Journal of

Theoretical and Computational

Neutrino Mass Matrix from a Seesaw Mechanism with Heavy Majorana Mass Matrix Subject to Texture Zero and Invariant Under a Cyclic Permutation
A. Damanik, M. Satriawan, A. Hermanto and P. Anggraita
J. Theor. Comput. Stud. 8 (2008) 0102
Received: July $18^{\text {th }}$, 2008; Accepted for publication: October $20^{\text {th }}$

Published by

Indonesian Theoretical Physicist Group http://www.opi.lipi.go.id/situs/gfti/

Indonesian Computational Society http://www.opi.lipi.go.id/situs/mki/

Journal of Theoretical and Computational Studies
 Journal devoted to theoretical study, computational science and its cross-disciplinary studies URL : http://www.jurnal.lipi.go.id/situs/jtcs/

Editors

A. Purwanto (ITS)
A. S. Nugroho (BPPT)
A. Sopaheluwakan (LabMath)
A. Sulaksono (UI)
B. E. Gunara (ITB)
B. Tambunan (BPPT)
F.P. Zen (ITB)
H. Alatas (IPB)
I.A. Dharmawan (UNPAD)
I. Fachrudin (UI)

Honorary Editors
B.S. Brotosiswojo (ITB)
M. Barmawi (ITB)
M.S. Ardisasmita (BATAN)

Guest Editors

H. Zainuddin (UPM)
T. Morozumi (Hiroshima)
J.M. Tuwankotta (ITB)
L.T. Handoko (LIPI)
M. Nurhuda (UNIBRAW)
M. Satriawan (UGM)
P. Nurwantoro (UGM)
P. W. Premadi (ITB)
R.K. Lestari (ITB)
T. Mart (UI)
Y. Susilowati (LIPI)
Z. Su'ud (ITB)
M.O. Tjia (ITB)
P. Anggraita (BATAN)
T.H. Liong (ITB)
K. Yamamoto (Hiroshima)

Coverage area

1. Theoretical study : employing mathematical models and abstractions of a particular field in an attempt to explain known or predicted phenomenon. E.g. : theoretical physics, mathematical physics, biomatter modeling, etc.
2. Computational science : constructing mathematical models, numerical solution techniques and using computers to analyze and solve natural science, social science and engineering problems. E.g. : numerical simulations, model fitting and data analysis, optimization, etc.
3. Cross-disciplinary studies : inter-disciplinary studies between theoretical study and computational science, including the development of computing tools and apparatus. E.g. : macro development of Matlab, paralel processing, grid infrastructure, etc.

Types of paper

1. Regular : an article contains an original work.
2. Comment : an article responding to another one which has been published before.
3. Review : an article which is a compilation of recent knowledges in a particular topic. This type of article is only by invitation.
4. Proceedings : an article which has been presented in a scientific meeting.

Paper Submission

The submitted paper should be written in English using the LATEX template provided in the web. All communication thereafter should be done only through the online submission page of each paper.

Referees

All submitted papers are subject to a refereeing process by an appropriate referee. The editor has an absolute right to make the final decision on the paper.

Reprints

Electronic reprints including covers for each article and content pages of the volume are available from the journal site for free.

Indonesian Theoretical Physicist Group
Indonesian Computational Society
Secretariat Office : c/o Group for Theoretical and Computational Physics, Research Center for Physics LIPI, Kompleks Puspiptek Serpong, Tangerang 15310, Indonesia http://www.opi.lipi.go.id/situs/gfti/
http://www.opi.lipi.go.id/situs/mki/

Neutrino Mass Matrix from a Seesaw Mechanism with Heavy Majorana Mass Matrix Subject to Texture Zero and Invariant Under a Cyclic Permutation

