ICMSA 2009

The 5th IMT - GT International Conference on Mathematics, Statistics and Their Applications ICMSA 2009

Editors : I Made Arnawa, Muhafzan, Maiyastri, Susila Bahri

Department of Mathematics Faculty of Mathematics and Natural Sciences, Andalas University, Indonesia

June 9-11, 2009 The Hills Hotel Bukittinggi, Indonesia

Proceedings of

The 5th IMT-GT

International Conference on Mathematics, Statistics, and their Applications 2009

(ICMSA 2009)

"Mathematics and Statistics for Industry and Community Development"

June 09 - 11, 2009

The Hills Hotel, Bukittinggi - Indonesia

Published by:

Department of Mathematics, Andalas University Kampus UNAND Limau Manis Padang 25163, Sumatera Barat, INDONESIA.

ISBN 978-602-95343-0-6

© Copyright reserved.

The organizing Committee is not responsible for any errors or views expressed in the papers as these are responsibility of the individual authors.

June 2009

Preface

First of all, I would like to say welcome to Bukittinggi, Indonesia to all of you. It is an honour for us to host this conference. We are very happy and proud because the participants of this conference come from many countries; we have participants from Libya, Japan, Qatar, India, Malaysia, Singapore, Thailand, Iran, and many more.

Ladies and gentlemen, according to constructivism theory, mathematics comes out as a result of social construction; that's why, the outcomes of our researches in mathematics, like theorem or formula of mathematics, should be communicated in a scientific forum such as seminar or conference. Through this kind of seminar or conference, we could refine the existing theorems or we could get new ideas to produce a new one. Seminar or conference which is held annually enables us to continually develop the science of mathematics until the end of the time.

That's way, in this two-day conference, we are going to discuss around 250 papers coming from diverse aspects of mathematics ranging from analysis, applied mathematics, statistics, algebra, Computational Mathematics, mathematics education, and other related topics.

For all of us here, I would like to convey my endless appreciation and gratitude for your participation in this conference.

Thank you very much

Dr. I Made Arnawa

Chairman of the Conference

Message from Rector Andalas University

It gives me great pleasure to extend my sincere and warm welcome to the participants of the 5th International Conference on Mathematics Statistics and Application (The IMT GT's 5th ICMSA 2009) - A Joint Scientific Program organized by Universities over Indonesia, Malaysia and Thailand Growth Triangle Region. On behalf of Andalas University, let me welcome all of you to the conference in Bukittinggi, West Sumatra Province, the land of Minang kabau.

We believe that from this scientific meeting, all of participants will have time to discuss and exchange ideas, findings, creating new networking as well as strengthen the existing collaboration in the respective fields of expertise. In the century in which the information is spreading in a tremendous speed and globalization is a trend, Andalas University must prepare for the tough competition that lay a head. One way to succeed is by initiating and developing collaborative work with many partners from all over the world. Through the collaboration in this conference we can improve the quality of our researches as well as teaching and learning process in mathematics and to achieve standards and requirements applied in many developed countries. I strongly believe that this conference is and extraordinary testimony to our capacity building at international, regional and local level.

I would like to express my deep gratitude to International Scientific Committee of who has honored the Mathematics Department, Faculty of Mathematics and Natural Sciences, Andalas University to host this prestigious conference. This is a very special opportunity for us to be involved in a regional community of knowledgeable scientist in the field of mathematics, statistics and their applications. I would also like to extend my gratitude to keynote speakers, participants, and organizer of this conference for their contribution to this event. My special thank is also rendered to the local government of West Sumatra for various supports and facilities.

Finally I wish all participants a fruitful deliberation at the conference. I also wish all participants and accompanying spouses a pleasant and enjoyable stay in Bukittinggi City, West Sumatra.

Prof. Dr. Ir. Musliar Kasim, MS

Kungi han

Rector

ORGANIZING COMMITTEE

Patrons: Rector Andalas University

Vice Rector of Academic Affair Andalas University

Steering: Dean Faculty of Sciences Andalas university

Vice Dean of Academic Affairs Andalas University

International Scientific Committee

Prof. Dr. Novesar Jamarun (Andalas University – Indonesia)

Prof. Dr. Herman Mawengkang (University of Sumatera Utara – Indonesia)

Prof. Dr. Dato Rosihan Ali (University Sains Malaysia)

Assoc. Prof. Dr. Ahmad Izani Md. Ismail (University Sains Malaysia)

Assoc. Prof. Dr. Putipong Bookkamana (Chiang Mai university – Thailand)

Assoc. Prof. Dr. Anton Abdulbasah Kamil (University Sains Malaysia)

Assoc. Prof. Dr. Pachitjanut Siripanitch (School of Applied Statistics – Thailand)

Dr. Saib Suwilo (University of Sumatera Utara – Indonesia)

Dr. Hizir Sofyan (Syiah Kuala University – Indonesia)

Dr. Tarmizi Usman (Syiah Kuala University – Indonesia)

Local Scientific Committee

Dr. Maiyastri (Andalas University – Indonesia)

Dr. Susila Bahri (Andalas University – Indonesia)

Dr. Muhafzan (Andalas University – Indonesia)

Adek Tasri, Ph.D (Andalas University – Indonesia)

Committee

Chairman : Dr. I Made Arnawa. Secretary : Ir. Yudiantri Asdi, M.Sc.

Izzati Rahmi, H. G., M.Si.

Transportation/Accomodation: Drs. Syafruddin,

Zulakmal, M.Si.

Treasurer : Ir. Werman Kasoep, M.Kom.,

Jenizon, Msi,

Ir. Hazmira Yozza, M.Si., Ir. Insanul Kamil, MS., Drs. Zulkarnain Khaidir, MS.,

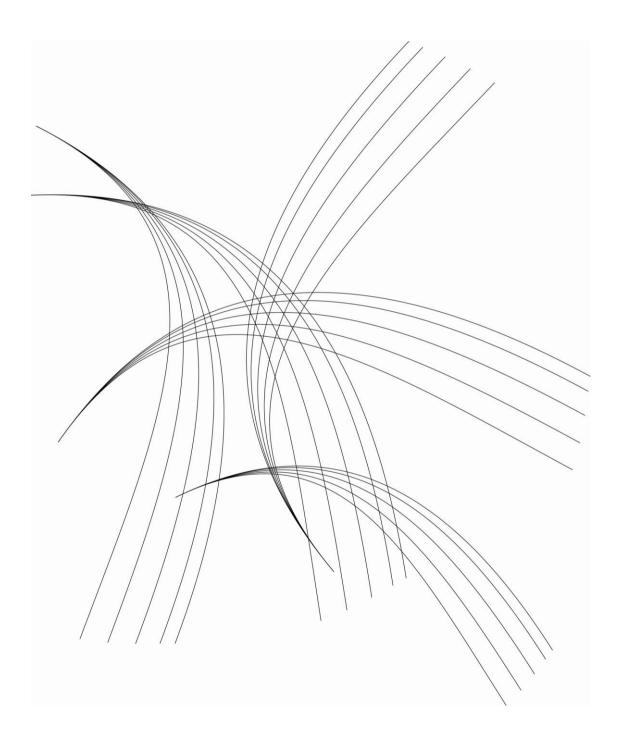
Drs. Mulyadi, MS.

Technical Programme : Dr. Muhafzan,

Dr. Maiyastri, M.Si.

Secretariat / Documentation : Budi Rudianto, M.Si.,

Narwen, M.Si.,


Arrival Rince Putri, M.T., Budi Rahmadya, S.Kom,

Mohammad Hafiz Hersyah, S.Kom.,

Rahmi Eka Putri, S.Kom., Ratna Aisuwarya, S.Kom,

Fajar Wisga, Berkah Fajar.

