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Abstract
This paper discusses the orthogonalisation process in Gram-Schmidt algo-

rithms. Four variants of Gram-Schmidt process are presented, and the relation be-
tween matrix size and running time for computation ls a/so discussed. Loss of or-
thogonality of the computed vectors in Gram-Schmidt process can be reduced to
be close to the machine precision level by reorthogonalisation. Theoretically, the
/oss of orthogonality is bounded, and it is true that reorthogonalisation in Gram-
Schmidt process works well when the computation is not overflow. However, when
reorthogonalisation is applied, the backward enor is becoming larger.

Keywordst Gram-Schmidt orthogonalisation, QR factorisation, backward error

1. lntroduction
Let A=(ar,K,ar) be a real rnxn matrix (m>n ) with full column rank. The Gram-

Schmidt orthogonalisation process (Hogben, 2007: 5-8, 5-9) produces an orthogonal basis
Q=(q,,K,q,) of span(A)suchthat A=QR,whereRisan nxn uppertriangularmatrix.

Throughout the paper, unless stated explicitly as in the attachment, ll A ll denotes the

norm of matrix A, r(A) refers the condition number of the matrix, and llx ll denotes the Euclid-

ean norm of vector x. The unit roundoff is denoted by u. The terms cn(m,n) are low degree

polynomials in the problem dimensions m and n, where k is nonnegative integer; they are inde-
pendent of the condition number r(A) and the unit roundoff u, but they depend on details of the

computer arithmetic.
There are several variants of the algorithms for Gram-Schmidt orthogonalisation. The first

is Classical Gram-Schmidt (CGS) which is known to be unstable, and the second is Modified
Gram-Schmidt (MGS) which is a stable algorithm (Trefethen & Bau, 1997:48-61). Bjdrck (1967)
shows that although CGS and MGS are mathematically equivalent, due to round-off errors the
set of vectors prcduced by either of these two methods can be sometimes far from orthogonal.
ln general, the loss of orthogonality of vectors computed by the CGS process is faster than the
loss of that of vectors computed by the MGS (Giraud et a1.,2003).

To improve the orthogonality of the vectors computed by Gram-Schmidt process, reor-
thogonalisation can be applied. Reorthogonalisation here means the orthogonalisation step is
iterated twice or several times. ln some applications it may be important to generate a set of
basis vectors which its orthogonality is on the level of the machine precision. Hoffmann (1989)
conjectures that two steps of reorthogonalisation are enough for obtaining orthogonality which is
close to the machine precision. Then, Giraud et al. (2005) represent the theoretical foundation
for this observation. For convenience in this paper, Classical Gram-Schmidt with reorthogonali-
sation and Modified Gram-Schmidt with reorthogonalisation are denoted by CGS2 and MGS2
respectively.

The organisation of this paper is as follows. Section 2 gives a brief overview of how
Gram-Schmidt process works and then discusses the loss of orthogonality of the vectors be.
cause of rounding error in the calculation. The discussion is divided into two parts, the first part
represents the theoretical background in rounding error in the discussed algorithms, and the
second part presents result for application of the algorithm for several types of matrices. Section
3 contains the relation between matrix size and running time for orthogonalisation. Subse
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quently, section 4 concludes the discussion. Several Scilab codes used in the work of ihis paper

are attached.

2. Loss of Orthogonality in CGS
How CGS and its r6orthogonalisation work are described in this section (reorthogonalisa-

tion in MGS can be done in an analogous way). This section also gives an overview of the the-

ory related to Gram-Schmidt orthogonalisation, and presents the output of four variants in

Giam-Schmidt orthogonalisation when they are being implemented in Scilab-4.1'1.
Giraud et at. (ZOOSI represent details and thorough analysis of the CGS and CGS2 ver-

sion. ln both algorithm, CGS and CGS2, the matrixwith orthonormal column Q=(9r,K,q,) is

assumed to be constructed column-by-eolumn so that for each index i = 1,K ,n

span (q,,K,Q;) = span (a.,,K,a7). The CGS algorithm starts with q',:a,/lla,ll and for

j =2,t<,n it successively produces

v, = [l-Q, ,QrI,,la,

where ji = a il ll a; ll . The corresponding column r, in the upper triangular factor R : (r,,K ,r, )

is given as rj :1af ,ai,llv, ll)'. In CGS2, the vectors are computed as follows. Starts from

Qr : ?r/ ll a,r ll, and for j :2,K,n tvvo vectors v, and wj are computed successively

(1)

v, = [l_ei_ref ,]a,
w, = [!- Q, ,QrI llv;

Normalising w, will get e;, "6 9r:wil1|w, ll. The conesponding cdumn r, in the

triangular factor is given as

r, : (r;-1,0)r + sj = (Qf-1a;,0)r +(Qf'-1v;,llw; lDr

where ! r : Qf ,ar, and s, : (Qf-rv;,;;w, ll)'-
Thorough analysis of the MGS version is not presented in this paper However, the algorithm

and some output of both MGS and MGS2 will be discussed.