${ }^{a, b}$ A. Damanik, ${ }^{b}$ M. Satriawan, ${ }^{b}$ A. Hermanto and ${ }^{c} \mathrm{P}$. Anggraita
${ }^{a}$ Department of Physics, Sanata Dharma University, Kampus III USD Paingan, Maguwoharjo, Sleman, Yogyakarta, Indonesia
${ }^{b}$ Department of Physics, Gadjah Mada University, Bulaksumur, Yogyakarta, Indonesia
${ }^{c}$ Center for Accelerator Technology and Material Process, National Nuclear Energy Agency (BATAN), Yogyakarta, Indonesia

Abstract

We evaluate the invariant forms of the neutrino mass matrices which arise from a seesaw mechanism with heavy Majorana mass matrices subject to texture zero and invariant under a cyclic permutation. From eight possible patterns of the heavy Majorana neutrino mass matrices, we found that there is no heavy Majorana neutrino mass matrix which is invariant in form under a cyclic permutation. But, by imposing an additional assumption that at least one of the 2×2 sub-matrices of the heavy Majorana neutrino mass matrix inverse has zero determinant, we found two of the heavy Majorana neutrino mass matrices have to be invariant under a cyclic permutation. One of these two invariant heavy Majorana neutrino mass matrices can be used to explain the neutrino mixing phenomena for both solar and atmospheric neutrinos qualitatively

KEYWORDS : Neutrino mass matrix, seesaw mechanism, texture zero, cyclic permutation
E-MAIL : d.asan@lycos.com

Received: July $18^{\text {th }}$, 2008; Accepted for publication: October $20^{\text {th }}$

1 INTRODUCTION

The Glashow-Weinberg-Salam (GWS) model for electroweak interaction which is based on $S U(2)_{L} \otimes U(1)_{Y}$ gauge symmetry group (see for example Peskin and Schroeder [1]) has been successful phenomenologically. Even though the GWS model successful phenomenologically, it stil still far from a complete theory because the GWS model is blind to many fundamental problems such as neutrino mass problem and fermions (lepton and quark) mass hierarchy [2]. For more than two decades, the solar neutrino flux measured on Earth has been much less than predicted by the solar model [3]. The solar neutrino deficit can be explained if neutrino undergoes oscillation during its propagation to earth. Neutrino oscillation implies that neutrinos have a non-zero mass or at least one of the three known neutrino flavors has a non-zero mass and neutrino mixing does exist. Recently, there is a convincing evidence that neutrinos have a non-zero mass. This evidence was based on the experimental facts that both
solar and atmospheric neutrinos undergo oscillation $[4,5,6,7,8,9]$.

The global analysis of neutrino oscillations data gives the best fit value to the solar neutrino masssquared differences [10]

$$
\begin{equation*}
\Delta m_{21}^{2}=\left(8.2_{-0.3}^{+0.3}\right) \times 10^{-5} \mathrm{eV}^{2} \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\tan ^{2} \theta_{21}=0.39_{-0.04}^{+0.05} \tag{2}
\end{equation*}
$$

and for the atmospheric neutrino mass-squared differences

$$
\begin{equation*}
\Delta m_{32}^{2}=\left(2.2_{-0.4}^{+0.6}\right) \times 10^{-3} \mathrm{eV}^{2} \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\tan ^{2} \theta_{32}=1.0_{-0.26}^{+0.35} \tag{4}
\end{equation*}
$$

where $\Delta m_{i j}^{2}=m_{i}^{2}-m_{j}^{2}(i, j=1,2,3)$ with m_{i} as the neutrino mass eigenstates basis $\nu_{i}(i=1,2,3)$ and $\theta_{i j}$
is the mixing angle between ν_{i} and ν_{j}. The relation between neutrino mass eigenstates and neutrino weak (flavor) eigenstates basis $\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right)$ is given by

$$
\left(\begin{array}{c}
\nu_{e} \tag{5}\\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=V\left(\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