Contents

CONTENTS

Preface	1
Message from Rector of Andalas University	ii
Organizing Committee	iii
Algebra	1 - 54
A subclass of 7-dimensional complex filiform Leibniz algebras and their isomorphism classes Sharifah Kartini Said Husain, Isamiddin S. Rakhimov	1
New key exchange in Elliptic Curve based on Decomposition Problem Hilyati Hanina Zazali, Wan Ainun Mior Othman	7
Generators of Diagram Groups From Semigroup Presentation $P = \langle x, y, z x = y, y = z, x = z \rangle$ Using Lifting Methods Yousof Gheisari and Abd Ghafur Bin Ahmad	11
Finite Field Basis Conversion Intan Muchtadi-Alamsyah, Marisa W. Paryasto, Muhammad Hafiz Khusyairi	15
On Commutative Group of N-homomorphisms Indah Emilia Wijayanti	19
The <i>f</i> -chromatic indexes of wheel-like graphs <i>Adiwijaya</i> ^{1,2} , <i>A.N.M. Salman</i> ¹ , <i>D. Suprijanto</i> ¹ , <i>E.T. Baskoro</i> ¹	24
Structure of Incidence Algebras of Locally Finite Partially Ordered Set Gustina Efiyanti ¹ and Irawati ²	28
A new directed hypergraph distance and its applications Mulia Astuti ¹ , Irawati ² , Intan Muchtadi-Alamsyah, Ahmad Muchlis ⁴ , Achirul Akbar ⁵ dan Muliana. A. Halim ⁶	31
Large graphs diameter two from the smaller ones Yus Mochamad Cholily	37
On Module Classes Closed Under Submodules, Factor Modules and Direct Sums Suwarno Ariswoyo and Elvina Herawaty	40
Multinomial Option Pricing with Pseudoinverse Matrix Abdurakhman	44
Solving Traveling Salesman Problem Using A Hibryd of Evolution Strategies and Lin-Kernighan Algorithm Nurmaulidar	46
Analysis	55 - 84
Generation of Rainfall Sequence using Fourier Series Norzaida Abas ^{1*} , Zalina Mohd Daud ¹ , Fadhilah Yusof ²	55
On Extremal Properties for Certain Classes of Analytic Functions Shaharuddin Cik Soh and Daud Mohamad	61
The Area of the Region Enclosed by Bezier Curve Normi binti Abdul Hadi*, ² Abdul Halmie bin Muhamad	66
The Application of Regulated Function on the Multiplication of Two Henstock Integrable Function <i>Christiana Rini Indrati</i>	ns 70
Riesz potential and the generalized Morrey spaces with growth measures Idha Sihwaningrum ^{1*} , Hendra Gunawan ² , Yudi Soeharyadi ³ , Wono Setya Budhi ⁴	75
An Estimation of Exponential Sums Associated With A Sextic Form Sapar S.H ^{l} , Mohd Atan K.A ^{2}	79

Computational Mathematics	85 - 180
A Zero-dissipative Runge-Kutta-Nyström Method with Minimal Phase-lag for Oscillatory Problems Norazak Senu ^{1*} , Mohamed Suleiman ² Fudziah Ismail ³ and Mohamed Othman ⁴	85
New Multi-step Runge-Kutta method O. Y. Ababneh ^{1*} , R. Ahmad ² , E. S. Ismail ³	91
An efficient parallel implementation of Markov clustering algorithm for large-scale protein-protein interaction networks that uses MPI Alhadi Bustamam ^{1, 2, *} , Muhammad Shoaib Sehgal ¹ , Nicholas Hamilton ¹ , Simon Wong ¹ , Mark A Ragan ¹ , Kevin Burrage ^{1, 3}	94
Implementation Of Parallel Computational Tools For The Curing Simulation Of Thermoset Composites Using The Two Dimension Age Algorithm Amna Abdurrahman ¹ , Ahmad Kamal bin Zulkifle ² , Norma Alias ³ , and Ishak Hashim ⁴	102
Optimizing of Text Retrieval: A similarity level by keyword competition in Genetic Algorithm (GA) Poltak Sihombing ¹	109
The mutation and crossover effect in genetic algorithm to determine the similarity level of document retrieval <i>Poltak Sihombing</i> ¹	117
Analysis and Evaluation RC4 Algorithm for Data Encryption Ratna Aisuwarya ¹ , Rahmi Eka Putri ²	124
Efficient Differential Equation Solvers for Fluid Modeling in Interactive Surgical Drilling Simulations based on GPU Computations Sugeng Rianto ^{1,*} Ling Li ²	132
Developing Secant Method for Solving Nonlinear Equations Taufiq Iskandar ¹ , Marlan ² , Sanggam P. Gultom ³ , Herman Mawengkang ⁴	137
Visualization of XLM-based Geochemical Data using SVG and ASP.NET Nizamuddin ¹ * and Hidehiro Ishizuka ²	151
Application of Backtracking Algorithm On the Knight's Tour Game Using Pascal Senja Omega Puspita, Budi Rudianto	156
A Mixed Integer Linear Programming Model for Capacity Selection Problem in Logistics Networks Optimization Muhammad Izman Herdiansyah ¹	164
Analysis and Implementation of the New Student Acceptance System On 2 ^{sd} Padang's Educational Council in On-Line Method By Using Applserver 2.5.7 Application Mohammad Hafiz Hersyah	175
Statistic	181 - 389
Goodness of Fit Test for the EEG Distribution by Using the Empirical Laplace Transform Prasong Kitidamrongsuk ^{1*} , Pachitjanut Siripanich ²	181
Conditional Maximum Likelihood Estimator for Incomplete Longitudinal Data Juthaphorn Saekhoo ¹ *, Pachitjanut Siripanich ²	186
Autocorrelation correction in a simultaneous equations model Kerativibooly W. 1*, Jitthavech J., Lorchirachoonkul V.	192
Construction of Weights for the Estimation of Regression Coefficients with Outliers Pimpan Ampanthong ¹ , Prachoom Suwattee ²	198
Goodness of Fit for the Poisson Distribution Based on Sample Skewness Manad Khamkong* and Pachitjanut Siripanich	204
Estimators of Errors of Kernel Density Estimator Manachai Rodchuen 1*, Prachoom Suwattee 1	209

