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 Robotic technology has recently been used to help stroke patients with gait 

and balance rehabilitation. Rehabilitation robots such as gait trainers are 

designed to assist patients in systematic, repetitive training sessions to speed 
up their recovery from injuries. Several control algorithms are commonly used 

on exoskeletons, such as proportional, integral and derivative (PID) as linear 

control. However, linear control has several disadvantages when applied to 

the exoskeleton, which has the problem of uncertainties such as load and 
stiffness variations of the patient’s lower limb. To improve the lower limb 

exoskeleton for the gait trainer, the computed torque controller (CTC) is 

introduced as a control approach in this study. When the dynamic properties 

of the system are only partially known, the computed torque controller is an 
essential nonlinear controller. A mathematical model forms the foundation of 

this controller. The suggested control approach’s effectiveness is evaluated 

using a model or scaled-down variation of the method. The performance of 

the suggested calculated torque control technique is then evaluated and 

contrasted with that of the PID controller. Because of this, the PID controller’s 

steady-state error in the downward direction can reach 5.6%, but the CTC can 

lower it to 2.125%. 
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1. INTRODUCTION 

One of the leading causes of death and acquired long-term disability globally, the likelihood of stroke 

increases with aging [1]–[5]. Mobility issues brought on by stroke or other related illnesses are becoming more 

common [6]. When one cannot walk normally, they depend on wheelchairs or other mobility devices like 

orthotics or ankle braces. For many recovering from neurological illnesses, regaining the ability to walk is one 

of the key objectives. Robotic devices have been utilized in various treatments to help people retrain their 

motor functions and walk again [7], [8]. Robotic gait/walking trainers including the G-EO, Gait Trainer GT II, 

Lexo, Lokomat®, and Walkbot are available through market vendors, but the cost is still prohibitive [9]. 

Innovation that can “do more with less” is important to provide significantly more commercial and social gain 

while using fewer finite resources like electricity, money, and time [10]. 

The robotic exoskeleton has been briefly described in several recent studies [11]–[15]. Gait trainers, 

also known as lower limb rehabilitation exoskeleton robots, are an important class of rehabilitation robots that 

can control every joint’s motion during training by wearing a wearable connection to the user’s body. Exoskeleton 

robots for healing lower limbs were the focus of research in the 1960s [16], [17]. Some researchers use 

proportional, integral, and derivative (PID) as controllers of these devices [18]–[20] because it is the most popular 

controller due to its high dependability and straightforward installation due to its great durability and simplicity.  

https://creativecommons.org/licenses/by-sa/4.0/
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Despite their adaptability, current PID controllers have disadvantages that limit their performance, 

especially regarding robustness, disturbance rejection and tracking. PID controller alternatives that offer higher 

performance at a reasonable cost include fuzzy control, generalized linear control, and observer and state 

feedback. These alternatives frequently necessitate a thorough understanding of control theory, in addition to 

being more challenging to configure than a straightforward PID controller [21]. Munadi et al. [22] researched 

that exoskeleton using PID as a control. The PID controller can achieve steady-state conditions at the set point, 

but there are still overshoots.  

Many controllers for position control of exoskeleton robots are linear, which may be better for 

exoskeleton robots with complex structures and high levels of uncertainty [23]. Because of factors like changes 

in load, friction, and outside interference, for an exoskeleton robot, a PID-only controller is insufficient [24], 

[25]. Even if separate PID controls are sufficient for many set-point regulation issues, many tasks call for 

advanced trajectory-tracking tools. There are several suggestions to overcome these PID controller weaknesses. 

The first is to handle the non-linearity using feedback linearization [26]. Second, improving trajectory tracking 

performance by employing a computed-torque control strategy that takes into account the manipulator’s 

dynamic model [27].  

There has been prior study on planar two-link exoskeletons and robotic manipulators that use PID, model 

predictive control (MPC), and linear quadratic (LQ) optimal control. PID control for a two-link arm manipulator 

was proposed by Robles [28] proposed, while the techniques proposed by Guechi et al. [29] (MPC control and 

LQ control) outperform the PID in terms of system performance. The contribution of this paper is a two-link 

lower limb exoskeleton model that can overcome the problem of uncertainties such as load and stiffness variations 

of the patient’s lower limb. 

 

 

2. METHOD 

Figure 1 shows the general layout of a typical gait rehabilitation control system [30]. The rehabilitation 

system hardware and multi-level control architecture can be divided into two main groups: physiotherapy 

algorithms (high level) and feedback control algorithms (low level). This research will focus on the low-level 

hardware and controller, major in the lower limb exoskeleton’s overall performance. 

