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We present the study of the quark sector of the universal seesaw model with
SUQ2)L x SUR)r x U(1)y gauge symmetry in the massless case of the two lightest quark
families. This model aims to explain the mass hierarchy of the third family quark by in-
troducing a vector-like quark (VLQ) partner for each quark. In this model, we introduce
SU(2)L and SU(2)r Higgs doublets. We derive explicitly the Lagrangian for the quark
sector, Higgs sector, and kinetic terms of the gauge fields, starting from the Lagrangian,
which is invariant under SU(2)p x SU(2)r x U(1)y: gauge symmetry. At each stage of
the symmetry breaking, we present the Lagrangian with the remaining gauge symmetry.
Additionally, we investigate the flavor-changing neutral currents (FCNCs) of the Higgs
(h) and Z-bosons in the interaction with the top, heavy top, bottom, and heavy bottom
quarks.

Subject Index B40, B55

1. Introduction

The seesaw mechanism is a well-known approach to explain the smallness of neutrino masses
[1-7]. It introduces heavy right-handed neutrinos that mix with the light left-handed neutrinos,
giving them a small mass. This inspired the construction of a similar model that can be applied
to other cases. One problem that the Standard Model (SM) cannot explain is the fermion mass
hierarchy. In this paper, we study the quark sector of the universal seesaw model [8-23], an
extension of the SM that applies a seesaw-like mechanism to the quark sector to solve the
mass hierarchy problem. In the quark sector, an interesting aspect is the large mass of the top
quark compared to the other quarks. Our focus is on the third family of quarks, and within our
framework, the two lightest quark families are massless.

Introducing vector-like quarks (VLQs) into this model is essential. VLQs have left- and right-
handed components that transform identically under some gauge group. Using this property,
they can mix with SM quarks, resulting in modified mass matrices that can be diagonalized
and generate a tiny seesaw-like mass. Various studies about adding VLQs to the SM have been
explored, e.g. introducing one down-type isosinglet VLQ [24], one up-type isosinglet VLQ [25],
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and both one up-type and one down-type isosinglet VLQ [26]. The presence of VLQs also has
implications for flavor physics, as they can introduce flavor-changing neutral currents (FCNCs)
[27], and weak-basis invariants have been analyzed to understand the flavor structures [28,29].
Effective field theory approaches to VLQs have been studied to understand their contributions
to low-energy observables [30,31]. A review of the theory and phenomenology of isosinglet
VLQs can be found in Ref. [32].

This paper aims to study the quark sector within the universal seesaw model in the mass-
less case of the two lightest quark families. We derive the Lagrangian, including the quark
and Higgs sectors, and gauge kinetic terms. We also demonstrate how the model can naturally
explain the observed quark mass hierarchies in the third family, particularly the significant
mass of the top quark. We also explore the phenomenological implications of this model by
investigating the interaction of the Higgs and Z-bosons with quarks, which includes FCNC
processes.

The outline of this paper is as follows. In Section 2, we introduce the model with the particle
contents and the Lagrangian. Section 3 focuses on the quark sector and Yukawa interactions.
We explain the derivation of the Lagrangian of the kinetic terms and Yukawa interactions.
Starting with the Lagrangian, which is invariant under SU(2). x SU(2)r x U(1)y, in each
stage of the symmetry breaking, we present the Lagrangian with the remaining gauge symmetry.
The quark mass eigenvalues and the identification of FCNC within the massive third family
quarks and their VLQ partners are discussed.

Section 4 discusses the Higgs sector of this model. The kinetic terms and Higgs potential are
also derived step by step. In the end, we classify the terms based on the number of fields in the
term as linear, quadratic, cubic, and quartic, ensuring a clear understanding of the interactions
of the gauge sector. In addition, we also provide the exact diagonal mass of Z — Z’ bosons and
h — H bosons.

The kinetic terms of gauge fields are discussed in Section 5. In the final derivation, we show
the difference between our model and the SM. Finally, in Section 6, we present some phe-
nomenological implications of our model. We start the discussion with the hierarchy of VLQ’s
mass parameters, the nonzero vacuum expectation value (vev) of the SU(2). Higgs doublet
(vz), and the nonzero vev of the SU(2)g Higgs doublet (vg). Then, we analyze the interaction
of the Higgs (/) and Z-bosons with the quarks. This leads to a discussion about FCNC:s in this
model.

2. The model

We consider an extension of the SM with SU(3)¢ x SU(2)L x SU(2)r x U(1)y gauge symme-
try in the massless case of the two lightest quark families. In addition to the SU(2), SM Higgs
doublet (¢,), we have a SU(2)r Higgs doublet (¢r). We also introduce one up-type and one
down-type isosinglet VLQ, denoted by 7" and B, respectively. The charge convention we use in
this model is

Q=1L +I+Y, 2.1

where Q, IE(R),

charge, respectively. The particle contents and their charge assignments under the model’s gauge
group are given in Table 1.

and Y’ are electromagnetic charge, left(right) weak-isospin, and U(1)y: hyper-
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SU@B3)c x

2.2)

(2.3)

(2.4)

(2.5)

Table 1. Quark and Higgs fields with their quantum numbers under the
SUQ2)L x SU(2)r x U(1)y: gauge groups, where i € {1, 2, 3} is the family index.
Quark and Higgs fields SU@3)c SU2)L SU2)r U(l)y
L= 3 2 1 1/6
qL <dlL>
G = (Z?) 3 1 2 1/6
R
Ti.r 3 1 1 2/3
Brr 3 1 1 —1/3
X
¢ = ( %) 1 2 1 1/2
XL
P
br = ( 15) 1 1 2 1/2
XR
The Lagrangian of this model (excluding the quantum chromodynamics (QCD) part) is as
follows:
L=Ly+ Ly ~+ Lgauges
L, = q,iy" D1} + qriy" Druqs + Tiy" Dr, T + Biy"Dp, B
— Yo qid1Tr — Y, Tedidr — 4174, #1.Br — BLyjj dpdy — hic.
— TLMTTR — B_LMBBR — h.C.,
Ly = Di¢r) (Drudr) + (Dr¢r) (Drudr) — V(L. dr).
,C _ lFa Fa/w lFa Fa/w lB/ B/I,Lv
gauge = = 4 Lpv - Z Ruv - 4 mv
where

V (L, dr) = 120 b1 + n2dhdr + (0 d1)* + Ar(PRdr): + 24 1r() dL)(DhR), (2.6)

i . ¢ . .
Drryudrr) = <3u +igray 5 Wiy + 18] Yq/BL) q1(ry:
.Ea
. ./ ! /

Drrubrir = <3u +igLm 5 Wiy +18) Y¢BM> PLR):
D7, T = (8, +ig\Y;B),) T,

Dp,B = (3, +ig,YzB)) B,

FLauv = 8# va — 0, Wltju - gLeachIlj;L Wlfv’

F(l

a a abcyy7b ¢
Ruv — all« WRv — 0, WR;/_ — 8RE€ WR;/, WRv’

B, =8,B,—,B,.
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2.7)
(2.8)
(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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The Lagrangian in Eq. (2.2) is divided into three parts. The first part is the kinetic terms of
quark doublet and isosinglet VL.Qs, Yukawa interactions, and mass terms of isosinglet VLQs,
which are contained in Eq. (2.3). The second part is the kinetic terms and potential of the Higgs
doublet, which are contained in Eq. (2.4). The third part is the kinetic terms of the gauge fields,
which are written in Eq. (2.5).