Using Data Envelopment Analysis (DEA) Model to Measure The Relative Efficiency Of Higher Educat	ion
Institutions ¹ Zalina Zahid, ¹ Rasimah Aripin and ² Mohd. Nasir Taib	216
Detecting Students at Risk of Failing Using Decision Tree Haliza Hasan*, Rasimah Aripin & Sharifah Sakinah Syed Hassan Aidid	222
Assessing The Performance of University Departments Using Data Envelopment Analysis Nordin Hj Mohamad ^{1*} and Fatimah Said ²	228
Mean-VaR Portfolio Optimization Under CAPM by Non Constant Volatility in Return Market $Sukono^{l}$, $Subanar^{2}$ & $Dedi~Rosadi^{3}$	238
Credit Risk Measurement for a Single Facility in Banking Sukono	242
Asymptotic Properties of a Generalized Renewal Reward Process Suyono	248
Distribution of a Generalized Renewal Reward Process Suyono ¹⁾ and Subanar ²⁾	252
Bayesian Updating Reservoir Simulation Models Sutawanir Darwis ^{1*} , Agus Yodi Gunawan ² , Sri Wahyuningsih ¹ , Nurtiti Sunusi ¹ , Aceng Komarudin Muta	256 iqin ¹
Developing Bayesian inferential method for basic reproduction number in epidemic models unde uncertainty	r
Dapot Situngkir, Abdul Latif Hasibuan, Daswati Sigalingging, Debora S.Parapat, Erwin Sidabai Herman Mawengkang	lok, 261
Two stage mixed integer nonlinear stochastic programming model for solving a superstructure synthesis water networks optimization problem under uncertainty Mujio, Evi Yanti Lubis, Harris H.Simamora, Herbin Manurung, Januasi Simarmata, Herman Mawengk	270
Application of Cluster Analysis In Classification of Tourist Destinations In Sabang ¹ Asep Rusyana, ² Evi Ramadhani, ³ Suhartono	278
Simulation of Agent Based Model on Jakarta Stock Exchange (BEJ) Afdal Mazni	281
Modeling and Analyzing Dependent Categorical Data Georgina M. Tinungki	296
Life Insurance Product Valuation under Binomial Framework Danang Teguh Qoyyimi*, Danardono, Abdurakhman ^l	304
$\label{thm:continuous} \mbox{Time-dependent Covariates in Survival Analysis} \ Danardono^{l}$	313
Statistical Analysis on Determination of Optimum Condition for Pra-esterification of Crude Palm Oil	
with Methanol to Biodiesel Using Sulfuric Acid Catalyst Sawaluddin ¹ , Tirena Bahnur Siregar ² , Suwarno Ariswoyo ³	318
A Linear Mixed Model for Two-Dimensional Competition between Neighbouring Trees in Forestry Trie Model Testing in a Plantation of Maritime Pine (<i>Pinus pinaster</i> Ait.) in Western Australia Dadan Kusnandar ^{1,*} , N.W. Galwey ²	als: 322
Reducing Fuzzy Relations of Fuzzy Time Series Model Using <i>QR</i> Factorization Method and Its Applica	
to Forecasting Interest Rate of Bank Indonesia Certificate Agus Maman Abadi ¹ , Subanar ² , Widodo ³ , Samsubar Saleh ⁴	328
An Adaptive Sensitivity-Based Linear Learning Method Algorithm for Data Classification Zaenal Arifin ¹⁾ , M. Isa Irawan ²⁾	333
The Study of Sensitivity of Radial Basis Probabilistic Neural Network <i>Hasanuddin</i> ^{1*} , <i>M. Isa Irawan</i> ²	344
Recurrence Time Modeling for Earthquake Prediction Surjanto ¹ Sutawanir Darwis ² Aceng Komaruddin Mutagin ³	350

Stochastic Project Scheduling Johannes P. Sitanggang, Budi Irwansyah, Risna Helvida, Yuliani Nasution, Syafaruddin, Herman Mawengkang	352
Mewma And Ewma Quality Control Charts, And Its Multiobjective Optimization Arrival Rince Putri ¹	364
Characteristic of Poisson Distribution Nova Noliza Bakar	368
The Comparison of Forecasting of Jakarta Composite Index by Using Exponential Smoothing and Ar Method	
Puspa Amelia ¹⁾ and Maiyastri ²⁾	374
Representing Students Perspectives to Television Channels by Using Multidimensional Scaling Met (Case study in Department of Mathematics Andalas University) Primawati ^{1*} , Izzati Rahmi, HG ²	hod 381
Latin Square Arrangement for Taste-Panel Experiments Arisman Adnan	386
Mathematics Education 39	90 - 444
Improving Student Academic Performance by An Application of Data Mining Techniques Sajadin Sembiring ^{1*} , Abdullah Embong ² , Mohd. Azwan Mohamad ³ , Muhammad Furqan ⁴ .	390
To consider the education of mathematics in different educational levels and it's more effective learning methods Manochehr Kazemi ¹ and Hassan Naraghi ²	395
How to Make the Teaching of Abstract Algebra Interesting? Abdul Razak Salleh	397
Matriculation Students' Metacognitive Awareness And Achievement In Mathematical Problem Solvin Effandi Zakaria ¹ *, Zainah Yazid ²	ng 403
How The Indian Vedic Mathematics on Method of Calculation is still Relevant for Children in Today's Era of Mental Computation <i>Rita Desfitri</i> ^{1/2}	409
Prioritization of Factors to Further Studies in a University Using AHP <i>Yuzainee Bte Md Yusoff</i> ¹ , <i>Norngainy Bt Mohd Tawil</i> ²	416
Contribution of Games to the Student Interest on Mathematics Lesson Syukma Netti ¹ , Niniwati ²	422
Implementation of Creative Problem Solving Method by Using Media Computer to Improve Students' Achievement in Mathematics (Classroom Action Research at SMP 13 Pekanbaru) 1 Yenita Roza, 2 Maida Deli	424
Mathematic for Senior High School It's Problems and Challenges Ali Asmar	428
Errors in College Level Theorem Proving I Made Arnawa	431
Development of Model - Mathematics Learning Based of Interpersonal Intelligences For Student Class VII in Padang Atus Amadi Putra	436
Teaching Mathematics Through Cooperative Learning and Using ICT Hendra Syarifuddin	440
Improving Students' Activities And Mathematics Achievement Of SMPN 26 Padang Through Cooperative Learning; STAD Type Mirna	442

Applied Mathematics	445 - 979
The modification of steepest descent method On portfolio selection <i>Yosza Dasril</i> ¹ , <i>Goh Khang Wen</i> ² , & <i>Ismail Bin Mohd</i> ³	445
Feedback Control and Magnetic Field Effects on Marangoni Instability in a Micropolar Fluid Mohd Nasir Mahmud ¹ , Zainol Mustafa ² , and Ishak Hashim ^{2*}	451
A Mathematical Models of Lower Limb Using Kane's Method: An Application to Walking Movement While Carrying Load Fazrolrozi & A. S. Rambely	457
Mixed convection boundary layer flow towards a vertical plate embedded in a porous medium Norfifah Bachok ^{1*} , Anuar Ishak ² , Roslinda Nazar ³ , Ioan Pop ⁴	464
A New Number Representation for Faster Elliptic Curve Scalar Multiplication Mohamad Rushdan Md Said*, Abdul Wahed M. Ismail	471
Effect of Non-Uniform Temperature Gradient and Magnetic Field on Marangoni Convection in a Mi Fluid	cropolar
^{1,*} Melviana Johnson Fu, ² Norihan Md. Arifin, ³ Mohd Noor Saad, ⁴ Roslinda Mohd Nazar	476
MHD stagnation-point flow towards a stretching sheet with induced magnetic field Fadzilah Md Ali ^{1*} , Roslinda Mohd Nazar ² , Norihan Md Arifin ¹ , Ioan Pop ³	482
Multiple Intelligence Profiling Analysis of People with Epilepsy for Job Placement Purposes Siti Rahmah Awang ^{1*} , Rasimah Aripin ² , Md. Hanip Rafia ³	488
Mathematical Modeling of the Upper Limb Movement using Kane's Equation Sharifah Alwiah AbdulRahman ^{1*} , Azmin Sham Rambely ² , Rokiah Rozita Ahmad ³	495
Pixel area validation of segmented malignant tumors in digital mammographic images Rohana Embong ^{1*} , Wan Eny Zarina W.Abd. Rahman ¹ , Tahir Ahmad ² , Rozi Mahmud ³ , Arsmah Ibrahim ¹ , Zainab Abu Bakar ¹ , Md Saion Salikin ⁴	499
Structural Similarity Measure for Mathematics Assessment Marking Engine ¹ Arsmah Ibrahim, ² Zainab Abu Bakar, ³ Nuru'l – 'Izzah Othman	503
A Decision Making Model Based on Consistent Fuzzy Preference Relations and Generalized TOPSI Nor Hanimah Kamis, Daud Mohamad and Nor Hashimah Sulaiman	S 509
The Study of Delivery Response Time: A Gap Analysis Approach ¹ Mohd Sahar Sauian, ² Mohamad Yazid Shuaib	516
Mathematical Musyarakah Model in Managing Islamic Investment Between Two Parties Using Two	Profit
Sharing Rates Maheran Mohd Jaffar	520
A Fuzzy Ruled Based Model for Stock Selection Advisor System Daud Mohamad, Noorhar Jiana Haryanti Mohd Saad	525
Performance of A Low-Cost Pcs in Edge Detection of Breast Tumor in Digital Mammomograms Us: Wavelet Modulus Maxima Arsmah Ibrahim ¹ , Norma Alias ² , Hanifah Sulaiman ¹ , Mohd Idris Jayes ¹ , Khairil Iskandar Othman ¹ Saion Salikin ³	_
A Metaheuristics Approach for the Inventory Routing problem Huda Zuhrah Ab Halim*, Nur Arina Bazilah Aziz, Noor Hasnah Moin	535
Single-vendor single-buyer model under linearly decreasing demand Supadi, S.S ^{1*} , Omar, M. ²	540
Catastrophe Reinsurance Somayeh Nik Manesh 1*, Dr.Noor Azlinna Azizan 2	546
Determination of Work Done by a Female Student While Carrying Backpack with Different Loads ¹ Nor Atikah Ab Ghani and ² Azmin Sham Rambely	556