 

 

 
 

Figure 1. The architecture of the gait rehabilitation control system 

 

 

2.1.  Kinematics and dynamics 

The kinematics and dynamics of the system must be taken into consideration while constructing a 

control system. Figure 2(a) shows the Lokomat®, a robotic gait trainer product from Hocoma [31]. While  

Figure 2(b) shows the low-cost version of the gait trainer built by the authors. Figure 2(c) depicts the kinematics 

of the two-link manipulator. 

 

2.1.1. Kinematics 

The exoskeleton for the lower limbs is identical to a planar RR arm with two links. Refer to Figure 2 

to determine it is dynamics, where the masses of the link are assumed to be concentrated at it is ends [32]. 

Parameter of joint is (1). 
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𝑞 = [𝜃1 𝜃2] (1) 

 

Together with the total vector of force being 

 

𝜏 = [𝜏1 𝜏2]𝑇 (2) 

 

with the actuators supplying τ1 and τ2 torque kinetic and potential energy for link 1 is 

 

𝐾1 =  1
2⁄ 𝑚1𝑎1

2�̇�1
2  (3) 

 

𝑃1 =  𝑚1𝑔𝑎1𝑠𝑖𝑛𝜃1  (4) 

 

for link 2 we have 

 

𝑋2 = 𝑎1 cos 𝜃1 + 𝑎2 cos(𝜃1+𝜃2)   (5) 

 

𝑌2 = 𝑎1 sin 𝜃1 + 𝑎2 sin(𝜃1+𝜃2) (6) 

 

�̇�2 = −𝑎1�̇� sin 𝜃1 − 𝑎2 cos(�̇�1 + �̇�2) sin(𝜃1+𝜃2)  (7) 

 

�̇�2 = −𝑎1�̇� sin 𝜃1 − 𝑎2 cos(�̇�1 + �̇�2) cos(𝜃1+𝜃2)  (8) 

 

for the velocity squared to be (9). 

 

𝑣2
2 = �̇�2

2 +  �̇�2
2 = 𝑎1

2�̇�1
2+𝑎2

2(𝜃1̇ +  𝜃2̇)
2

+  2𝑎1𝑎2(𝜃1̇ +  𝜃1̇𝜃2̇)
2
cos𝜃2 (9) 

 

This means that link 2’s kinetic energy equals. 

 

𝐾2 =  1
2⁄ 𝑚2𝑣2

2 = 1
2⁄ 𝑚2𝑎2

2�̇�1
2+1

2⁄ 𝑚2𝑎2
2(�̇�1 + �̇�2)

2
+ 2𝑎1𝑎2(𝜃1̇ +  𝜃1̇𝜃2̇)𝑐𝑜𝑠𝜃2 (10) 

 

In terms of potential energy stored in link 2: 

 

𝑃2 = 𝑚2𝑔𝑦2=𝑚2𝑔[𝑎1 sin 𝜃1 + 𝑎2 sin(𝜃1+𝜃2)]   (11) 

 

As a whole, the arm’s Lagrangian equation is as (12). 

 

𝐿 = 𝐾 − 𝑃 = 𝐾1 + 𝐾2 − 𝑃1 − 𝑃2  

=  1
2⁄ (𝑚1 + 𝑚2)𝑎1

2�̇�1
2 +  1 2⁄ 𝑚2𝑎2

2(�̇�1 + �̇�2)
2

+ 𝑚2𝑎1𝑎2(�̇�1
2 +  𝜃1̇𝜃2̇)𝑐𝑜𝑠𝜃2  

– (𝑚1 + 𝑚2)𝑔𝑎1 sin �̇�1 − 𝑚2𝑔𝑎2 sin(𝜃1+𝜃2)   (12) 

 

The terms needed for (14) are 

 
𝜕𝐿

𝜕�̇�1
 = (𝑚1 + 𝑚2) 𝑎1

2�̇�1
2 + 𝑚2𝑎2

2(�̇�1 + �̇�2) + 𝑚2𝑎1𝑎2(2�̇�1 + �̇�2)𝑐𝑜𝑠𝜃2 

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�1
 = (𝑚1 + 𝑚2) 𝑎1

2𝜃1
2̈ + 𝑚2𝑎2

2(�̈�1 + �̈�) + 𝑚2𝑎1𝑎2(2�̈�1 + �̇�2)𝑐𝑜𝑠𝜃2 

−𝑚2𝑎1𝑎2(2�̇�1�̇�2 + �̇�2
2)𝑠𝑖𝑛𝜃2  

𝜕𝐿

𝜕𝜃1
=  − (𝑚1 + 𝑚2)g𝑎1cos𝜃1  − 𝑚2𝑔𝑎2𝑐𝑜𝑠(𝜃1+𝜃2) 