The first line of Eq. (2.3) is the kinetic terms of quark doublet and isosinglet VLQs where the
definitions of the covariant derivatives are written in Eqgs. (2.7), (2.9), and (2.10), respectively,
where g7 gy 1s SU(2)(r) gauge coupling, ¢ is the Pauli matrix, g} is U(1)y’ gauge coupling, and
Y’ is the corresponding U(1)y: hypercharge. For the Yukawa interaction part, one can choose
a weak-basis where the Yukawa couplings of the up-type quark doublet (YM3L and Yu3R) are real
positive numbers. In contrast, the Yukawa couplings of the down-type quark are general com-
plex vectors as shown in the second line of Eq. (2.3). The derivation of this weak-basis is briefly
explained in Appendix A. The family index for SM quarks is denoted as i € {1, 2, 3} and the
charge conjugation of Higgs fields is defined as ¢z = it2¢z( - In the third line of Eq. (2.3),
M7 and Mp are isosinglet VLQ mass parameters that we take as real numbers.

The first two terms of Eq. (2.4) are the kinetic terms of the Higgs doublet where the definition
of the covariant derivatives is written in Eq. (2.8). The third term is the Higgs potential, which
is shown in Eq. (2.6), containing the mass terms and quartic interactions of the Higgs doublet,
including the interaction between ¢; and ¢g. Later ¢z and ¢ acquire nonzero vevs denoted as
vg and v, that break SU(2)g and SU(2)., respectively, and satisfy vg > vy.

3. Quark sector and Yukawa interactions

In this section, we derive the kinetic terms of quark doublet and isosinglet VLQs, Yukawa
interactions, and mass terms of isosinglet VLQs that are contained in Eq. (2.3) with the
SUQ)L x SUQR)r x U(1)y symmetric Lagrangian. After the SU(2)r Higgs doublet acquires
nonzero vev, we obtain the Lagrangian, which is invariant under SM gauge symmetry. Fur-
thermore, the SM gauge group is broken into U(1)., after the SU(2);, Higgs doublet acquires
nonzero vev. Finally, we obtain the masses of the top and bottom quark, and those of their
heavy partners, Z, Z', h, and H. FCNC and the Cabibbo-Kobayashi-Maskawa (CKM) matrix
are also generated.

3.1. SUR2)g x U1)y — U(1)y
In this stage, the neutral scalar component of the SU(2)r Higgs doublet acquires nonzero vev
and is expanded around the vev as follows:

(N L Vi .
¢R_(X,2)_f2(v,g+h,g+ix§ ’ 3.1)

where vy is the nonzero vev, /iy is the neutral CP-even state, and X; is the neutral CP-odd state.
The charged component is denoted as x3 = %(X L+ ix3). In addition, we rotate the gauge
fields with the following transformation:

B;L _ [cosfr  —sinfg B, (3.2)
Wé’u ~ \sinfg  cosog Zry)’ '

4/43

20z Jequiaydag Q| uo 1senb Aq 980¢€¢////z1Loeid/dard/e60L 0L /10p/a1o1e-aoueApe/dad/wod-dno-olwapede//:sdily woly papeojumoq



PTEP 2024, 093B02 T. Morozumi and A. H. Panuluh

where the mixing angle,

g

Ja+e

We also define the SM U(1)y gauge coupling as,

8R

Jat g

sinfp = cosOp = (3.3)

g = g\ cosbr = grsinbg. (3.4)
After this spontaneous symmetry breaking, the Lagrangian in Eq. (2.3) becomes
L, = ¢, iy" Dsmuq’y, + Triy" Dsm, Tt + Briy" Ds, Br
+ ubiy " Dsmy ity + diiy" Dsmydly + Triv" Dy, Tr

+ B_RZ.J/MDSMMBR — g—RulR)/Md;gWI;L —h.c.

V2

/ i i 2 w 1— N
+ gtanbr | g1y quL+§TLV TL—gBLV B | Zg,

— {2(;51;9 <u%y“ulR — dky“dk) — g tan g (g (MZR)/”‘MZR + TR)/MTR)
R

1 — o
3 (djl{)/ud;g + BR)/“BR>)} Zru

—TLM — TLMTTR — h.c.
V2

— /1
~- YT (ﬁui (hr +ix3) — d,%)@f) —h.c.
% VR

— gy;quLBR — B_LydREdR BLMBBR — h.C.

YuBLq3L(t5L Tr — Yu3R

i__

N 1 j . i —
— Bryg, (ﬁd}z (hr —ixz) + uRXR) —h.e, (3.5)

where i € {1, 2, 3} is the family index, and the SM covariant derivatives have the following ex-
pressions:

. . ¢ a . i
Devnd, = (3 +ten S W, + 1%, B, ) . ()
2.,
DSMV,fu = (E)u + §lgBM> fu’ (37)
|
DSMp.fd = (aﬂ — glgBM) fd, (38)

where f, € {u}, Tz} and f; € {d}, Br r}. At this stage, the U(1)y hypercharge can be ob-
tained as following Eq. (2.1), Y = I3 + Y. In Egs. (3.7) and (3.8), we write the U(1)y hyper-
charge of the corresponding fields explicitly. Next, we follow several steps to reach the La-
grangian invariant under SU(2)p, x U(1)y gauge symmetry.

« Step 1: Rotate d’ by the following transformation:

dp = (Va ) (dR), (3.9)
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where V7, 1s a 3 x 3 unitary matrix, which is related to Yukawa coupling parameterization
as shown in Eq. (A.3),

il
1 d ; d oy
SIn O sin gppe

Vap = | sin0% cos ple™in | Y = e% ¥, (3.10)
cos Ggeiajk
Vie= (e, eh eh). (3.11)

If we multiply Eq. (3.11) by the Hermitian conjugate of Eq. (3.10) from the left, it can
be shown that the terms in Eq. (3.5) which are proportional to the complex vector y7; are
replaced by a real positive number Yd3R multiplied with §3/. Then, we can extract the mass
terms from the Lagrangian as follows:

‘Cq D) Emass = _TL (YMRT% MT) TI; —h.c.