2.1. Rounding Error in CGS
According to Giraud et al. (2005), the loss of orthogonality for CGS and CGS2 are

bounded as stated in the two theorems below.

Theorem I
Assuming cr(m,n)urc2(A)<1, the loss of orthogonality of the vector Q computed by the CGS

algorithm is bounded by

lll- OrO ,r'' c'(m'n)u12(!)
1 cr(m, n)u 121e)

where c.(m,n) = O(mn2) .

Theorem 2

Assuming co(m,n)ur(A)< 1 , the loss of orthogonality of the vectors Q

algorithm can bounded as

ll I - OrO fl< cr(m,n)u

where co(m,n) -O(m2n31 and cu(m, n) :O(mn3t2) .

From the two theorems above, the CGS2 seems more accurate in terms of orthogonality

than CGS. ln their paper, they illustrate theirtheoretical results using a 200x100 matrices An

generated by computing A. = UEkVr , where U and V are randomly chosen orthonormal matri-

(.2)

(3)

upper

(4)

computed by the CGS2

(6)

118 SIGMA Vol. 12, No. 2, Juli 2009

(s)



ln terms of the orthogonality of matrix Q, MGS has a better result than CGS; but in fact, in sev-
eral cases the orthogonality is still not a satisfactory. ln so called an orthogonal basis problem
which requires the individual column vectors of Q matrix, preserving the orthogonality of the col-
umn vectors in Q matrix is becoming an important issue (Hoffmann, 19Bg). More details of CGS
and MGS can be found in Trefethen & Bau (1997: 48-61).

Giraud et al. (2003) have proved that one reorthogonalisation step is enough for preserv-
ing the orthogonality of computed vectors close to machine precision level. Reorthogonalisation
means each orthogonalisation step is performed exactly twice. Note that it is different from CGS
which is performed twice. Therefore, CGS2 and MGS2 algorithms can be written as follows.

Experiments on Gram-Schmidt Process and Gram-Schmidt Process with Reorthogonalisation

ces and En , diagonal matrix, contains the singular values of An uniformly distributed between 1

and 10-k for k =1,K,8 .

The CGS and MGS algorithms can be written as follows.
CGS:

for 1=1 
'n'

V(:,j)=A(:,j);
for i=1:j-1;

R(i j)=Q(:'i)'-A(:'j);
V(:,i)=Y1',i1-R(i,i).Q(:,i);

end;
R(j,j)=norm(v(:,j));
a(:,j)=V(:,j)/R(,j);

end;

MGS:

for j-1 :n;
V(:,j)=A(:,j);

for i=1:j-1;
R(i'j)=q1'' iY.'t''','
V(:'i)=Y1''1;-R(i'i).Q(:'i);

end;
R(j,j)=norm(V(:,j))
Q(:,j)=V(:,j)/Rfi,j)

end;

CGS2:

for 1='1'n'
V(:,j)=A(:,j);

for i='l:j-1;
R(i,j)=q1',;1*o,',','
v(:,i)=Y1',1;-R(i,i).Q(:,i);

end;

W(:,j)=V(:j);
for i=1:j-1;

R(i'j)=q1'';Y-'t' '''
W(:'i)=W(:'i)-R(i'i).Q(:' i);

end;
R(j,j)=norm(w(:,j));
Q(:,j)=W(:,j)/R0,j);

end;

2.2. Simulation Result
lmplementing those four algorithms in Scilab-4.1.1 using 2x2,K,'100x100 random ma-

t.ces where all the entries are uniformly distributed in the interval (0,1) as the test matrices
generates output as shown in Figure 1 to Figure 4 as follows, where the digit of accuracy is cal-
culated using the formula

'otos ll l- QrQ ll (7)

and the norm is the infinity norm. Since the machine precision is about 10 16, the ideal case is

that the digit accuracy is -16, which means QrQ = I .

MG52:

for j=1 :n;

V(:,j)=A(:,j);
for i=1:j-1;

R(i'j)=q1'' ;1'.',''','
V(:'i)=V('i)-R(i'i).Q(:'i);

end;

W(:,j)=V(:,j);
for i=1:j-1;

R(i'j)=q1'' i1'.W(:'j);
w(:,i)=w(:,i)-R(i,i)"Q(:,i);

end;
R(,j)=norm(W(:,j))
a(:,j)=W(:,j)/R(1,j)

end

SIGMA Vol. 12, No. 2, Juli 2009 119
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l: :a :: :: ::

Figure 1. D git of accuracy for CGS
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Figure 2. Digit of accuracy for MGS
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Figure 3. Digit of accuracy for CGS2
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Figure 4. Digit of accuracy for MGS2

Digit of accuracy describes the level of orthogonality. Figure '1 to Figure 4 show that the
level of orthogonality for CGS remains in the range between machine precision and 10-8, and
thatfor MGS remains between machine precision and 10-';while the level of orthogonality.for
CGS2 and MGS2 remain in the same range, that is between machine precision and 10-'"'.
Therefore, reorthogonalisation in CGS and MGS is worthwhile to keep the orthogonality of the
computed vectors in matrix Q to be close to the machine precision. In other words, the theoreti-
cal proof of this, which is presented in Giraud et al. (2005), is matching with the obtained result.