𝜕𝐿

𝜕�̇�2
=  𝑚2𝑎2

2(�̇�1 + �̇�2) + 𝑚2𝑎1𝑎2�̇�1𝑐𝑜𝑠𝜃2  

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝜃2
=  𝑚2𝑎2

2(�̈�1 + �̈�2) + 𝑚2𝑎1𝑎2�̈�1𝑐𝑜𝑠𝜃2 − 𝑚2𝑎1𝑎2�̇�1�̇�2𝑠𝑖𝑛𝜃2  

𝜕𝐿

𝜕𝜃2
= −𝑚2𝑎1𝑎2(�̇�1

2 + �̇�1�̇�2)𝑠𝑖𝑛𝜃2 − 𝑚2𝑔𝑎2 cos(𝜃1+𝜃2)  

 

Finally, the lower limb dynamics are provided by coupled nonlinear differential equations according to 

Lagrange’s (13) and (14). 
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𝜏1 = [(𝑚1 + 𝑚2)𝑎1
2 + 𝑚2𝑎2

2 + 2𝑚2𝑎1𝑎2𝑐𝑜𝑠𝜃2]�̈�1  

+ [𝑚2𝑎2
2 + 𝑚2𝑎1𝑎2𝑐𝑜𝑠𝜃2]�̈�2 − 𝑚2𝑎1𝑎2(2�̇�1�̇�2 + �̇�2

2)𝑠𝑖𝑛𝜃2   

+(𝑚1 + 𝑚2)𝑔𝑎1𝑐𝑜𝑠𝜃1 + 𝑚2𝑔𝑎2𝑐𝑜𝑠(𝜃1 + 𝜃2)    (13) 

 

𝜏2 = [𝑚2𝑎2
2 + 𝑚2𝑎1𝑎2𝑐𝑜𝑠𝜃2]�̈�1 + 𝑚2𝑎2

2�̈�2 +𝑚2𝑎1𝑎2�̇�1
2𝑠𝑖𝑛𝜃2   

+ 𝑚2𝑔𝑎2𝑐𝑜𝑠(𝜃1 + 𝜃2)   (14) 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 2. Robotic gait trainers (a) Lokomat® from Hocoma, (b) the low-cost version of gait trainer, and 

(c) 2 links kinematics model 

 

 

2.1.2. Dynamics 

When the lower limb dynamics are written out in vector form, the result is 

 

[
(𝑚1 + 𝑚2)𝑎2

1 + 𝑚2𝑎2
2 + 2𝑚2𝑎1𝑎2  cos 𝜃2           𝑚2𝑎2

2 + 𝑚2𝑎1𝑎2  cos 𝜃2

𝑚2𝑎2
2 +  𝑚2𝑎1𝑎2  cos 𝜃2                                                𝑚2𝑎2

2 ] [
�̈�1

�̈�2

] 

 + [
−𝑚2𝑎1𝑎2 (2 �̇�1 �̇�2) sin �̇�2

𝑚2𝑎1𝑎2𝜃2
1  sin 𝜃2

] + [
(𝑚1𝑚2)𝑔𝑎1 cos 𝜃1 + 𝑚2 𝑔𝑎1 cos(𝜃1 + 𝜃2)

𝑚2 𝑔𝑎1 cos(𝜃1 + 𝜃2)
] 

= [
𝜏1

𝜏2
] (15) 

 

This manipulator dynamics is expressed in its typical manner. 

