PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI

ABSTRACT

This study aimed to explore and compare the coefficients of power between the two models , namely windmill windmill smooth surface and rough surface (coated woven bamboo) . This windmill horizontal windmill using models with three- blade propeller type .

This windmill has a diameter of 80 cm with a blade cross-sectional area of $0.50~\text{m}^2$ and weighs 420 grams . This windmill blade using a variation of the slope of $10~^\circ$ and $15~^\circ$. To measure and determine torque , power turbines , power coefficient and tips speed ratio at the windmill , windmill shaft attributable to the braking mechanism that serves as a variation of the load on the wheel . The magnitude of the braking load was measured with a spring balance wheel , the wheel rotation was measured using a tachometer and the wind speed was measured using an anemometer .

The results showed that the slope of the windmill blade windmill $10\,^\circ$ obtained a smooth surface can result in a greater power than the rough surface of the wheel is equal to $15.2\,$ watts , with a load torque of $0.40\,$ Nm and $8.6\,$ % Cp . While the $15\,^\circ$ blade tilt windmills obtained a rough surface can result in a greater power than the smooth surface of the wheel at $14\,$ watts , with a load torque of $0.40\,$ Nm and $8.2\,$ % Cp .

Keywords: torque, power windmill, power coefficient, tip speed ratio, blade made from woven bamboo.