where V is the mixing matrix.
To explain a non-zero neutrino mass-squared differences and neutrino mixing, several models for neutrino mass and its underlying family symmetries, and the possible mechanism for generating a neutrino mass have been proposed $[11,12,13,14,15,16,17,18,19$, $20,21,22,23,24,25,26]$. One of the interesting mechanism to generate neutrino mass is the seesaw mechanism $[27,28,29,30]$, in which the right-handed neutrino ν_{R} has a large Majorana mass M_{N} and the lefthanded neutrino ν_{L} is given a mass through leakage of the order of $\left(m^{2} / M_{N}\right)$ with m the Dirac mass. Thus, the seesaw mechanism could also be used to explains the smallness of the neutrino mass at the electro-weak energy scale. The mass matrix model of a massive Majorana neutrino M_{N} which is constrained by the solar and atmospheric neutrinos deficit and incorporate the seesaw mechanism and Peccei-Quinn symmetry have already been reported by Fukuyama and Nishiura [31]. By using an $S U(2)_{L} \otimes S U(2)_{R} \otimes U(1)_{Y}$ gauge group with assumption that the form of the mass matrix is invariant under a cyclic permutation among fermions, Koide [12] obtained a unified mass matrix model for leptons and quarks. By choosing a specific neutrino mixing matrix, Koide [32] obtained a result that can be used to explain maximal mixing between μ_{ν} and μ_{τ} as suggested by the atmospheric neutrino data.

In this paper, we construct the neutrino mass matrices which are generated via a seesaw mechanism with the heavy Majorana neutrino mass matrix M_{N} subject to texture zero and invariant in form under a cyclic permutation. We then evaluate the resulted neutrino mass matrices predictions on neutrino mixing phenomena. This paper is organized as follows: In Section 2, we determine the possible patterns for heavy Majorana neutrino mass matrices M_{N} subject to texture zero and investigate it whether invariant under a cyclic permutation. The M_{N} matrices which are invariant in form under a cyclic permutation will be used to obtain the neutrino mass matrices M_{ν} via seesaw mechanism. In Section 3, we evaluate and discuss the predictive power of the resulted neutrino mass matrices M_{ν} against experimental results. Finally, in Section 4 we give the conclusion.

2 TEXTURE ZERO AND INVARIANT UNDER A CYCLIC PERMUTATION

According to the seesaw mechanism, the neutrino mass matrix M_{ν} is given by

$$
\begin{equation*}
M_{\nu} \approx-M_{D} M_{N}^{-1} M_{D}^{T} \tag{6}
\end{equation*}
$$

where M_{D} and M_{N} are the Dirac and Majorana mass matrices respectively. If we take M_{D} to be diagonal, then the pattern of the neutrino mass matrix M_{ν} depends only on the pattern of the M_{N} matrix. From eq. (6), one can see that the pattern of the M_{N}^{-1} matrix will be preserved in M_{ν} matrix when M_{D} matrix is diagonal.

Following standard convention, let us denote the neutrino current eigenstates coupled to the charged leptons by the W boson as $\nu_{\alpha}(\alpha=e, \mu, \tau)$, and the neutrino mass eigenstates as $\nu_{i}(i=1,2,3)$, then the mixing matrix V has the form as shown in eq. (5). As we have stated explicitly above, we use the seesaw mechanism as the responsible mechanism for generating the neutrino mass. The Majorana mass term in Lagrangian density is given by

$$
\begin{equation*}
L=-\nu_{\alpha} M_{\alpha \beta} C \nu_{\beta}+h . c . \tag{7}
\end{equation*}
$$

where C is the charge conjugation matrix. For the sake of simplicity, we will assume that $C P$ is conserve such that $M_{\alpha \beta}$ is real. Within this simplification, the neutrino mass matrix $M_{\alpha \beta}$ is diagonalized by the matrix V as

$$
V^{T} M_{\alpha \beta} V=\left(\begin{array}{ccc}
m_{1} & 0 & 0 \tag{8}\\
0 & m_{2} & 0 \\
0 & 0 & m_{3}
\end{array}\right)
$$

