(x, t)u(x, t) dx

=
∫ x2

x1

∂

∂t
ρh(x, t)u(x, t) dx

+ρh(x2, t)u2(x2, t)− ρh(x1, t)u2(x1, t) . (20)

According to Newton’s second law (12) of motion, we have that the result
in equation (20) is equal to that in equation (19). Hence, for ∆t-period it
follows that∫ t+∆t

t

∫ x2

x1

(ρhu)t dx dt +
∫ t+∆t

t
ρh(x2, t)u2(x2, t) dt

−
∫ t+∆t

t
ρh(x1, t)u2(x1, t) dt =

∫ t+∆t

t

1
2
ρgh2(x1, t) dt

−
∫ t+∆t

t

1
2
ρgh2(x2, t) dt−

∫ t+∆t

t

∫ x2

x1

ρgh(x, t)zx dx dt (21)

Using a constant approximation (4) of integration, we can rewrite equa-
tion (21) as

(hu)t + (hu2 +
1
2
gh2)x = −ghzx , (22)

in which O(∆t3) and O(∆x3) terms are neglected. This last equation is
called the equation of momentum conservation.

3. CONCLUSION
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We have derived the one dimensional shallow water equations, which con-
sist of the equation of mass conservation and the equation of momentum
conservation, using a constant approximation of integration. Our presenta-
tion suggests that higher dimensional shallow water equations can also be
alternatively derived using a similar technique.
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