 

𝑀(𝑞)�̈� + 𝑉(𝑞. �̇�) + 𝐺(𝑞) = 𝜏3  (16) 

 

where M(q) is manipulator dynamic (symmetric matrix), 𝑉(𝑞, 𝑞)̇ is vector of Coriolis/centripetal, G(q) is vector 

of gravity. 
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2.2.  Control strategy of gait trainer 

2.2.1. Selection of control algorithms 

There are three types of control algorithms in the history of control theory: classical, modern, and 

intelligent. Traditional techniques such basic propositional derivative (PD) and PID linear control, while 

necessary, are ineffective for nonlinear systems. Motion control is an increasingly used type of modern control 

because it has a simple structure and superior control performance. The best performance can be achieved with 

intelligent control, but it is challenging to develop and requires much knowledge. Numerous innovative and 

sophisticated control strategies have lately been developed for nonlinear mechanical systems [33]. For 

nonlinear mechanical systems, several cutting-edge and contemporary control strategies have been developed, 

including adaptive control, computed torque control, fuzzy control, neural network control, and sliding mode 

control [34]. 

 

2.2.2. Model learning 

Techniques for building models from data have become increasingly valuable robotics tools in recent 

years. This occurrence is due to a multitude of factors. Standard models, such as rigid body dynamics, are only 

approximate because of the sophistication of today’s robotic systems. This estimate does not accurately model 

unknown non-linear drive sources (hydraulic and motor saturation), passive elements such as cables, hydraulic 

hoses, cableways friction and friction sources [35]. Table 1 lists the various model types (forward, inverse, 

mixed, and operator) and model learning architectures. 

 
 

Table 1. An overview of the model types and how they relate to the various learning architectures and sample 

applications [27] 
Type of model Architecture of learning Example applications 

Operator Direct Model predictive control 

Planning, 

Optimization, 

Compensation for delays 

Forward Direct Filtering 

Learning simulation 

Optimization 

Prediction 

Inverse Direct, indirect Controls for inverse dynamics 

Computed torque 

Feedback linearization 

Mixed Direct 

Indirect 

Distal teacher 

Inverse kinematics 

Control of operational space 

Multiple control of model 

 

 

2.2.3. Feedback linearization 

In a control system, feedback linearization transforms a nonlinear plant-the process or system under 

control-into a linear plant. In a nonlinear system, this is primarily done to improve the effectiveness of a linear 

control strategy. However, compensating for nonlinearities and dynamic coupling must happen more quickly 

than the control speed. By including a linearizing and decoupling controller in the direct control loops, the 

feedback linearization technique (FLT) achieves this goal. 

In the past, analog control circuit design hindered the creation of nonlinear functions from overcoming 

nonlinear generators due to escalating hardware complexity, which raises prices and reduces reliability [36]. A 

nonlinear and coupled mechanical dynamic system’s feedback linearization is described [37], such as a robotic 

manipulator. The term “model-based” refers to controllers built on dynamic models. Passivity-based and 

calculated torque controllers are two broad categories for model-based controllers [38]. 

 

2.2.4. Computed torque control 

Gradually with time, a wide range of different control systems of a robot is being presented as options. 

Research from the 1970s gave rise to the computed torque controller, first proposed by Paul [39]. The 

subsequent research has led to problems with its actual implementation (such as computation complexity and 

incorrect models) [40]. Computed torque control is a method for generalizing feedback linearization to 

nonlinear systems. Known also as the inverse dynamics control, the computed torque control depends on the 

robot dynamics’ inversion [41]. Introducing the term servo, which takes the form of a PD controller, computed 

torque controls return a linearization to account for non-linearity in manipulator dynamics [41]. The block 

diagram of the computed torque control technique is shown in Figure 3 feedback linearization can be time- and 

resource-intensive, so it might be difficult to apply it to change a nonlinear system into a linear one globally. 
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Computed torque controllers provide robust performance characteristics, according to the experiment  

[42]–[46]. Numerous studies using the computed torque control algorithm have been completed successfully 

[47]–[49]. The disadvantage of computed torque controls, however, is the requirement for tracking-related  

real-time system dynamics computation [50]. Consider the control input as (17). 

 

𝜏 = 𝐻(𝑞)𝑣 + 𝐶(𝑞, �̇�)𝑞 ̇ + 𝜏𝑔(𝑞)̇   (17) 

 

This system, called torque calculation control, constituted of: i) an inner loop of correction for nonlinearity and  

ii) a second loop that receives an external control signal. This indicates that if these control principles are 

included in the robotic arm’s dynamic model. 

 

�̈� = 𝑣  

 

This control input transforms the complex challenge of designing a nonlinear controller into a simple 

issue of designing a linear system with n subsystems. PD feedback is one method for controlling the outer loop v. 