3
B (v = (%)
_ B, <YdRﬁ MB) ( o ) —he.. (3.12)
After doing transformation in Eq. (3.9), V;, appears as a CKM-like matrix in the right-
handed charged current term,

3
g i ij (77 \/
L, D Lrce = —7’% > ey (Va) (dg) Wy, —he. (3.13)
Equation (3.12) shows that the first and second families are decoupled from the Yukawa
coupling. This leads to the fact that we have the freedom to do another U(2) transformation
for the right-handed quark fields. This rotation should keep the third family unchanged.
Step 2: Rotate u', and (dy)’ by the following transformations:

i, j=1

ey =Y (U.)" (i) . (3.14)
j=1

N
(dR) =D (Wa)” (d;e>] : (3.15)
J=1

where U,, and W, are 3 x 3 unitary matrices and written in matrix form as follows:

0

Ue=| U, 0. (3.16)
0 0 1
0

Wie=| Wa 0], (3.17)
0 0 1

where U,, and W,, are 2 x 2 unitary matrices that rotate (uk, u%) and ((dy)', (d})?), respec-
tively. By applying the transformations in Egs. (3.14) and (3.15) to the charged current in
Eq. (3.13), we further define

Vap = Ul Va W, (3.18)
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As shown in Eq. (B.6), by choosing ﬁuR and WdR properly, the unphysical phases and angles
in V7, are removed and V7, has the following matrix form:

1 0 0
3
;dR =10 coseg stde + 1. (3.19)
P
0 —sinfde™™  cos@le™in

The details of the parameterization and the procedure for the removal of unphysical phases
and angles of V7, are shown in Appendix B.
Step 3: Rotate (iig)* and (a’ )* by the following transformations:

(ir)* = 24: (W)™ ()" (3.20)
B=1

()" =i(%) (d7)". (3.21)
p=1

wherea = {1, 2,3, 4}, (iig)* = Tr.and (dy)* = Bg. The4 x 4 unitary matrices Wz, and W,
are expressed as follows:

~ L 0,

W, = , 3.22
Tr <02 WTR> ( )

~ L 0

Wg, = , 3.23
BR (02 WBR> ( )

where I and 0, are the 2 x 2 identity matrix and zero matrix, respectively. The 2 x 2 sub-
matrices Wr, and Wj, rotate ((iig)’, (iir)*) and ((dy)?, (d)*), respectively, by the following
expressions:

4
(iir) = Z (Wr)V (itg)’ (3.24)
=3
N N
(d) = > )" (di) (3.25)
j=3
where i € {3, 4}. The explicit matrix forms of Wy, and Wp, are as follows:
Wy, = ( cgs 01, sin GTR) ’ (3.26)
—sinfr, cosfr,

0 in o
Wi, = ( D BR>, (3.27)
—smnfp, cosbp,

where the mixing angles have the following expressions:

3 Y3

My . Y, vr Mp . dx VR
cosOr, = , sinfr, = —%—, cosfp, = —, sinfp, = —L2—,
o my, o omy, V2 o myg, T mg, 2
2 y3 2,
Y3) 2 ( d ) VR
my, = \/% + M2, my, = RT + M. (3.28)

20z Jequiaydag Q| uo 1senb Aq 980¢€¢////z1Loeid/dard/e60L 0L /10p/a1o1e-aoueApe/dad/wod-dno-olwapede//:sdily woly papeojumoq



PTEP 2024, 093B02 T. Morozumi and A. H. Panuluh

By using Egs. (3.24) and (3.25), the mass terms in Eq. (3.12) transform into
T (~\4 o (g 4
£ Lo = —mi Ty ()" = ma,Br (dg) —he. (3.29)

The right-handed charged current in Eq. (3.13) becomes

4 A ~
Ly D Lrce = _g_Rz 3 (@) v (R (d;g) Wi, —he., (3.30)
o,p=1
where
3 i S .
(VM) = 37 (W') (Ta)” (W)« pefl,2.3,4) (3.31)

i,j=1

is a 4 x 4 “intermediate” right-handed CKM-like matrix. We call this matrix intermediate
because it is not the final expression of the right-handed CKM-like matrix. The explicit
matrix form of V$¥M is shown in Eq. (D.1).

In addition, we define the right-handed weak isospin current in Eq. (3.5) as

e = byl — diytdy. (3.32)

Following steps 1-3, Eq. (3.32) transforms into

2 ; 4

Z + 3 (@) v (Zr ™ (i)

i=1 k=3

i( W (@) - X @) et @ e
i=1 Jik=3

where the tree-level FCNC couplings are generated with the following definitions:
Zr* = (W, ) Wy, (3.34)

(Zg,)* = (WT) (W)~ (3.35)

with j, k € {3, 4}. Furthermore, Egs. (3.34) and (3.35) can be expressed explicitly in 2 x 2
matrix form as follows:

2 .
0 0 0
Zr = . cos” Or, sin .Tchos Tr ’ (3.36)
sin O, cos O, sin” O,
2 .
0 0 0
Zn = . cos” O, sin IBchos B ) (3.37)
sinfp, cosbp, sin” Op,

These tree-level FCNC couplings are generated due to mixing between the third flavor of
up and down quarks and their corresponding isosinglet right-handed VLQs.
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After following steps 1-3, the Lagrangian in Eq. (3.5) becomes
L, = ¢}iy" Dsmuq), + Triy" Dswi To + Briy" Dsmy Br

+ WW“DSMM (uR) (a’”) iy" Dsmy (617”)0[
B % 24: (ARG (J/’) Wi —he

2 u 1— u
gTLV TL_gBLV By | Zry

i {25)29 (1) - & tanoy (%WV“ CARS AR (d;gy)}zm

4
(Z UZN) 41 uR —my, Tp (E/R)4 —h.c.

+ ¢ tan Oy (gy“quiL +

W

j=3

4
j ~\B
@) (@) | (e +ixd) = V2 [ 30 (™M) (dg)” | it | = b,
p=2

mu4

NE

TL

I\
W

J

— qudL¢L ( (Wgy) 4] d”) —my, By <d~}é)4 —h.c.

J=

4

| y
- 2B, ( Zs¥ ()" | (= ix@) + V2 3 (V™) @)" | i | e
J=

p=2

(3.38)

where i = {1, 2,3}, & = {1, 2, 3, 4}, and the definitions of Wr,, Wg,, my,, mqa,, VM, Zr,, and
Zp, are written in Egs. (3.26), (3.27), (3.28), (D.1), (3.36), and (3.37), respectively. One can show
that the Lagrangian in Eq. (3.38) is invariant under SU(2); x U(1)y gauge symmetry.