Linearity in Between House Price and Annual Management Fund in High-Rise Residential in Kuala Lun Malaysia	npur,
N. M. Tawil ¹ ., M. N.Daud ³ , A.I. Che-Ani ² , N.A.Goh ² , M.F.M.Zain ²	561
Fuzzy Conjoint Analysis of Influence Factors in High-Rise Residential Price And Management Fund In Kuala Lumpur, Malaysia N. Mohd-Tawil ¹ , A.I.Che-Ani ² , Amiruddin Ismail ³ , M.M.Tahir ² , M. Jamil ²	568
Value-based Total Performance Measurement: A Preliminary Review	300
Z. Mustafa ¹ , N. R. M. Suradi ¹ , W. R. Ismail ¹ , K. A. M. Ali ¹ , Z. M. Ali ¹ , M. Abdullah ¹ , F. Idris ² , M. R. Ab Hamid ³	572
Simple Version of the Linear Business Cycle Model Anton Abdulbasah Kamil ^{1*} and Adam Baharum ^{2*}	570
Modelling The Relationships Between US and Selected Asian Stock Markets ¹ Mohd Tahir Ismail*, ² Rosmanjawati Abdul Rahman	580
Diffusive Logistic Equations with Single Time Delay and Variable Time Impulses Jalina Widjaja	586
Developing a Model for Estimating Emission Caused by Vehicles at a Junction of Main Street Agus Salim Harahap, Herman Mawengkang	589
The Pricing of European Type Asian Options with Geometric Averages Mila Novita ¹⁾ , Erline Natalia ²⁾ , Novita Dwi Hapsari ³⁾ , Widia Desrianti ⁴⁾	593
The Use of Genetic Algorithm for Selecting The Eigenvectors In Pca Method For Face Image Recognition Suryadi MT, Yudi Satria, Helmiyati, Rahmi Rusin	on 600
Model of Portfolio Insurance with Optimal Strike Price Novriana Sumarti*, Muhammad Syamsuddin, Rieske Hadianti	607
Cheapest Insertion - Convex Hull Approach to Euclidean TSP Abdulah Fajar* ¹ , Nanna Suryana Herman ^{‡2} , Nur Azman Abu ^{‡3}	611
A Dynamic Nelson-Siegel Model for Indonesian Government Bond Yield Rates R. Rahmawati* ^{1,2} , M. Syamsuddin ^{1,3} , R. Hadianti ^{1,4} , S. Afriani ^{1,5} , F. Damayanti ^{1,6} , A.P. Wulandari ^{1,7}	616
Generalized reduced gradient method For earthquake resistant of Foundations Abdul Hakam	623
Modeling Dependence of Claim Amount between Different Claim Types using Copula Yulia Resti ¹⁾ , Noriszura Ismail ²⁾ & Saiful Hafizah Jaaman ²⁾	629
The Role of Mathematics to Determine Kiblat Direction Akhsanul In'am	633
Dialog of Features Characteristics by Using Venn Diagram for Object Detecti Rahmadi Kurnia	637
Comparison of Vector Stream Cipher Based on Modification of Chebyshev Polynomial Function Santi Indarjani ¹ , Bety Hayat Susanti ² and Juniati ³	644
Workforce planning problem with demand changes Rustam Effendi Pasaribu, Rusly Siagian, Sabar, Saprida Montaria, Zulkifli, Herman Mawengkang	649
On solving the Plant Cycle Location Problem Henry Nainggolan, Misnawati, Nurtaito Sianturi, Rizky Ismalinda, Roslinawati, Herman Mawengkang	662
A mixed integer linear programming model for multi-item inventory problems Toha, Khairunisa Siregar, Lin Risnawati, Lord Byron Silalahi, Marsito, Herman Mawengkang, Integer programming model for operational aircraft maintenance routing problem with side	664
constraints Suhardi ¹ , Simon Petrus Sebayang ² , Benar ³ , Ardianta ⁴ , and Herman Mawengkang ⁵	672
Developing Mathematical Models for Analyzing The Performance Of A Growing Team Yulidar ¹ Zunaida Sitorus ² Makmur Tarigan ³ Satriawan Taruna ⁴ Gim Tarigan ⁵ and Herman Maweng	680

Discovering Relationship of Single Word Entities from Weblogs Taufik Fuadi Abidin, Rasudin Abubakar, Alim Misbullah, Jufri Wahyudi	694
Evaluation on Fitness Assignment Methods for Multi-objective Examination Timetabling Problems Taufiq Abdul Gani ^a , Nurmaulidar ^b , Ahamad Tajudin Khader ^c	699
Face Recognition Using Smooth Support Vector Machine Based On Eigenfaces ^{1,2*} Muhammad Furqan, ² Abdullah Embong, ² Suryanti Awang, ² Santi W. Purnami, ² Sajadin Sembiring	708
Mathematical Simulation Circuit for the Scale Model of Geometry Normalized Electromagnetic System (GNES) Equipment *Muhammad Syukri Surbakti ^{1,2} , *Mohd Zubir Mat Jafri ² , *Lim Hwee San ² , ^Norhaslinda Mohamed-Tahri	715
Handling Missing Values in Multiclass Multisurface Proximal Support Vector Machines Taufik Edy Sutanto	718
Traffic Flow Simulation on Simple Continuum Model Sri Mardiyati ¹ and Helen Burhan ²	724
Prototyping of a Gradient-Based Edge Detection Algorithm Design Indra Yasri*	728
A Mixed Integer Linear Programming Model for Capacity Selection Problem in Logistics Networks Optimisation Muhammad Izman Herdiansyah ¹	732
Modeling Contagiousness of Diarrhea Diseases: A Spatial Probit Model Yusep Suparman*, Imam Munandar Fajari, Gatot Riwi Setyanto	743
Model of Growth Population by Modification of Malthus and Gomperz Growth Models Georgina M. Tinungki	746
Stability Analysis and Maximum Profit of Wangersky-Cunningham Population Model with Time Delay a Constant Effort of Harvesting Syamsuddin Toaha	and 751
Fuzzy correlation to contruct interaction function in group decision making Marwan Harahap	761
A Tabu Search with EST-SPT Algorithm for the Job Shop Scheduling Problem Opim Salim Sitompul	767
Finite Volume Method Based Analysis of Gas Flow in Two-Stroke Engine <i>Tulus</i>	772
An Improved Direct Feasible Search Approach for Solving Mixed-Integer Non Linear Programming Problems Elly Rosmaini, Herman Mawengkang	777
Optimization Methods for The Second Order Multiresponse Surface Model of Mixture Designs ¹ Ruslan, ² Susanti L, ² Purhadi, ² Sony S	781
The Application Of Classification Tree Method To Determine The Profile of Indonesian People Based or The Factors Which Significantly Influence The Attitudes Toward Avian Influenza Rianti Setiadi	n 785
Binary Stuctural Equation Model And Its Application To Find The Relationship Between "Knowledge A The Spread Of Avian Influenza" And "Preventive Actions Taken Toward Avian Influenza" Rianti Setiadi	bout 791
Applications of Fuzzy Number Max-Plus Eigenvalues on Queuing Networks with Fuzzy Activity Times M. Andy Rudhito ^{1*} , Sri Wahyuni ² , Ari Suparwanto ³ , and F. Susilo ⁴	798
Distribution-free Test for Stability of Run-off Triangle Aceng Komarudin Mutaqin ^{1,2} , Dumaria Rulina Tampubolon ² , Sutawanir Darwis ²	802