 

𝑣 =  �̈�𝑑 + 𝐾𝑉𝑒�̇� + 𝐾𝑝𝑒𝑞 (18) 

 

This makes the total controlling input into 

 

𝜏 =  𝐻(𝑞) + (𝑞�̈� + 𝐾𝑉𝑒�̇� +  𝐾𝑝𝑒𝑞) + 𝐶(𝑞, �̇�)�̇� + 𝜏𝑔(𝑞) (19) 

 

which leads to linear error dynamics that are (20). 

 

�̈�𝑞 + 𝐾𝑣�̇�𝑞 + 𝐾𝑝𝑒𝑞 = 0 (20) 

 

The theory of linear system predicts that the error in tracking would eventually reach zero. 

Computed torque control (CTC) for robot control systems is a robust motion control method that can 

provide global asymptotic stability [51]. However, a conventional CTC can only be used efficiently if a precise and 

thorough dynamic model of a manipulator is provided [52]. Shown in Table 2 are parameters of a two-link model. 

 

 

 
 

Figure 3. Computed-torque control scheme 

 

 

Table 2. Two-link parameters 
Parameters Units Values 

Link 1 (L1) m 0.2 

Link 2 (L2) m 0.215 

L1 mass (m1) kg 0.2 

L2 mass (m2) kg 0.2  

Gravity (g) m/s2 9.8 

 

 

2.3.  Microcontroller and motor driving circuit 

 As shown in Figure 4, two DC motors move the two links in the mechanism, while encoders serve as 

position sensors. The Arduino Uno microcontroller and the Monster Moto Shield VNH30SP DC motor driver 

circuit are used to control the motors. Based on the ATmega 328 microcontroller, Arduino is the primary 

controller. The Monster Moto Shield VNH30SP motor driver module will enhance the current to the motor. 
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With a sampling time of 10 ms, the encoder will provide data on the link’s current position. The microcontroller 

will use the computed torque control technique to determine the pulse-width modulation (PWM) value to send 

to the driving circuit. 

 

 

 
 

Figure 4. Wiring diagram of the experimental setup 

 

 

3. RESULTS AND DISCUSSION 

Figures 5 and 6 show the output position using the PID controller, while Figures 7 and 8 show the 

output position using the computed torque controller. The obtained results of both controllers are compared. It 

can be seen from all the graphs that both PID and CTC can suppress the overshoot. Both controllers have good 

performances for downward movements but need better performances for upward movements because there is 

additional gravity as the disturbance. Figure 5 shows the plot of the position of motor 1 and motor 2 while 

moving downward using the PID controller. 

The parameters for motor 1 are: Kp=0.5; Ki=0.01; Kd=1.1, while for motor 2: Kp=0.5; Ki=0.01; 

Kd=1.1. The PID controller worked well in that situation. At motor 1 the rise time is 25 ms, with a steady-state 

error of 0.0167%. Meanwhile, at motor 2 the rise time is 19 ms, with a steady-state error of 0.75%. 

Figure 6 shows the position of motor 1 and motor 2 while moving upward using the PID controller. 

The parameters for motor 1 are: Kp=0.5; Ki=0.01; Kd=1.1, while for motor 2: Kp=0.5; Ki=0.01; Kd=1.1. In 

this situation, the PID controller did not work well at motor 2, and there is a steady-state error of more than 5%. 

There is a gravity disturbance that the PID controller cannot handle. At motor 1 the rise time is 21 ms, with a 

steady-state error of 0.1%. Meanwhile, at motor 2 the rise time is 17 ms, with a steady state error of 5.6%.  

Figure 7 shows the plot of the position of motor 1 and motor 2 while moving downward using the 

CTC controller. The parameters for motor 1 are: Kp =4; Ki=0.001; Kd=0.0005, while for motor 2: Kp=0.35; 
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Ki=0.001; Kd=0.0005. In this situation, the CTC controller worked well, even though at motor 2, there was 

still a little steady-state error. At motor 1 the rise time is 21 ms, with a steady state error of 1.04%. Meanwhile, 

at motor 2 the rise time is 30 ms, with a steady-state error of 2.175%. 

 

 

 
 

Figure 5. The plot of setpoint vs. PID output in the downward direction 

 

 

 
 

Figure 6. The plot of setpoint vs. PID output in the upward direction 

 

 

 
 

Figure 7. The plot of setpoint vs. CTC output in the downward direction 
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 The plot of motor 1 and motor 2 positions during upward motion using CTC is shown in Figure 8. 