From recent experimental results, the explicit values of the mixing matrix moduli V can be found in [10]. According to the requirement that the mixing matrix V must be orthogonal, together with putting V in a nice simple looking numbers, to a first approximation we can take the mixing matrix V to be

$$
V=\left(\begin{array}{ccc}
-2 / \sqrt{6} & 1 / \sqrt{3} & 0 \tag{9}\\
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2} \\
1 / \sqrt{6} & 1 / \sqrt{3} & -1 / \sqrt{2}
\end{array}\right)
$$

We can obtain the neutrino mass matrix M_{ν} by using the relation

$$
\begin{equation*}
M_{\nu}=V\left(V^{T} M_{\alpha \beta} V\right) V^{T} \tag{10}
\end{equation*}
$$

If we substitute eqs. (8) and (9) into eq. (10), we then
have

$$
M_{\nu}=\left(\begin{array}{lll}
P & Q & Q \tag{11}\\
Q & R & S \\
Q & S & R
\end{array}\right)
$$

where $P=\left(2 m_{1}+m_{2}\right) / 3, Q=\left(m_{2}-m_{1}\right) / 3, R=$ $\left(m_{1}+2 m_{2}+3 m_{3}\right) / 6$, and $S=\left(m_{1}+2 m_{2}-m_{3}\right) / 6$.

If the general neutrino mass matrix M_{ν} in eq.(11) is taken as the neutrino mass matrix arise from the seesaw mechanism, then we can write M_{ν} as

$$
M_{\nu}=\left(\begin{array}{ccc}
P & Q & Q \tag{12}\\
Q & R & S \\
Q & S & R
\end{array}\right)=M_{D} M_{N}^{-1} M_{D}
$$

From eq.(12), and putting M_{D} matrix to be diagonal

$$
M_{D}=\left(\begin{array}{ccc}
m_{1}^{D} & 0 & 0 \tag{13}\\
0 & m_{2}^{D} & 0 \\
0 & 0 & m_{3}^{D}
\end{array}\right)
$$

with the constraint that $m_{2}^{D}=m_{3}^{D}=m^{D}$ at high energy ($C P$ is conserved), then the pattern of M_{N}^{-1} matrix is preserved in M_{ν} [24]. Thus, the M_{N}^{-1} matrix patterns can be written as

$$
M_{N}^{-1}=\left(\begin{array}{ccc}
A & B & B \tag{14}\\
B & C & D \\
B & D & C
\end{array}\right)
$$

and then the M_{N} reads

$$
M_{N}=X\left(\begin{array}{ccc}
Y & Z & Z \tag{15}\\
Z & W & K \\
Z & K & W
\end{array}\right)
$$

where $X=1 /\left(A\left(C^{2}-D^{2}\right)+2 B^{2}(D-C)\right), Y=C^{2}-$ $D^{2}, Z=B(D-C), W=A C-B^{2}$, and $K=-A D+$ B^{2}.

Now, we are in position to impose the requirement of texture zero into M_{N} matrix. The M_{N} matrix in eq. (15) will have texture zero if one or more of the following constraints are satisfied: (i) $C=-D$, (ii) $A D-B^{2}=0$, (iii) $A C-B^{2}=0$, and (iv) $B=0$. If M_{N} matrix in eq. (15) has one or more of its entries to be zero (texture zero), then M_{N}^{-1} matrix has one or more of its 2×2 sub-matrices with zero determinants. The texture zero of the mass matrix indicates the existence of additional symmetries beyond the Standard Model of Particle Physics of electro-weak interaction.