3.2. SUQ2), xU)y - UQ),,,
In this stage, the neutral scalar component of the SU(2);. Higgs doublet acquires nonzero vev
and is expanded around vev’s as follows:

o= ()2 L V2 (3.39)
XB ﬁ VL + /’l L + in
where v; is the nonzero vev, /; is the neutral CP-even state, and xi 1s the neutral CP-odd state.

The charged component, x;” = x%( x. + ix}). In addition, we rotate the gauge fields with the
following transformation:

B, \ ([costy —sinbOy) (A, (3.40)
Wfﬂ ~ \sin6y  cosOy Zi.)’ .
where the mixing angles are defined as
cosby = Al sinfy = g (3.41)

Je e Je+e
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We also define the electromagnetic U(1)., gauge coupling as
e =g cosOy =gy sinfy.
After this breaking, the Lagrangian in Eq. (3.38) becomes

'Cq = EiVMDemuui + TLiVMDemu 1y + @iVMDemudi + B_LiVMDemMBL

) D (00)”+ (7)o" s ()" = Sy =
20089 j3L —etan Oy (]em)) Ziy
&R T CKM\*B ( 51 +
- = (uR) PR (dg) Wi, —he.
P (&) W

j=3
[ ,
0 | st (S 0 @) ) (s i)~ 3 Y 09
J=3 j=3

j=3 p=2

" V_L_zL 24: (Wy,)Y (j}é)j —my,Br (dN}é)‘l —h.c.

(3.42)

4
_ M (Z(ZTR)‘”(MR)J‘ (hr+ ixz) — V2| 3 (rEMm)¥ (J;;)’g Xt | —he.

3
. 4 N _ [ 4
s Z (Wp)Y (d}é) (hr + ixi) +ul Z (Wg )Y (d”) x; | —hec.

j=3 j=3

Vv
R =3 p=2

where the covariant derivatives are
/ 2 . /
Demp fy =\ 0p + §leAM Jus
/ 1 . )
Dempfy= 10, — gzeA,L S
The left-handed weak isospin current and electromagnetic current are
Jar = upy'uy —djytd,
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o = % (EV“M"L + Ty Ty + (i) " (f/R)a)
_ % (d_iy“di + By B + (ci;g)a h (J;g)“) , (3.47)

where f; € {ul, ()%, T}, £ € {di. (), Bu), i€ (1,2,3), @ € (1,2,3,4), and the right-
handed weak isospin current 4, is written in Eq. (3.33). Our main goal is to obtain the mass
eigenvalues of the top and bottom quarks and their heavy partners. The following steps outline
our approach (the number of counting steps continues from the previous subsection).

« Step 4: Rotate d! by the following transformation:
di = (Va)" (dy)’ (3.48)

where V7, 1s a 3 x 3 unitary matrix, associated with the parameterization of Yukawa cou-
plings as demonstrated in Eq. (A.3),

il
1 d o d oy
sin @y singje

. o2
va, = | sin6? cospde™s | Y] =] Y, (3.49)
i3
cos O '
Va, = (f, ¢, ¢f,). (3.50)

If we multiply Eq. (3.49) by the Hermitian conjugate of Eq. (3.50) from the left, it can be
shown that the terms in Eq. (3.43) that are proportional to the complex vector y,, are re-
placed by the product of a real positive number Yd3L and 8/3. The mass terms can be extracted
from the Lagrangian and written as follows:

. - Y3 L w. 43 Y3 L W 44 ~ \3
£y5 Loas =~ (] T) ( “Lﬁé A fzm( w7 (@)} g
uy

- B_L> (Yi%E)WBR)43 Yi%ngVBR)44> E};: — h.c..
R

4

N

(3.51)

Additionally, an important outcome of the transformation in Eq. (3.48) is that V,;, appears
as a CKM-like matrix in the left-handed charged current term,

3

L, Lice = _% >yt Va) (dy) Wi, — hee.. (3.52)
From Eq. (3.51), we have freedom to apply another U(2) transformation to the left-handed
quark fields while keeping the third family unchanged.

« Step 5: Rotate ) and (d} )’ by the following transformations:

i,j=1

3 - .
up =Y (Un,)” (i) (3.53)
j=1

R RN
() =" ()" (4,) . (3.54)
j=1

11/43

20z Jequiaydag Q| uo 1senb Aq 980¢€¢////z1Loeid/dard/e60L 0L /10p/a1o1e-aoueApe/dad/wod-dno-olwapede//:sdily woly papeojumoq



PTEP 2024, 093B02 T. Morozumi and A. H. Panuluh

where (7uL and WdL are 3 x 3 unitary matrices and written in the matrix form as follows:

0

U,=| v, of. (3.55)
0 0 1
0

W, =\|w, ol. (3.56)
0 0 1

where U,, and W, are 2 x 2 unitary matrices which rotate (u, u7) and ((d})!, (d})?), re-
spectively. By applying the transformations in Egs. (3.53) and (3.54) to the charged current
in Eq. (3.52), we further define

Va, = U}, Va, Wa. (3.57)

By properly choosing lNJuL and de the unphysical phases and angles in V;, are eliminated,
resulting in %L, which has the same matrix form as Eq. (3.19), with the R index replaced
by L.

Step 6: Rotate (iiz)", (i), (dl)“, and (ci}é)"‘ into the mass basis by the following transfor-

mations:
4

(@) =y (Kr,)"” ()’ (3.58)
p=1
LN B
(@) = (Kn)™ ()" (3.59)
=1
~ \ & 4 ~ B
(4)" =" (Re)" (ap)". (3.60)
=1
~\ ¥ 4 ~ B
(dr) =" (&)™ (@R)" (3.61)
=1
wherea € {1, 2, 3,4}, (iir)* = Ty,and (d})* = Br. The4 x 4 unitary matrices ETL,ETR,EBL,
and I?BR are expressed as follows:
= b 0,
Ky, = (02 Kn) : (3.62)
= L 0,
Kr, = (02 c.) (3.63)
~ (b 0
Ks, = (02 % ) (3.64)
= b 0,
Kp, = (02 %) (3.65)

where I, and 0, are the 2 x 2 identity matrix and zero matrix, respectively. The 2 x 2 unitary
submatrices Kr,, Kr,, Kp,, and K, rotate ((iir)*, (ii)*), (i), (i1)"), ((d} ), (d))*), and
((ci}é)3, (ci}é)“) pairs, respectively, where the explicit forms are written in Egs. (C.19), (C.20),
(C.24), and (C.29).
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We denote the top and bottom quarks as the third component of the fields in the mass basis,
while the heavy top and bottom quarks are the fourth component. We can diagonalize the
mass matrices in Eq. (3.51), which are defined as

Y3 VL W- 43 Y3 VL W- 44
M, = ( uLf( TR) uLf( TR) )’ (366)
0 my,
3 v 43 3 v 44
M, = (YM(WBR) Yo, 5 (Whe) ) (3.67)
0 md4
by using the appropriate submatrices in Egs. (3.58)—(3.61), resulting in:
K} ViKp, = (m;“ag) — diag (m;, my), (3.68)
K}, M,Kp, = (mg'ag) — diag (my, my) . (3.69)

From this diagonalization process, we obtain

\/MT(B) + (Mu@ye = Mucay,)? \/MT(B) + (Muay, + Muay,)?