The Optimization of Second Step of Crude Palm Oil Transesterification with Methanol Using Potation	ssium
Hydroxide Catalyst Tirena Bahnur Siregar* and Sutarman	809
A Decision Analysis Model in Sustainable Land Revitalization Planning Using Participatory Approach Rahmawati Pane, Herman Mawengkang	813
Developing a Direct Search Algorithm For Solving the Capacitated Open Vehicle Routing Problem Tarno, Abdillah, Sudarman, Esmina Simatupan, Loide Naiborhu, Seprianti Harahap, Herman Mawengkang	819
An Improved Feasible Neighbourhood Search Approach For Solving The Capacitated Facility Location Problem	
Pramana, Tiopan Rahmat Siregar, Adil Pangaribuan, Sudarman Siringoringo, Indra Maryanti, Herman Mawengkang	826
Finding Shortest Path in Networks with Uncertain Arc Length Syamsul Qomar, Dewi Monalisa, Agus Budianto, Rosmartina, Lasma Nurhaida Silitonga, Yulis Purwaningsih, Herman Mawengkang	832
Developing a Direct Search Algorithm For Solving the Capacitated Open Vehicle Routing Problem Sudarman, Tarno, Abdillah, Esmina Simatupang, Loide Naiborhu, Seprianti Harahap, Herman Mawengkang	837
Development of Solow Growth Model Hamidah Nasution ¹ and Herman Mawengkang ² Matematika MIPA UNIMED, ²	844
Deciding Hub Location in a Communication Network Ummi Habibah, Rosimanidar, Purnawanto, Herman Mawengkang	848
A Constrained Based Approach for Handling The Multi-Period Single-Sourcing Problem Afnaria, Herman Mawengkang 860	
A Goal Programming Approach for a Class of Possibilistic Portfolio Selection Model Rina Filia Sari, and Herman Mawengkang	873
Optimization Model for Land Management Problems under Uncertainty Almira Amir	882
An Optimization Model for Irrigation Water Distribution Networks Alfred Hasiholan Silalahi,Rahmanan Dalimunthe,Isabella Bangun, Tiramah Simanjuntak,Surya Ningsih,Herman Mawengkang	888
Developing a constrained search approach for solving systems of nonlinear equations Pasukat Sembiring	893
On The Sufficient Condition for Solvability of Infinite Horizon LQ Problem Subject to DAE Systems $Muhafzan^l$	902
Experimental Modelling of Domestic Tourist In West Sumatera by Using Separate Spline Function Susila Bahri	907
Structural Equation Approach for Non-Normality Data: With Reference to Modeling of Health Index Ferra Yanuar ^{1*} , Kamarulzaman Ibrahim ² , Abdul Aziz Jemain ³	909
Size Ramsey Number for P_3 and T_3 Des Welyyanti	916
Arranging The Examination Schedule By Using Graph Coloring Algorithm ¹ Budi Rahmadya , ² Narwen	918
Monitoring Mangrove Rehabilitation In Tsunami Affected Area Using High Resolution Satellite Images Muzailin Affan	926
Numerical Solution of Iron Corrosion Problem Based on Condensation Chemical Property ¹ Arid Fatahillah, ² Basuki Widodo	929
Constructing Model for Survival Data by the Makeham-like Unproportional Hazard Adhitva Ronnie Effendie ^{1*} , Danardono ² , Subanar ³	934

Comparative Analysis of Fuzzy Logic and Multiple Linear Regression On Forecasting of Brand Switchin Based on the Value of Consumer Dissatisfaction, the Characteristics of Product Categories And Explore Needs of Variation	_
Resti Athayani, Budi Rudianto	939
The Implementation Of Finite Difference Method To Simulation Of Transient Temperature Distribution Three-Dimensional Heat Conduction In Cartesian Coordinate System <i>Hufri</i>	Of 948
11ajrt	270
Power Series Solution Of Non-Linear First Order Differential Equation Systems Zulakmal	954
Model Reduction Using LMIs Jenizon	958
Identification Algorithm For Temporal Logics Yahma Wisnani	960
An edge consecutive edge magic total labeling on some classes of tree Kiki A. Sugeng and Denny R. Silaban	966
On (a,d)-vertex antimagic labeling of circulant graphs Bong N. Herawati and Kiki A. Sugeng	970
Determination of The Sex of Hawksbill Sea Turtle (Eretmochelys imbricata) by Using Logistic Regression Hazmira Yozza, Hilda Yohana, Izzati Rahmi HG, Kurniadi Ilham	on 974

Applications of Fuzzy Number Max-Plus Eigenvalues on Queuing Networks with Fuzzy Activity Times

M. Andy Rudhito^{1*}, Sri Wahyuni², Ari Suparwanto³, and F. Susilo⁴

¹Ph.D student in Department of Mathematics, Gadjah Mada University Sekip Utara Yogyakarta ^{2,3}Department of Mathematics, Gadjah Mada University Sekip Utara Yogyakarta ⁴Department of Mathematics, Sanata Dharma University Paingan Maguwoharjo Yogyakarta

*e-mail: \(^1\)rudhito@staff.usd.ac.id

Abstract

The activity times in a network is seldom precisely known, and then could be represented into the fuzzy numbers. This paper aims to determine the service cycle completion time of the acyclic fork-join queuing networks with fuzzy number activity times using fuzzy number max-plus algebra. This paper is a theoretical investigation based on literature and computation using MATLAB program. The finding shows that the service cycle completion time is a eigenvalue of matrices over fuzzy number max-plus algebra in the system.

Keywords: Max-Plus Algebra, Queuing Networks, Fuzzy Number, Completion Times, Eigenvalues.

1. Introduction

The max-plus algebra can be used to model and analyze a network, like the project scheduling, production system, queueing networks, etc [1], [2] and [3]. The networks modeling with max-plus algebra approach is usually a max-plus linear system equations and it can be written as a matrix equation. The periodical properties of networks dynamics can be analyzed through the max-plus eigenvalues and eigenvectors of matrices in its modelling. In [3] and [4] have been discussed an algebra model of the acyclic fork-join queuing networks with real (crisp) activity times using max-plus algebra into a system of max-plus linear equations. The service cycle completion time of the networks is an eigenvalue of matrix in the system have been discussed in [4]. In [5] have been discussed an algebra model of the acyclic fork-join queuing networks with interval activity times using max-plus algebra into a system of interval max-plus linear equations. The service cycle completion time of the networks is an eigenvalue of interval maxrix in the system, also have been discussed in [5].

Recently, the fuzzy networks modelling has been developed. The activity times in a network is seldom precisely known, and then could be represented into the *fuzzy numbers* and then is called *fuzzy activity times*. In [6] have been discussed an algebra model of the acyclic fork-join queuing networks with fuzzy activity times using fuzzy number max-plus algebra into a system of fuzzy number max-plus linear equations. The eigenvalues of matrices over fuzzy number max-plus algebra, that is called fuzzy number max-plus eigenvalues have been discussed in [7].

Following the notion of the service cycle completion time of network analysis in [4] and [5] and using some results in the fuzzy number max-plus eigenvalues [7], this paper will discuss the application of fuzzy number max-plus eigenvalues on queuing networks with fuzzy activity times, especially on the service cycle completion time issue.

2. Fuzzy Number Max-Plus Eigenvalues

In this section we will review some concepts of fuzzy number max-plus eigenvalues. Further details can be found in [7]. We assume that readers have known some basic concepts of fuzzy set and fuzzy number [8], [9] and [10]. Further details can be found in [8], [9] and [10].