After lenghty calculations, we obtain eight possible patterns for the heavy Majorana M_{N} matrices with texture zero as one can read in [33]. The eight possible patterns of M_{N} heavy Majorana neutrino matrices read

$$
\begin{align*}
& M_{N}=\left(\begin{array}{ccc}
0 & a & a \\
a & b & c \\
a & c & b
\end{array}\right), M_{N}=\left(\begin{array}{ccc}
a & b & b \\
b & c & 0 \\
b & 0 & c
\end{array}\right), \\
& M_{N}=\left(\begin{array}{lll}
a & b & b \\
b & 0 & c \\
b & c & 0
\end{array}\right), M_{N}=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & c \\
0 & c & b
\end{array}\right), \\
& M_{N}=\left(\begin{array}{ccc}
0 & a & a \\
a & b & 0 \\
a & 0 & b
\end{array}\right), M_{N}=\left(\begin{array}{ccc}
0 & a & a \\
a & 0 & b \\
a & b & 0
\end{array}\right), \\
& M_{N}=\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & b
\end{array}\right), M_{N}=\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & 0 & b \\
0 & b & 0
\end{array}\right) . \tag{16}
\end{align*}
$$

By checking the invariant form of the resulting neutrino mass matrices M_{N} with texture zero under a cyclic permutation, we found that there is no M_{N} matrix with texture zero invariant under a cyclic permutation. But, with additional assumption, there is a possibility to put the M_{N} matrices with texture zero to be invariant under a cyclic permutation, those are the M_{N} matrices with the patterns:

$$
M_{N}=\left(\begin{array}{lll}
a & 0 & 0 \tag{17}\\
0 & b & 0 \\
0 & 0 & b
\end{array}\right)
$$

and

$$
M_{N}=\left(\begin{array}{ccc}
0 & a & a \tag{18}\\
a & 0 & b \\
a & b & 0
\end{array}\right)
$$

if we impose an additional assumption that $a=b$. With the above assumption, we finally obtain two M_{N} matrices invariant under a cyclic permutation. The M_{N} matrices which are invariant under a cyclic permutation read

$$
M_{N}=a\left(\begin{array}{lll}
1 & 0 & 0 \tag{19}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and

$$
M_{N}=a\left(\begin{array}{lll}
0 & 1 & 1 \tag{20}\\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

By substituting eqs. (13), (19) and (20) into eq. (6), we then have the neutrino mass matrices $\left(M_{\nu}\right)$ becomes

$$
M_{\nu}=-\frac{1}{m_{N}}\left(\begin{array}{ccc}
\left(m_{1}^{D}\right)^{2} & 0 & 0 \tag{21}\\
0 & \left(m^{D}\right)^{2} & 0 \\
0 & 0 & \left(m^{D}\right)^{2}
\end{array}\right)
$$

with mass eigenvalues

$$
\begin{align*}
m_{1}=-\frac{\left(m_{1}^{D}\right)^{2}}{m_{N}}, m_{2} & =-\frac{\left(m^{D}\right)^{2}}{m_{N}} \\
m_{3} & =-\frac{\left(m^{D}\right)^{2}}{m_{N}} \tag{22}
\end{align*}
$$

and

$$
\begin{align*}
& M_{\nu}=\frac{1}{m_{N}^{\prime}} \\
& \otimes\left(\begin{array}{ccc}
\left(m_{1}^{D}\right)^{2} & -m_{1}^{D} m^{D} & -m_{1}^{D} m^{D} \\
-m_{1}^{D} m^{D} & \left(m^{D}\right)^{2} & -\left(m^{D}\right)^{2} \\
-m_{1}^{D} m^{D} & -\left(m^{D}\right)^{2} & \left(m^{D}\right)^{2}
\end{array}\right) \tag{23}
\end{align*}
$$

with mass eigenvalues

$$
\begin{align*}
& m_{1}=\frac{\left(m_{1}^{D}\right)^{2}-m_{1}^{D} \sqrt{\left(m_{1}^{D}\right)^{2}+8\left(m^{D}\right)^{2}}}{2 m_{N}^{\prime}} \\
& m_{2}=\frac{\left(m_{1}^{D}\right)^{2}+m_{1}^{D} \sqrt{\left(m_{1}^{D}\right)^{2}+8\left(m^{D}\right)^{2}}}{2 m_{N}^{\prime}} \\
& m_{3}=\frac{2\left(m^{D}\right)^{2}}{m_{N}^{\prime}} \tag{24}
\end{align*}
$$