= 3.70

My (p) 7 7 . (3.70)
\/MT(B) + (m“(d)R mu(d)L \/MT(B) + (mu(d)R + mu(d)L)

myw) = 3 3 ) (3.71)

where m;;) and my @y are the exact mass eigenvalues for the top(bottom) and heavy
top(bottom), respectively. The definitions of m,,, , m,,,,, m,, , and m,, are shown in Egs. (C.16)
and (C.23). The diagonalization procedure is explained in Appendix C. The mass eigenval-
ues for 7 and ¢ in Eqgs. (3.70) and (3.71) agree with Eq. (10) of Ref. [31].

Moreover, the left-handed and right-handed charged currents in Egs. (3.52) and (3.30) now
become

Ly D Lec = Lice + Lrec

4
8L CKM\%B [ 1m n
=22 3 () Tyt (Ve (@) Wi, — he.
ﬁa,ﬁ:l = L
4 ——
= SN )y M) (@) W, - e, (3.72)
ﬁa,ﬂ:l
where
CKM\2B ’ ~i \Y o~ Nij = (B
(VL ) _Z<KTL> (VdL) (KBL) ’ (3.73)
i, j=1
4
(VCKM) _ Z ([?;,J P (VRCKM)PU (I’ZBR)WS (3.74)
p.n=1

are the left-handed and right-handed CKM-like matrices, respectively. The matrix forms
are shown in Egs. (D.3) and (D.5), respectively. However, there are some unphysical phases
which can be eliminated from the left-handed and right-handed CKM-like matrices. We
have the freedom to rephase the quark fields with the following transformations:

(“Zm)a = (euum)a 5f <ﬁan(R))ﬁ ’ (3.75)
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o o R B
( T(R)) = (Q(IL(R)) 80('6( Z}R)) J (3.76)
where
Oup iy = diag(e e | oPnwe | s ous), (3.77)
edL(R) _ diag(eiedL(R)l ’ eie”L(R)Z’ €i9d3, eit944). (378)

After rephasing the quark fields, the left-handed and right-handed CKM-like matrices be-
come the final versions denoted as 1>LCKM and lA)IgKM, whose matrix forms are as follows:

1 0 0 0
sokm | 0 Coy Sog Co, —Sod ¢,
Vit = 0 (3.79)
_C¢TLs9‘L’ Cor, CBZC%’L —Cor, CGZS(Z’BL
0 S‘PTLSQZ —Sor, CO‘Z Cop, Sor, COZS¢BL
1 0 0 0
0 _ is is
PCKM _ Coy SodCPsr€ SodSBp, € 3.80
R 710 c¢p spue Cp, CpaCp, €0 —cg cpasp, €|’ (3.80)
Brg >0 Brr €08 C By Brg ©04°Bay
i3 i8 is
0 —Sp,S90€'2 =Sy, CoaCpp,€°  Spr, CouSps,€
where
Cor =cosO%,  s,0=sinb9, ¢y =cosér
04 L oy L o1, L
S¢r, =SINPr,, Cyy =COSPp,, Sg, =SINPp,,
_ d — «inpd _
Coa = COSOR,  Spgg = sSiNbp, cp, = COSPry,
Spr, =S PBr,, g, = COSPp,, Sp, = SIN Pp,,
3 3
ﬂTR - QTR - ¢TR? ﬁBR - 93R - ¢BR’ 8 == adR - adL' (3'81)

The number of the CP-violating phase in this model is one. This agrees with the result in Ref.
[18] for the N = 1 case. The details of the rephasing process are explained in Appendix D.
In addition, the final expressions of the left-handed FCNC couplings, which appear in the
left-handed weak isospin current in Eq. (3.46), are defined as follows:

y i3 ,
(Z7,)7 = (K;L) (K7,) | (3.82)
. i3 .
(25,)" = (K},) " (Kn)". (3.83)
where i, j € {3, 4}. These have explicit matrix form as follows:
2 _ .
2z = .cos o1, s1n¢€L cos @1, ’ (3.84)
— sin ¢7, cos P, sin” ¢,
2 o
25, = < .cos 0 sin .¢1§L cos ¢BL> ‘ (3.85)
— sin¢p, COS P, sin” ¢p,

Similarly, for the right-handed weak isospin current from Eq. (3.33), the intermediate right-
handed FCNC couplings transform into their final expressions as
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4

(zn) = 3 (K},)" @n) k) (3.86)
kl 3

@)= Y (K),)" @ ), (3.87)
k=3

where i, j € {3, 4}. These can be expressed in matrix form as follows:

2 o
2 = 'cos BT, Sm,'BZR cos B, ’ (3.88)
— sin B, cos Bry, sin” Bry,
cos’ — sin Bg, cos
Ze.=| . P Py 08 Pre | (3.89)
— sin Bp, €OS Bp, sin” Bp,

with ﬂTR = GTR — ¢TR and ,BBR = QBR — ¢BR‘

Finally, we obtain the expression of the Lagrangian for the quark and Yukawa interaction
after following all steps as follows:

4 4
Lq= ) (@) iy" Deny (@) + Y (d™)iy" Dermyu(d")*
a=l1 a=1
gL . A\ CKM ap 7m B +
- = > @)y (VM) (dr) Wi, + e,

o, =1

~ (et () - etanon () 21,

2cos by
4 o
- S @y () ") Wi, +he.
o, =1

et (1) - o (0 - 5 ()| 2
-3 o) @ a5 )

~

quzw@wwwﬁ@fﬁﬁwwwrwﬁnﬂﬁ

(3.90)
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4

1 ki ; i ;
b2 () ) ) - (miezn ) ) (@)

v
Loy i=3

(ZBL dlﬁ%)” (Jgi)k ( ;’;) n <m;jiag ZBL>ki (cig)k (Jg’)j ix3

-1 Z (= znomezs)” @) @) + (2omi - 200)" @) @)

kl 3
+ ((1 _ ZBL)mSiangR)ki (ai’L")k (ci,’é’)i + (Zpmie 1 - ZBL))M (ai;;f)k (Jg)’) I
- W ((1 - ZTL)m?iagf)z(e:KMya <a?}?)a) xXn + h.c}
e 3 (0 2oz () (3) = (2ot = 20) (i) ()