Definition 2.1 Let $\mathbf{F}(\mathbf{R})_{\widetilde{\varepsilon}} := \mathbf{F}(\mathbf{R}) \cup \{\widetilde{\varepsilon}\}$, where $\mathbf{F}(\mathbf{R})$ is set of all fuzzy numbers and $\widetilde{\varepsilon} := \{-\infty\}$, with the α -cut of $\widetilde{\varepsilon}$ is $\varepsilon^{\alpha} = [-\infty, -\infty]$, $\forall \alpha \in [0, 1]$. In $(\mathbf{F}(\mathbf{R}))_{\widetilde{\varepsilon}}$, we define the operations $\widetilde{\oplus}$ and $\widetilde{\otimes}$ as follow, for every \widetilde{a} , $\widetilde{b} \in \mathbf{F}(\mathbf{R})_{\widetilde{\varepsilon}}$ and $k \in \mathbf{R}^+$, with $a^{\alpha} = [\underline{a}^{\alpha}, \overline{a}^{\alpha}] \in \mathbf{I}(\mathbf{R})_{\max}$ and $b^{\alpha} = [\underline{b}^{\alpha}, \overline{b}^{\alpha}] \in \mathbf{I}(\mathbf{R})_{\max}$, where $\mathbf{I}(\mathbf{R})_{\max}$ is interval max-plus algebra.

- i) $\widetilde{a} \stackrel{\cong}{\oplus} \widetilde{b} = \max(\widetilde{a}, \widetilde{b})$ is fuzzy number with its α -cut is $(a \oplus b)^{\alpha} := [\underline{a}^{\alpha} \oplus \underline{b}^{\alpha}, \overline{a}^{\alpha} \oplus \overline{b}^{\alpha}]$, for every $\alpha \in (0, 1]$
- ii) $\widetilde{a} \otimes \widetilde{b} = \widetilde{a} + \widetilde{b}$ is fuzzy number with its α -cut is $(a \otimes b)^{\alpha} := [\underline{a}^{\alpha} \otimes \underline{b}^{\alpha}, \overline{a}^{\alpha} \otimes \overline{b}^{\alpha}], \text{ for every } \alpha \in (0, 1].$
 - iii) $k \otimes \tilde{a}$ is fuzzy number with its α -cut is $(k \otimes a)^{\alpha} := [k \otimes \underline{a}^{\alpha}, k \otimes \overline{a}^{\alpha}]$, for every $\alpha \in (0, 1]$.

We can show that α -cuts in this definition satisfied the conditions of α -cut of a fuzzy number. Since $(\mathbf{I}(\mathbf{R}_{\varepsilon}), \overline{\oplus}, \overline{\otimes})$ is an idempotent comutative semiring, from the operations in $(\mathbf{F}(\mathbf{R})_{\varepsilon}, \mathbf{w})$ and unity element is $\widetilde{e} = \{-\infty\}$ and unity element is $\widetilde{e} = \{0\}$, with $e^{\alpha} = [0, 0]$, $\forall \alpha \in [0, 1]$). The idempotent comutative semiring $\mathbf{F}(\mathbf{R})_{\max} := (\mathbf{F}(\mathbf{R})_{\varepsilon}, \widetilde{\oplus}, \widetilde{\otimes})$ is called fuzzy number max-plus algebra, which is written as $\mathbf{F}(\mathbf{R})_{\max}$.

Definition 2.2 Define $\mathbf{F}(\mathbf{R})_{\max}^{m \times n} := \{ \widetilde{A} = (\widetilde{A}_{ij}) \mid \widetilde{A}_{ij} \in \mathbf{F}(\mathbf{R})_{\max}, for i = 1, 2, ..., m \text{ and } j = 1, 2, ..., n \}$. The elements of $\mathbf{F}(\mathbf{R})_{\max}^{m \times n}$ is called matrices over fuzzy number max-plus algebra.

Further, this matrices would be called *fuzzy number matrices*. The operations $\widetilde{\oplus}$ and $\widetilde{\otimes}$ in $\mathbf{F}(\mathbf{R})_{\max}$ can be extended to the operations of fuzzy number matrices in $(\mathbf{F}(\mathbf{R})_{\max}^{m \times n})$. Specifically, for matrices \widetilde{A} , $\widetilde{B} \in \mathbf{F}(\mathbf{R})_{\max}^{n \times n}$ and $\widetilde{\alpha} \in \mathbf{F}(\mathbf{R})_{\max}$ we define

$$(\widetilde{\alpha}\ \widetilde{\otimes}\ \widetilde{A})_{ij} = \widetilde{\alpha}\ \widetilde{\otimes}\ \widetilde{A}_{ij}, (\widetilde{A}\ \widetilde{\oplus}\ \widetilde{B})_{ij} = \widetilde{A}_{ij}\ \widetilde{\oplus}\ \widetilde{B}_{ij} \text{ and } (\widetilde{A}\ \widetilde{\otimes}\ \widetilde{B})_{ij} = \bigoplus_{k=1}^n \widetilde{A}_{ik} \otimes \widetilde{B}_{kj}.$$

For every $\widetilde{A} \in \mathbf{F}(\mathbf{R})^{m \times n}_{\max}$ and for some number $\alpha \in [0, 1]$ define α -cut matrices of \widetilde{A} , that is interval matrices $A^{\alpha} = (A^{\alpha}_{ij})$, with A^{α}_{ij} is the α -cut of \widetilde{A}_{ij} for every i and j. We notice that $A^{\alpha} \in \mathbf{I}(\mathbf{R})^{m \times n}_{\max}$, so according to the results of section 3, we have that $A^{\alpha} \approx [\underline{A}^{\alpha}, \overline{A}^{\alpha}]$. Moreover, for matrices \widetilde{A} , $\widetilde{B} \in (\mathbf{F}(\mathbf{R}))^{n \times n}_{\max}$, where $A^{\alpha} \approx [\underline{A}^{\alpha}, \overline{A}^{\alpha}]$ and $A^{\alpha} \approx [\underline{B}^{\alpha}, \overline{B}^{\alpha}]$, we have that $\widetilde{\alpha} \otimes \widetilde{A}$, $\widetilde{A} \oplus \widetilde{B}$ and $\widetilde{A} \otimes \widetilde{B}$ is the fuzzy number matrices with their α -cut matrices are $(\alpha \otimes A)^{\alpha} \approx [\underline{\alpha} \otimes \underline{A}^{\alpha}, \overline{\alpha} \otimes \overline{A}^{\alpha}]$, $(A \oplus B)^{\alpha} \approx [\underline{A}^{\alpha} \oplus \underline{B}^{\alpha}]$, $\overline{A}^{\alpha} \oplus \overline{B}^{\alpha}$ and $\overline{A}^{\alpha} \otimes \overline{B}^{\alpha}$, $\overline{A}^{\alpha} \otimes \overline{B}^{\alpha}$, respectively.

Definition 2.3 Let $\widetilde{A} \in \mathbf{F}(\mathbf{R})^{n \times n}_{\max}$. The fuzzy number scalar $\widetilde{\lambda} \in \mathbf{F}(\mathbf{R})_{\max}$ is called fuzzy number max-plus eigenvalues of matrices \widetilde{A} if there exist a fuzzy number vector $\widetilde{\mathbf{v}} \in \mathbf{F}(\mathbf{R})^n_{\max}$ with $\widetilde{\mathbf{v}} \neq \widetilde{\boldsymbol{\varepsilon}}_{n \times 1}$ such that $\widetilde{A} \otimes \widetilde{\mathbf{v}} = \widetilde{\lambda} \otimes \widetilde{\mathbf{v}}$. The vector $\widetilde{\mathbf{v}}$ is called fuzzy number max-plus eigenvectors matrices \widetilde{A} associated with $\widetilde{\lambda}$.