where $m_{N}=a$ and $m_{N}^{\prime}=2 a$ respectively. The neutrino mass matrix in eq.(21) will give $\Delta m_{32}^{2}=0$, it then implies that this neutrino mass matrices fail to predict the neutrino mixing phenomena for the atmospheric neutrino at low energy. Thus, we obtain only one of the neutrino mass matrix M_{ν} (eq. (23) which is produced from the seesaw mechanism with heavy Majorana mass matrix subject to texture zero and invariant under a cyclic permutation that can be used to account the neutrino mixing for both solar and atmospheric neutrinos.

3 DISCUSSIONS

Without imposing an additional assumption for the M_{N}^{-1} matrices, we have no M_{N} matrix which is invariant under a cyclic permutation. But, by imposing
an additional assumption that M_{N}^{-1} matrices have at least one of its 2×2 sub-matrices has zero determinant, then we have two M_{N} matrices which are invariant under a cyclic permutation.

By inspecting eq.(23), one can see that neutrino mass matrix M_{ν} arising from seesaw mechanism, with M_{N} subject to texture zero and invariant under a cyclic permutation, could be used to explain the neutrino mixing for both solar and atmospheric neutrinos data. From eq. (24), we obtain the neutrino masses $\left|m_{1}\right|=\left|m_{2}\right| \approx \sqrt{2} m_{1}^{D} m^{D} / m_{N}^{\prime}$ and $m_{3}=2\left(m^{D}\right)^{2} / m_{N}^{\prime}$ for case $m_{1}^{D} \ll m^{D},\left|m_{1}\right| \approx\left(m^{D}\right)^{2} / m_{N}^{\prime}, m_{2} \approx$ $2\left(m^{D}\right)^{2} / m_{N}^{\prime}$, and $m_{3}=2\left(m^{D}\right)^{2} / m_{N}^{\prime}$ for the case $m_{1}^{D} \approx m^{D}$, and $m_{1} \approx 0, m_{2} \approx\left(m_{1}^{D}\right)^{2} / m_{N}^{\prime}$, and $m_{3}=2\left(m^{D}\right)^{2} / m_{N}^{\prime}$ for the case $m_{1}^{D} \gg m^{D}$. The case $m_{1}^{D} \gg m^{D}$ gives a normal hierarcy for neutrino masses and can predict qualitatively the masses square differences in eqs. (1) and (3).

In really, using the heavy Majorana mass matrix M_{N} subject to texture zero in a seesaw mechanism will produces naturally a neutrino mass matrix without additional requirement that the M_{ν} is invariant under a cyclic permutation. This fact can be read in Ref.[33] for the cases that M_{N} matrix having one, two, or three of its entries to be zero. The M_{N} matrices which have three zero entries will lead to the tri-maximal mixing. One of the M_{N} matrices which have three zero entries (all of the diagonal M_{N} are zero) produces the neutrino mass matrix M_{ν} whose eigenvalues have normal hierarchy that can be used to explain the experimental result qualitatively. If the heavy neutrino Majorana M_{N} matrix has six of its entries to be zero (all of the M_{N} off-diagonal entries to be zero), then we obtain M_{ν} matrix as shown in eq. (21) arises from the seesaw mechanism that can not be used to explain neutrino mixing phenomena.

4 CONCLUSION

The eight possible patterns of heavy Majorana neutrino matrix M_{N} subject to texture zero could produce the neutrino mass matrices M_{ν} using seesaw mechanism as one can read in Ref.[33] and it could account for bi- and tri-maximal mixing in neutrino sector without additional assumption that these matrices are invariant in form under a cyclic permutation. When we evaluate the M_{N} invariance on the cyclic permutation, we found that there is no M_{N} matrix to be invariant in form. But, by imposing an additional assumption that the M_{N}^{-1} matrix has at least one of its 2×2 sub-matrices having zero determinant, we obtain two of the M_{N} matrices invariant in form under a cyclic permutation. One of the two M_{N} matrices, which are invariant under a cyclic
permutation, could produces a neutrino mass mixing matrix M_{ν} as shown in Eq. (23) with eigenvalues $\left|m_{1}\right|=\left|m_{2}\right| \approx \sqrt{2} m_{1}^{D} m^{D} / m_{N}^{\prime}$ and $m_{3}=2\left(m^{D}\right)^{2} / m_{N}^{\prime}$ for case $m_{1}^{D} \ll m^{D}$.