(1= zrym ez ) @ @y + (Zem e = 2)) @) @) i
( n)m, Zr ) (@) (@R) + (Znam; ™ ( n)) (@) (@7) ) ixz:

where we define & = @7 + i and d” = d" + d. As mentioned before, the top and bottom
quarks are the third component of the fields in the mass basis, while the heavy partners are the
fourth component,

3 4 . 3 .
(”’ZI(R)) = 1LR), (”T(R)) = 11> (dLm(R)> = br(Rr) (dLm(R)) = by (3.91)
The left-handed, right-handed weak isospin, and electromagnetic current in Eq. (3.90) now
have the following final expressions:

2 . 4
3L Z (@y)'y" (ar) + Z (i ) “(Zg,) (”L)
i=1 1,j=3

- 22: (CZL’")iV" (Jﬁ’)i -y @y“ (Z5,)" (ciz”)j, (3.92)

i=1 1,j=3

F =3 () 'y () + Z )y (Zp) (i)

i=1 1,j=3

- Z@V” (d) + 24: (dg) v a0 (d) . (3.93)
i=1

1,j=3

NS}

4 4

1 2 (me NI 1 e Tmya

T =3 D@y @ = 3 3 dmyeyt ), (3.94)
a=I a=1

where the definitions and matrix forms of the FCNC couplings are shown in Egs. (3.82)—(3.89).
It should be noted that the Lagrangian, written in Eq. (3.90), can be expressed in the mass
eigenstate of the Higgs and Z-bosons. We will discuss this in Section 4.
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4. Higgs sector

In this section, we derive the kinetic terms and potential of the Higgs, which are contained in
Eq. (2.4). In the same way as in Section 3, we derive these step by step from the SU(2)r x U(1)y
breaking into U(1)y and finally SU(2). x U(1)y breaking into U(1)ep,.

4.1. SUQR)r x U(1)y — U(l)y

This stage occurs after the SU(2)r Higgs doublet acquires nonzero vev and takes the param-
eterization in Eq. (3.1). In addition, there is a mixing between B), and Wgﬂ into B, and Zg,
following the transformation shown in Eq. (3.2). We will analyze the kinetic terms and poten-
tial separately. Furthermore, we classify the terms based on the number of fields in the term as
linear, quadratic, cubic, and quartic. The gauge fields inside the covariant derivatives are not
counted as fields.

4.1.1.  Kinetic terms. The kinetic terms in Eq. (2.4) become
Lit > Lun = (Dlyr) (Dswudr) = ig Yo tan0xZ, | (Dsudr)' o1 — ¢}, (Do) |

g/2 Y¢2 tan2 QRZ§ZRM¢Z¢L + (DISI'MXg) (DSM/LX;)

+ igR2VR " (Dsmuxz) — Wi (Dsmuxz) )
82 1 > 1 gRVR :
R VR W ”’WEM (aﬂhR) + E <8MX13Q — 3 cos GRZRu>

- % A0V D) + W (D)

ng

&R
+ 17 {

ch0529R "
2 cos Og

N gxVR ((€0s20g — 1
4 Ccos g

W (Dswuxg) — Wr" (Dssux) ) e + 22X ha W " Wi,

Xk (Dsmuxg) — xx (Dsmux)}

) (W MXR + WR_;LXI_QF) ZZ

5 (W uXr Tt WRMXR) 0" xR — 17 (W W XR WEMX}?) 3 hg

&R
2cosOgr {X}e (0%hz) - (8“)(]3-(,) hR} Zrut (

n g%e (cos26g) — 1
4 cosbg

&R
2cosOgr

2
> VRhRZZZRM

(Wi = et ) i+ (Wioxe + Wit ) e} Zi

L1
4 \2cos?6p

LG

2

_ 2
ZraZiy + W WRM) ()" + 1)

cos? 20z M

where

Dsmuér = (8 + lgLWLM > +ig 'Yy B >¢L, 4.2)
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DSMMX; = (811« =+ ig/Bu)X;, (43)

are the definition of the SM covariant derivatives for ¢, and x{, respectively.

4.1.2.  Higgs potential. The Higgs potential which is written in Eq. (2.6) now becomes

2
V($r. ¢r) = (1] + ALrvy) ¢£¢L + AL <¢Z¢L)

+ 2ALRVR (¢2¢L> hr +2ALR (¢TL¢L) (XRX; + % (h2 + (XR)2>)

2
A
MRV% +

+ TR + hg (MRVR + ?»RVR)

2
h%z 2 2 2 2 N
+ 5 (g +3%rve) + (W& + Arvi) | Xg xR + 5 (xz)
_ 1 2
+ 2vrARhR (XR Xx + 3 (h% + (xz) ))
1 NS
+ AR (X;EX}Q +3 (hfg + (x2) )) : (4.4)
42. SUQR)L, x U1)y — Ud)en
This stage occurs after the SU(2);. Higgs doublet acquires nonzero vev and takes the parame-

terization that is written in Eq. (3.39). As happens in the SM, there is a mixing between B,, and
WEM into 4, and Z;,, following the transformation shown in Eq. (3.40).

4.2.1.  Kinetic terms. At this stage, one can show that the first line of Eq. (4.1) has a similar
result, with SU(2)r x U(1)y breaking by replacing R — L, 6g — 6y, and Dsyy — Dep. After
computing all terms, the kinetic terms of the Higgs in Eq. (4.1) become

L D Liin = (DleLmXL_) (DemuXL) (DemXR) (DemuX;zL)

+1 ngL {W_H}' (Dem/LXZ) — WL_M (DemMXL)} g2L4L W_MWZ;L
gRVR {W+“( emuXﬁ) _ WR—M (DemuXR)} g%z RW ”W+

4
1

-ng *tan? OrZh Zr,

2
gLVL
2cos O

1
+ Eg/ tan QRZR/,L {—VL (auXL)