Theorem 2.1 Let $\widetilde{A} \in \mathbf{F}(\mathbf{R})^{n \times n}_{\max}$. The fuzzy number scalar $\widetilde{\lambda}_{\max}$ (\widetilde{A}) = $\bigcup_{\alpha \in [0,1]} \widetilde{\lambda}^{\alpha}_{\max}$, where $\widetilde{\lambda}^{\alpha}_{\max}$ is a fuzzy set in \mathbf{R} with membership function $\mu_{\widetilde{\lambda}^{\alpha}_{\max}}(x) = \alpha \chi_{\widetilde{\lambda}^{\alpha}_{\max}}(x)$, where $\chi_{\widetilde{\lambda}^{\alpha}_{\max}}$ is a characteristic function of the set $[\lambda_{\max}(\underline{A}^{\alpha}), \lambda_{\max}(\overline{A}^{\alpha})]$, is a fuzzy number max-plus eigenvalues of matrices \widetilde{A} , with $\lambda_{\max}(\underline{A}^{\alpha}) = \bigoplus_{k=1}^{n} (\frac{1}{k} \bigoplus_{i=1}^{n} ((\underline{A}^{\alpha})^{\otimes k})_{ii})$ and $\lambda_{\max}(\overline{A}^{\alpha}) = \bigoplus_{k=1}^{n} (\frac{1}{k} \bigoplus_{i=1}^{n} ((\overline{A}^{\alpha})^{\otimes k})_{ii})$. **Proof:** see [7].

3. Service Cycle Completion Time

We consider a network with n single-server nodes and customers of a single class. Further details can be found in [3] and [4]. The structure of the network is described by an oriented acyclic graph G = (N, A), where the arcs determining the transition routes of customers. For every node i, we denote the sets of its immediate predecessors and successors respectively as $P(i) = \{j \mid (j, i) \in A\}$ and $S(i) = \{j \mid (j, i) \in A\}$. Let $\widetilde{a}_i(k)$ = fuzzy arrival time of kth customer at node i.

 $\widetilde{d}_i(k)$ = fuzzy departure time of kth customer at node i.

 \tilde{t}_{ik} = fuzzy service time of kth customer at server i.

We assumed that the network start operating at time zero, $\widetilde{d}_i(0) = 0 = \widetilde{0}$ and $\widetilde{d}_i(k) = \varepsilon = \widetilde{\varepsilon}$ for all k < 0, i = 1, ..., n. Let $\widetilde{d}(k) = [\widetilde{d}_1(k), \widetilde{d}_2(k), ..., \widetilde{d}_n(k)]^T$, $\widetilde{a}(k) = [\widetilde{a}_1(k), \widetilde{a}_2(k), ..., \widetilde{a}_n(k)]^T$. The explicit dynamic state equation of networks is given in theorem bellow.

Theorem 3.1 Given the acyclic fork-join queuing networks with fuzzy number activity, with structure graph of the networks has the longest path p dan adjacency matrix \widetilde{G} . The explicit dynamic state equation of networks is $\widetilde{d}(k) = \widetilde{A}(k) \oplus \widetilde{d}(k-1)$, where $\widetilde{A}(k) = (\widetilde{E} \oplus (\widetilde{T}_k \otimes \widetilde{G}))^p \otimes \widetilde{T}_k$,

$$\widetilde{E} = \begin{bmatrix} \widetilde{0} & & \widetilde{\varepsilon} \\ & \ddots & \\ \widetilde{\varepsilon} & & \widetilde{0} \end{bmatrix} \text{ and } \widetilde{G}_{ij} = \begin{cases} 0 = \widetilde{0}, \text{ if } j \in P(i) \\ \varepsilon = \widetilde{\varepsilon}, \text{ otherwise.} \end{cases}$$

Proof: see [6]

Before we give an example, we remember about a special fuzzy number. A triangular fuzzy number \tilde{a} , which is written as TFN (a_1, a, a_2) or shortly (a_1, a, a_2) , is a fuzzy number with membership function

$$\mu_{\widetilde{a}}\left(x\right) = \begin{cases} \frac{x - a_1}{a - a_1}, & a_1 \le x \le a \\ \frac{a_2 - x}{a_2 - a}, & a \le x \le a_2 \\ 0, & others \end{cases}$$

The support of \tilde{a} is an open interval (a_1, a_2) and its α -cut is

$$a^{\alpha} = \begin{cases} \left[(a-a_1)\alpha + a_1, -(a_2-a)\alpha + a_2 \right] &, \alpha \in (0,1] \\ \left[a_1, a_2 \right] &, \alpha = 0 \end{cases}.$$

Example 3.1 The acyclic fork-join queuing networks with n = 5 is shown in Figure 1 bellow.

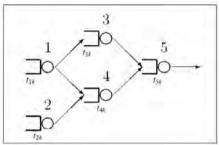


Figure 1. The acyclic fork-join queuing networks [6]

Let
$$\widetilde{t}_{1k} = (2, 3, 4)$$
, $\widetilde{t}_{2k} = (3, 4, 5)$, $\widetilde{t}_{3k} = (5, 6, 6)$, $\widetilde{t}_{3k} = (4, 4, 5)$, $\widetilde{t}_{5k} = (3, 5, 6)$. We have
$$\begin{bmatrix} \widetilde{d}_{1}(1) \\ \widetilde{d}_{2}(1) \\ \widetilde{d}_{3}(1) \\ \widetilde{d}_{3}(1) \\ \widetilde{d}_{3}(1) \\ \widetilde{d}_{3}(1) \end{bmatrix} = \begin{bmatrix} (2,3,4) & \widetilde{\varepsilon} & \widetilde{\varepsilon} & \widetilde{\varepsilon} & \widetilde{\varepsilon} \\ \widetilde{\varepsilon} & (3,4,5) & \widetilde{\varepsilon} & \widetilde{\varepsilon} & \widetilde{\varepsilon} \\ (7,9,10) & \widetilde{\varepsilon} & (5,6,6) & \widetilde{\varepsilon} & \widetilde{\varepsilon} \\ (6,7,9) & (7,8,10) & \widetilde{\varepsilon} & (4,4,5) & \widetilde{\varepsilon} \\ (10,14,16) & (10,13,16) & (8,11,12) & (7,9,11) & (3,5,6) \end{bmatrix} & \overline{\otimes} \begin{bmatrix} (0,0,0) \\ (0,0,0) \\ (0,0,0) \\ (0,0,0) \end{bmatrix} = \begin{bmatrix} (2,3,4) \\ (7,9,10) \\ (7,8,10) \\ (10,14,16) \end{bmatrix}$$

$$\begin{bmatrix} \widetilde{d}_{1}(2) \\ \widetilde{d}_{2}(2) \\ \widetilde{d}_{3}(2) \\ \widetilde{d}_{3}(2) \\ \widetilde{d}_{3}(2) \end{bmatrix} = \begin{bmatrix} (2,3,4) & \widetilde{\varepsilon} & \widetilde{\varepsilon} & \widetilde{\varepsilon} & \widetilde{\varepsilon} \\ (7,9,10) & \widetilde{\varepsilon} & (5,6,6) & \widetilde{\varepsilon} & \widetilde{\varepsilon} \\ (7,9,10) & \widetilde{\varepsilon} & (5,6,6) & \widetilde{\varepsilon} & \widetilde{\varepsilon} \\ (7,9,10) & \widetilde{\varepsilon} & (5,6,6) & \widetilde{\varepsilon} & \widetilde{\varepsilon} \\ (7,9,10) & \widetilde{\varepsilon} & (4,4,5) & \widetilde{\varepsilon} \\ (7,9,10) & \widetilde{\varepsilon} & (5,6,6) & \widetilde{\varepsilon} & \widetilde{\varepsilon} \\ (7,9,10) & \widetilde{\varepsilon} & (5,6,6) & \widetilde{\varepsilon} & \widetilde{\varepsilon} \\ (7,9,10) & \widetilde{\varepsilon} & (4,4,5) & \widetilde{\varepsilon} \\ (7,9,10) & \widetilde{\varepsilon} & (5,6,6) & \widetilde{\varepsilon} & \widetilde{\varepsilon} \\ (7,9,10) & \widetilde{\varepsilon} & (5,6,6) & \widetilde{\varepsilon} & \widetilde{\varepsilon} \\ (7,9,10) & \widetilde{\varepsilon} & (5,6,6) & \widetilde{\varepsilon} & \widetilde{\varepsilon} \\ (7,9,10) & \widetilde{\varepsilon} & (5,6,6) & \widetilde{\varepsilon} & \widetilde{\varepsilon} \\ (7,9,10) & \widetilde{\varepsilon} & (5,6,6) & \widetilde{\varepsilon} & \widetilde{\varepsilon} \\ (7,9,10) & \widetilde{\varepsilon} & (5,6,6) & \widetilde{\varepsilon} & \widetilde{\varepsilon} \\ (7,9,10) & (7,8,10) & (10,14,16) & (10,14,16) & (10,13,16) & (8,11,12) & (7,9,11) & (3,5,6) \end{bmatrix}$$