ACKNOWLEDGMENTS

The first author would like to thank to the Directorate for Higher Education Ministry of National Education (Dikti Depdiknas) for a BPPS Scholarship Program.

REFERENCES

[1] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, (Addison-Wesley Publishing Company, New York, 1995).
[2] M. Fukugita and T. Yanagida, Physics of Neutrinos and Application to Astrophysics, (SpringerVerlag, Heidelberg, 2003).
[3] J. Pantaleone, Physical Review D43 (1991) R641.
[4] Y. Fukuda et al., Physical Review Letters 81 (1998) 1158.
[5] Y. Fukuda et al., Physical Review Letters 82 (1999) 2430.
[6] M. H. Ahn et al., Physical Review Letters 90 (2003) 041801.
[7] T. Toshito et al., arXiv: hep-ex/0105023.
[8] G. Giacomelli and M. Giorgini, arXiv: hepex/0110021.
[9] Q.R. Ahmad et al., Physical Review Letters 89 (2002) 011301.
[10] M.C. Gonzales-Garcia, Physica Scripta T121 (2005) 72.
[11] G. K. Leontaris, S. Lola, C. Scheich and J. D. Vergados, Physical Review D53 (1996) 6381.
[12] Y. Koide, arXiv: hep-ph/9705239v1.
[13] R. N. Mohapatra and S. Nussinov, Physics Letters B441 (1998) 299.
[14] S. Lola and J. D. Vergados, Progress in Particles and Nuclear Physics 40 (1998) 71.
[15] E. Kh. Akhmedov, G. C. Branco, and M. N. Rebelo, Physics Letters 478 (2000) 215.
[16] Riazuddin, arXiv: hep-ph/0007146v2.
[17] X. G. He and A. Zee, Physics Letters B560 (2003) 87.
[18] A. Zee, Physical Review D68 (2003) 093002.
[19] C. I. Low and R. R. Volkas, Physical Review D68 (2003) 033007.
[20] E. Ma, Physics Letters 90 (2003) 221802.
[21] G. Altarelli and F. Feruglio, New Journal of Physics 6 (2004) 106.
[22] R. Dermisek, Physical Review D70 (2004) 073016.
[23] E. Ma, New Journal of Physics 6 (2004) 104.
[24] E. Ma, Modern Physics Letters A20 (2005) 2601.
[25] R.N. Mohapatra and W. Rodejohann, Physics Letters B644 (2007) 59.
[26] E. Ma, Physics Letters B649 (2007) 287.
[27] P. Minkowski, Physics Letters B67 (1977) 421.
[28] T. Yanagida, in Proceedings of the Workshop on the Unified Theory and Barryon Number in the Universe, KEK, Tsukuba, Japan, edited by O. Sawada and A. Sugamoto (1979).
[29] M. Gell-Mann, P. Ramond, and R. Slansky, Supergravity, North-Holland, Amsterdam, edited by P. van Niewenhuzen and D.Z. Freedman (1979).
[30] R. N. Mohapatra and G. Senjanovic, Physical Review Letters 44 (1980) 912.
[31] T. Fukuyama and H. Nishiura, arXiv: hepph/9702253.
[32] Y. Koide, arXiv: hep-ph/0005137.
[33] A. Damanik, M. Satriawan, P. Anggraita, and Muslim, in Proceeding of The 2005 Asian Physics Symposium, Bandung, edited by M. Abdullah (2005) 13.