8L

- 7)(2 {WLJFM (DCmMXL_) + WL_M (DemuXZ)}
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= SR " (Demax) + Wi (D))
S (Damar) Wi (D)) e+ S

iR
2

I (Do) = W (Demx) Vo S5 bW Wi,

g1 cos20 _ _
TL cosQV:/V {(XF DPemuxr) = xz (Pempxi)} 27

grcos20p

2 cosbn {X; (DemuXE) — Xr (Demp.XI—gi_)}Zﬁé

N v (cos20y — 1
4 cos Oy

n g%{vR cos20r — 1
4 cosBg

) (Wior + Wi ) 2t

) (WRZXE + WEMXE) zh

8L — _ 3 .8L _ _
+ 5 (WLJ;)(L + WLM)(Z“> " x; — i~ (WLJ;XL — WLM)(Z“> *hy

&R - _ 3 .&R _ _
+ > (W,}LXR + WRMX;) 3 xp — i~ <W1;—/LXR — WR;J]Q) 0 hg

2
B (0uhe) — () ) 2+ (—) vihi 7071,

2cos Oy

&gR
2 cosfr

2
{x3 (3.hR) — (8. x3) hr} Zh + ( 3 eos 9R> VRhRZ R Z Ry
— ietanQW {X; (Dem;LX];) - X]; (DemMX]—{’—)} ZZ
1
- iig/ tan Og {XZ_ (DemuXL_) - Xr (DemuXZ_)} Zﬁ
8L

&R - - - -
_ TvRetaHGW (W;LXR + WRMX;) zZ; — 7ng’ tan Og (WLJ;XL + WLM)(Z”) Zy

1
+ g’ztanQR {@uhr) xi — (8ux}) he} Z

1 gL P
+ gji tan HRCOS o thLZRp,ZlZ +vrg Z tan eRhLZRMZ%
g2 (cos26y — 1) B B . - -
+= 4 cos Oy {(WLJ;XL - WLMXZF> X+ (WL—LXL + WLMX;) hL} zy

n g%((cos2t9R -1 {(

— - 3 - _
4 cos by WiiXx = WR;JI?) IXr + (WJ;LXR + WR,LXIJ{) hR} VA

.8R - - EL - -
- zietanewxi, (WIQLXR - WRMX;{) zy — X tan Ogx; (WELXL — WLMXZ) Zh

8R - - 8L - -
— etanowhe (Wi, xi + Wi ) 21 — 56 tanowhs (Wixi + Wit ) Zy
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# 5L () () +07) + 5 () () +13)

82 g2

2L W+MW MXL XL 2R W+MW ,,LXR XR

g cos? 20y B g% cos> 20y B
PR R A S P R L

_ g’ _
+ €2 tan2 QWX]-’Q_XR ZL,HZZ + Z tan2 GRXL XZ_ZRMleé

20 0s 26
— g2—Retan9W 08 R (2X1JQFX§) Zi Ly — %g’t 9R Y
R

82L 1 i 3\2 2 g%z 1 1 332 2
+ 4 2cos2 Oy ZinZy ((XL) +hL> 4 2cos?0g Tcos? o 2R LR ((XR) + hR)

2
+ iz tan 0xZ, Zi ((13)" + 1) (4.5)

XL XZZLMZR

where

DemuXZr(R) = (0, + ieAM)XZ’(R). (4.6)

4.2.2.  Higgs potential. At this stage, the Higgs potential in Eq. (4.4) becomes

I AL AR ALR
VA(¢L. ¢r) = 2L %+7 RtV Vi + = 2 Vi Tv%v%

+ hp (w7ve + Arvy + ALrvRve) + hr (LRVR + ARVE + ALRVRV])
hi M ( 2 2
+ hp 2ALrVRVL) hR + —L (17 +3apv] + Arpvy) + 7R (1% + 3ArVE + ALrVI)

+ (/LL+)»LVL+)»LRVR (XLXL )2>

+ (MR+)»RVR+)»LRVL (X )2>
_ 2 _ 1 2

+ 2vp {)\L (XL XZ— + 5 <h2 + ( 3) )) + ALR (XR X;Q_ + 5 (hﬁz + (X]se) ))}hL
_ 1 2 _ 1 2

+ 2vg {kR <XR XK+ 3 (h% + (xz) >) +ALr (XL X+ (th +(x2) ))}hR

v L 3\2 ? e L 32 ’
+ AL XLXL+§<hL+(XL)> + AR XRXR+§<hR+(XR)>

1
+ 2Ah1R (xfo + % (hi + (x2)2>> (xRx; +3 (hﬁ + (x§)2)> , 4.7)

where p7 and p% are negative. The minimization conditions of the potential are

vr (U7 + AV + Arrvy) = 0, (4.8)
VR (,bbé + ARV% + )\LRvi) =0. 4.9)
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We can obtain the expressions of the nonzero vevs as follows:

2 2 2 2

—U5AR + A —UpAr + A

VL = MLk LzRuR and vp = HRAL LzR'uL, (4.10)
ARML — A2 p ARML — A p

where the vevs are taken to be positive. One can show that the linear terms of the Higgs fields
and quadratic terms of xLi( » and x z( ) Will vanish by using Egs. (4.8) and (4.9).

4.3. Boson mass
We collect the quadratic terms from the kinetic terms in Eq. (4.5) and Higgs potential in
Eq. (4.7) below:

Ly D Equad = (ngXL_) (DemuXZ_) + (ngX]g) (DemMX;)

BLVL (1 +u — —u + ELVL s+

+1 B {WL (DemuXL) -w (DemuXL)} + TWL WL;}_
2

0 (D) — Wi (Do)} + SR,

l (g1 v ’ 1 gR VR ’ g ?
~ (& 7' Z 4+~ 18R & ytanog) Y Ziz
* (2 cos9W> 12t T3\ 2 coseg ) T\ 2 ANOR) [ ZRE R

2
v v 1 2 1 2
+ TL tan 0 2- - Z{ Zry+ 5 (8uxz)” + 5 (9uxz)

2 cosOy 2 2
1 grve 3 1 grvr 3 gvr 3
- = Zr,. (0" - = Zr, (0" — Z—=tanOrZg, (0"
2 cos Oy LM( XL) 2 cosOx RM( XR) 3 anog RM( XL)
1 1
+ 5 (auhL)z +3 (8MhR)2
2 2
LN SR
— hL (ZALRVRVL)/’lR — 7 (2)¥LVL) — 7 (ZA,RVR) . (411)
From Eq. (4.11), we obtain the W, and Wk mass,
My, = %vb 4.12)
My, = %VR. (4.13)

Since there is mixing between Z; and Zy as well as /; and &g, then we need to diagonalize
the mass matrices to obtain the mass eigenstate for the Z-bosons and the Higgs bosons. In line
with that, the Nambu-Goldstone bosons x; and x3 also mix.