SIGMA Vol. 12, No. 2, Juli 2009 121
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After finding the expected result in terms of orthogonality, the discussion will be continued
to investigate the backward error of the related factorisation. The backward enor here is com-
puted using formula llA-aRll/llAll. The norm used in this simulation is the infinity norm.

Here the logarithmic scale is not used because for n = 2, CGS and MGS give ll A - aR lF 0 .

itasiel l?3r-!E:r*ia:

*

I'

74.e33{,a5050?g&1:Il

Figure 5- Backward enorfor CGS
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Figure 6. Backward error for MGS
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Figure 7. Backward error for CGS2
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Figure 8. Backward error for MGS2

By implementing the same test matrices as those are used before, the backward error are
shown in Figure 5 to Figure B. The backward errors in CGS and MGS are very small, and they
are even smallerthan the machine precision. These errors lie between 0 and 10-'o. ln contrast,
the backward errors produced by CGS2 and MGS2 range between 0.65 and 1. These errors are
large enough, and it means that the resulted factorisation using reorthogonalisation algo-
rithms, A: QR , is not so accurate.

:l'{,_El : E : :-^-,1r,.'_ Er 1r_ --.ll ;?,i_-

.r.Ba

&
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Therefore, the application of reorthogonalisation has advantages and disadvantages. On
one hand, the process without reorthogonalisation will be faster and the backward error is very
small, but the orthogonality may be absent. On the other hand, the process with reorthogonali-
sation will be slower and the backward error is large enough, but the orthogonality of the com-
puted vectors can be preserved close to the machine precision level.

An interesting result can be found by applying the same algorithms to either Hilbert matrix
or inverse of Hilbert matrix. ln this paper, only the inverse of Hilbert matrices are used as the
second set of test matrices (the result for Hilbert matrices is almost the same as the result for
their inverses). Orthogonalisation and reorthogonalisation in Gram-Schmidt process can not be
applied for big-size H;], inverse Hilbert matrix. When n x n inverse Hilbert matrix, for
n :2,K,100 is taken as the test matrix, the result is presented in Figure 9.

;-S

-i{

Figure 9- Digit of accuracy using inverse Hilbert matrix
Note.___-._._..: CGS ++++++ : MGS : CGS2 : MGS2

This result can be considered as one limitation of Gram-Schmidt orthogonalisation and its
reorthogonalisation. This failure of orthogonalisation and its reorthogonalisation might be be-
cause the computation in the orthogonalisation of the vectors is overflow, or exceeding the
range of number that scilab can take in to account. This prediction can be double checked by
multiplying H;], inverse Hilbert matrix and Hn,, Hilbert matrix for some large n, and in fact, the
result is not an identity matrix.

3. Running Time for Calculating the Vectors
This section is also divided into two parts. The first part gives an overview of the theoreti-

cal result of the operation count for Gram-Schmidt process, and the second part presents the
relation between matrix size and running computation for CGS2.

3.1. Theoretical Background
Given A,,, matrix, the operation count for the CGS or MGS algorithm is 2mn2 flops

(Trefethen & Bau, 1997: 59), while that for CGS2 or MGS2 is 4mn2, twice as much as CGS or
MGS because of the reorthogonalisation operation. Therefore, if the matrix size is nxn, the
running time for those processes, f, will agree with the relation t : cn3 , where c is some con-
stant.

1r,

L:.s*Sal*1 idi 58t :B++*1 ilsi!*+
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:
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a

Figure 10. Relation between matrix size and running time

3.2. Simulation Result
ln this part, a set of more number of random matrices is used. The set of test matrices

which is used is 2x2,K,150x150 random matrices, where all the entries are uniformly distrib-

uted in the interval (0,1). Here, recorded running time for calculating vectors is presented in Fig-
ure 10, and only the result for CGS2 is presented because the result for MGS2 is not much dif-
ferent, and so are the CGS and MGS. The unsmooth solid line is the relation between matrix

size and the running computation in Scilab. The smooth solid line is y:2x1O-7 x3. From this
result, the relation between matrix size and the running time is approximately approaching the
relation t : cn3 , where c is some constant, though c = 2x10-7 is not the best choice in this
case.

4. Gonclusion
Reorthogonalisation in Gram-Schmidt process is worthwhile to preserve the orthogonality

of the computed vectors close to the machine precision level. Reorthogonalisation does not
work, if the computation in the machine is overflow. However, applying the reorthogonalisation
leads to a higher backward error. To choose which algorithm is appropriate to be applied in a
particular problem, considering the real problem is needed. That is if the problem is focusing
more on the orthogonality, Gram-Schmidt algorithms with reorthogonalisation will be more ap-
propriate.
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