$$\begin{bmatrix} \widetilde{d}_{1}(2) \\ \widetilde{d}_{2}(2) \\ \widetilde{d}_{3}(3) \\ \widetilde{$$

We consider the evolution of the system as a sequence of service cycles: the 1st cycle starts at the initial time, and it is terminated as soon as all the servers in the network complete their 1st service, the 2nd cycle is terminated as soon as the servers complete their 2nd service, and so on. Clearly, the fuzzy completion time of the kth cycle can be represented as

$$\max_{i} (\widetilde{d}_{i}(k))$$

and the fuzzy service cycle completion time of the networks can be represented

$$\widetilde{\gamma} = \lim_{k \to \infty} \frac{1}{k} \max_{i} (\widetilde{d}_{i}(k))$$
.

 $\widetilde{\gamma} = \lim_{k \to \infty} \frac{1}{k} \max_i \left(\widetilde{d}_i(k) \right).$ Theorema 3.2 The acyclic fork-join queuing networks with fuzzy number activity with the explicit dynamic state equation $\widetilde{d}(k) = \widetilde{A}(k) \stackrel{\sim}{\oplus} \widetilde{d}(k-1)$, has the fuzzy service cycle completion time $\widetilde{\gamma} = \widetilde{\lambda}_{\max}(\widetilde{A})$, that is an eigenvalue of \widetilde{A} .

Proof:

According to the Theorem 2 in [5] we have $\lim_{k\to\infty}\frac{1}{k}\max_i(d_i^{\alpha}(k))=[\lambda_{\max}(\underline{A}^{\alpha}),\lambda_{\max}(\overline{A}^{\alpha})]$, $\forall \alpha\in[0,1]$, where $\lambda_{\max}(\underline{A}^{\alpha}) = \bigoplus_{k=1}^{n} \left(\frac{1}{k} \bigoplus_{i=1}^{n} \left((\underline{A}^{\alpha})^{\otimes k}\right)_{ii}\right) \text{ and } \lambda_{\max}(\overline{A}^{\alpha}) = \bigoplus_{k=1}^{n} \left(\frac{1}{k} \bigoplus_{i=1}^{n} \left((\overline{A}^{\alpha})^{\otimes k}\right)_{ii}\right) \text{ According to the [7] we know }$

that $[\lambda_{\max}(\underline{A}^{\alpha}), \lambda_{\max}(\overline{A}^{\alpha})]$ is a nested interval. Using the Decomposition Theorem in Fuzzy Sets, fuzzy

number scalar $\widetilde{\lambda}_{\max}$ (\widetilde{A}) = $\bigcup_{\alpha \in [0,1]} \widetilde{\lambda}_{\max}^{\alpha}$, where $\widetilde{\lambda}_{\max}^{\alpha}$ is a fuzzy set in \mathbf{R} with membership function $\mu_{\widetilde{\lambda}_{\max}^{\alpha}}(x) = \alpha$

 $\chi_{\widetilde{\lambda}_{\max}^{\alpha}}(x)$, where $\chi_{\widetilde{\lambda}_{\max}^{\alpha}}$ is a characteristic function of the set $[\lambda_{\max}(\underline{A}^{\alpha}), \lambda_{\max}(\overline{A}^{\alpha})]$, is a fuzzy number max-

plus eigenvalues of matrices
$$\widetilde{A}$$
. So we have, $\widetilde{\gamma} = \lim_{k \to \infty} \frac{1}{k} \max_{i} (\widetilde{d}_{i}(k)) = \widetilde{\lambda}_{\max} (\widetilde{A})$.

Example 3.2

From Example 3.1, using MATLAB computer program, we sketch the bounds α -cut of $\widetilde{\lambda}_{max}$ (\widetilde{A}) in the Figure 3.2 bellow.

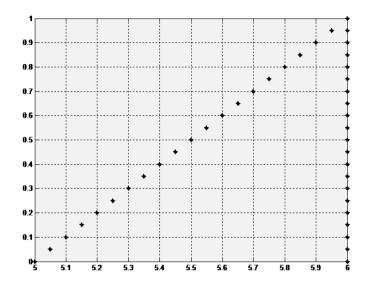


Figure 2. Sketch the bounds lpha-cut of $\widetilde{\lambda}_{\max}$ (\widetilde{A})

From Figure 2, we can determine that $\tilde{\gamma} = \lim_{k \to \infty} \frac{1}{k} \max_{i} (\tilde{d}_{i}(k)) = \tilde{\lambda}_{\max} (\tilde{A}) = \text{TFN}(5, 6, 6).$

Conclusion

We can conclude that that the service cycle completion time of the acyclic fork-join queuing networks with fuzzy number activity times is an eigenvalue of matrices over fuzzy number max-plus algebra in the its explicit dynamic state equation.

References

- [1] F. Bacelli, et al. Synchronization and Linearity, John Wiley & Sons, New York, 2001.
- [2] **M. A. Rudhito.** System Linear Max-Plus Waktu-Invariant, Tesis: Program Pascasarjana Universitas Gadjah Mada, Yogyakarta, 2003
- [3] **N.K. Krivulin.** Algebraic Modelling and Performance Evaluation of Acyclic Fork-Join Queueing Networks. Advances in Stochastic Simulation Methods, Statistics for Industry and Technology, (2000), 63-81.
- [4] M. A. Rudhito and A. Suparwanto. Pemodelan Aljabar Max-Plus dan Evaluasi Kinerja Jaringan Antrian Fork-Join Taksiklik dengan Kapasitas Penyangga Takhingga. Prosiding Seminar Nasional Sains dan Pendidikan Sains UKSW Salatiga (2008), B3-1 B3-13.
- [5] M. A. Rudhito, et.al. Penerapan Aljabar Max Plus Interval pada Jaringan Antrian dengan Waktu Aktifitas Interval. Prosiding Seminar Nasional Aljabar, Pengajaran dan Terapannya UNY Yogyakarta (2009), M2 11-18.
- [6] M. A. Rudhito, et.al. Penerapan Aljabar Max-Plus Bilangan Kabur pada Jaringan Antrian dengan Waktu Aktifitas Kabur, Prosiding Seminar Nasional Penelitian, Pendidikan, Dan Penerapan MIPA UNY Yogyakarta (2009), M-265 – M-270.
- [7] M. A. Rudhito, et.al. Eigenvalues And Eigenvectors Of Matrices Over Fuzzy Number Max-Plus Algebra, Proceeding the 3rd International Conference on Mathematics and Statistics IPB Bogor (2008), 195 202.
- [8] H.J. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer Academic Publishers, Boston, 1991.
- [9] **K.H. Lee,** First Course on Fuzzy Theory and Applications, Spinger-Verlag, Berlin Heidelberg, 2005.
- [10] F. Susilo, Himpunan dan Logika Fuzzy serta Aplikasinya edisi kedua, Graha Ilmu, Yogyakarta, 2006.