The parameters for motor 1 are: Kp=4; Ki=0.001; Kd=0.0005, while for motor 2: Kp=0.35; Ki=0.001; 

Kd=0.0005. CTC performed very well under these conditions. As mentioned, the computed torque controller 

method adjusts for gravity effects. There is a steady state inaccuracy of 1.74% with a rise time of 44 ms at 

motor 1. At the same time, motor 2 had a rise time of 25 ms and a steady-state error of 2.125%. The performance 

(rise time, steady state error, and overshoot) of CTC and PID controllers for downward and upward motion are 

summarized in Tables 3 and 4. Although CTC is better than PID controller in dealing with disturbance 

(gravity), PID controller has a faster rise time. 

 

 

 
 

Figure 8. The plot of setpoint vs. CTC output in the upward direction 

 

 

Table 3. Performance of PID controller in the downward and upward direction 

  Rise time Steady state error Overshoot 

PID in downward direction M1 25 ms 0.0167% - 

M2 19 ms 0.75% - 

PID in upward direction M1 21 ms 0.1% - 

M2 17 ms 5.6% - 

 

 

Table 4. Performance of CTC controller in the downward and upward direction 

  Rise time Steady state error Overshoot 

CTC in downward direction M1 64 ms 1.04% - 

M2 30 ms 2.175% - 

CTC in upward direction M1 44 ms 1.74% - 

M2 25 ms 2.125% - 

 

 

The system performance index can be calculated or assessed to assess system performance. The root 

mean square error (RMSE) and the mean square error (MSE) might both be used in this case. The acronym 

MSE means the square of RMSE. A statistic known as the RMSE contrasts actual values with predictions made 

by a hypothetical model [53]. MSE is represented as follows: 

 

𝑀𝑆𝐸 =
∑ 𝐸𝐽

2𝑉
𝑗=1

𝑉
  

 

V is quantity of data. The expression for RMSE is as follows: 

 

𝑅𝑀𝑆𝐸 = √
∑ 𝐸𝐽

2𝑉
𝑗=1

𝑉
   

 

According to the RMSE and MSE, Tables 5 and 6 compare the PID and CTC responses numerically. It can be 

seen from the MSE and RMSE analysis that for upward movements, CTC always has better responses than 

PID. However, for the downward direction, the response of motor 2 (M2) using CTC is not as good as PID. 
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Table 5. Comparison of PID and CTC responses in 

an upward direction by numerical analysis 
Joints Control type RMSE MSE 

M1 PID 35.83 861605.63 

CTC 31.22 895538.63 

M2 PID 604.61 406298.42 

CTC 16.31 244404.95 
 

Table 6. Comparison of PID and CTC responses in 

a downward direction by numerical analysis 
Joints Control type RMSE MSE 

M1 PID 92.40 3944754.63 

CTC 54.44 2913817.40 

M2 PID 61.11 1721801.91 

CTC 217.34 213643.10 
 

 

 

4. CONCLUSION  

This study examines the usage of a computed torque controller on a straightforward 2-link exoskeleton 

model for a robotic gait trainer, then compares its performance with a PID controller. While the lower limb’s 

movement is non-linear, the PID controller is linear. So, we need another control that can work on a non-linear 

system. It is the computed torque controller in this instance. 

In robotics and mechatronics, a method called computed torque control is employed to control the 

motion of a robotic system. Using the system’s equations of motion, the needed torques at the joints of the 

robotic system are computed to create the desired motion. In the case of a two-link lower limb exoskeleton of 

a robotic gait trainer, the computed torque control method would involve calculating the appropriate torques at 

the joints using the equations of motion for the two links and the joints linking them to accomplish the desired 

motion of the lower limb.  

The Lagrangian technique has been used to examine the two-link mechanism’s dynamics and describe 

its kinematics. A model of 2 links mechanism model has also been created. This model of 2 links lower limb 

exoskeleton model will be used to improve a robotic gait trainer model. The PID controller’s performance was 

compared to the CTC’s in both upward and downward directions.  

From the result, the suggested computed torque controller for this two-link model has advantages in 

dealing with disturbance. However, the PID controller is still faster than CTC for the rise time. The experiments 

show that both the PID controller and CTC can suppress overshoot. The PID controller cannot compensate for 

gravity as the disturbance, but CTC can do that. As a result, in the downward direction, the steady-state error 

of the PID controller can be as high as 5.6%, but in the CTC, the controller can be reduced to 2.125%. The 

MSE and RMSE analysis show that CTC always responds better than PID. However, for downward movement, 

the response of motor 2 (M2) using CTC is better than PID. 
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