4.3.1. Z- and Z'-boson mass. We define the following transformation from the Z; and Zy
basis into the mass eigenstates:

Ziw\ [ cos®  sin0) (Z, (4.14)
Zry)  \—sing coso)\Z, ) '

From Eq. (4.11), the mass matrix in the Z; and Zg basis is as follows:

2
grLve 1 8LvL
(2005914/) ngL ta'neRZcosGW

2
1 gLvL gRVR 1 2
ZgJVL tan QRZCOSQW (ZCOSBR) + (ZgJVL tan QR)
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The mass matrix 1% can be diagonalized,
OLV5,0, = diag (M7, M2,), (4.16)

where O is the mixing matrix in Eq. (4.14). The exact mass eigenvalues and mixing angles are
as follows:

2
M, M? 2M3, (A — 52,53 M3
2 4 2 2 4 Wi W®°R 2 2\2 W,
M= S N i) = 1T () G () 1
R R

2
M3, M3, M3, (% — s3,53 , [ M3,
ML =—2 31+ (ch+1y)—5-+ |1- (R WR)+(c§+t§V) A RE
2¢% M3, M3, 2

3.0V

2cRsRsW—§ T

tan 20 = , 0<0=<—, (4.19)
5%, — 5% (5%, cos 20 + ch%) 4

= Nlp. S

where
Cr = COSOg, Sgp=sSIN0g, cw =cosby, sw =sinby, ty =tanbOy . (4.20)

When My, > My, , the masses of the Z- and Z’-bosons are approximately given as follows:

M2 M?
M2 ~ 1 — gy 421
7z C%r ( Alwk R w ( )

M? M?
M2~ " Wi 242 4.22
z 2 ( + M2 Skt (4.22)

4.3.2.  Higgs boson mass. We define the following transformation from the /; and A basis

into the mass eigenstate:
hy _ co§¢ sin ¢ h ‘ (4.23)
hg —sin¢g cos¢ ) \H

The mass matrix of the Higgs in the /; and /Ay basis is as follows:

2XLV2 2ALRVRVL

M2 = L : 4.24
h <2ALRVRVL 2ARV% ( )

By defining the mixing matrix in Eq. (4.23) as O,, we can diagonalize M, as
O M;0, = diag (m}, my;) (4.25)

which gives the exact mass eigenvalues,

m% = )\Lvi + XRV% - \/(ALV% - XRVR) + 4ALRVLVR, (4.26)
mH_ALvL+ARvR+\/ALvL—ARvR) +4ALRvaR (4.27)
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In addition, the mixing angle in Eq. (4.23) is given by

Z)LLRVRVL

tan 2¢ = L 0<|¢| < %. (4.28)

)LR V%{ — )‘LVL
Furthermore, the mass eigenvalues and mixing angle can be expressed in the following approx-
imation forms:

)“2
m ~ 21 (1 - ALLARR) Vi, (4.29)
my > 2ARV5, .
2 ~2Apva (4.30)
2
tan 2¢ ~ ML{R:—IL{, 4.31)

if we ignore the correction of O (v3 /v%).

4.4. x; and 3 mixing
From Eq. (4.11), we extract the following form:

1 2 1 > 1 gy
Lama 3 Ly = 2 (Ouxz) + 2 (3uxr)” = Ecog GLW Z1, (0" x7)
1 grvr gy
~ 3 os gy 2 (0 ) = =57 tan O0rZiny (9" 1) (4.32)

By changing into the mass eigenstate using Eq. (4.14) and writing in terms of the diagonal mass
eigenvalues (M7, M), Eq. (4.32) can be written as

! ] ,
Lguad D Ly = 5(3MXZ)2 + 5(3;0(2')2 — Mz (0" x2)Z,, — Mz (0" x2)Z,, (4.33)
where
3 .
()(%) _ < cosa s1na) (Xz) ’ 434)
X —sine  cosa ] \ xz
M 0
cosa = z08 (4.35)

M?Z cos? 6 + M2, sin’ @

) My sin 6
sina = z 3 . (4.36)
\/M% cos? 6 4+ M2, sin* 6
Therefore, the quadratic terms in Eq. (4.11) are written in terms of the mass basis of the
Z-bosons, Higgs bosons, and Nambu—Goldstone bosons,

LD Lows = (Dlwxi = Mw, W) (Dt + iM, W)

+ (ngXE - iMWR Wll;_) (DemuXI—gi_ + iMWR WI;;L)

1 1
+t3 (uxz — MzZ,)" + 3 (Ouxz — M2 Z,)"

1 2 1 1 > 1
+ 5 (0uh)" — zm,%hz +5 (0.H) - Emi,fﬁ, (4.37)

where the covariant derivatives of x; and x are in Eq. (4.6). We have shown explicitly that x;
and x 3 are mixed in this model. From Eq. (4.37), it is shown clearly that the degrees of freedom
xz and x become the longitudinal components of the massive Z- and Z’-bosons, respectively.
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5. Kinetic terms of gauge fields

In this section we derive the kinetic terms of the gauge fields starting from the Lagrangian in
Eq. (2.5).

5.1. SUR)g x U(l)y > U(l)y
At this stage, the kinetic terms of the gauge fields change from the B), and Wk, basis into the
B, and Zg,, basis. Following transformation in Eq. (3.2), the Lagrangian in Eq. (2.5) becomes

1 1 1
‘Cgauge = _ZFIfleFIfWU - ZBMVBW - 5 (au W}?L — 0y Wé;) (SMWR_U - aVVVR_M)
— 1 (0u W, — 0.WE,) (grCosOrZy + ¢ BY) W™
+ i ("W — 8" Wr") (grcosOrZr, + & B)) Wi,
— {(gR COSOrZrs + & B.) Wi, (grcos OxZ + ¢ BY) Wy "
— (grcosOrZR, + &Bu) Wi, (grcosOrZy + ¢ B) W'}

I
= D FS W, Wi (grcos OrFSM + ¢ B

4 ZRuv
1 - - — K v
58 (Wr Wil = Wi W) (W "W). (5.1)
where
B, = 8,B, — 8,B,, (5.2)
Ff, = W0, — W}, — gre™ wp, Wy, (5.3)
FZOR/J.V = alLZRv - aVZRpL' (54)

5.2. SUR)L x U)y - U).
At this stage, there is a mixing between B, and qu into 4,, and Z;, following the transforma-
tion shown in Eq. (3.40). In addition, we also express in the diagonal basis of Z and Z’ where
the transformation is shown in Eq. (4.14). So the Lagrangian in Eq. (5.1) becomes
1 0 Opv 1 0 Opv 1 v
Lgauge = _ZFZ;M)FZ - ZFZ’,uuFZ’ - ZFIWFM

1 —v vy
-3 (DW= D) (DW= D' W)

I .
-3 (DW= D, ) (D Wit =D W ")
+ ‘% (v Wt -wh = - wi))
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2
2

+i {gL cos Oy cos HFZO’” + g7 cos Oy sin GFZO,’” + eF’”} (WL’M WLJ;)

+ S (g R Wi = (Wi W)Y

+ i{—(gR cosfgsinf + e tan Oy cos G)FZO’”

+ (gr cos B cosd — etan by sin O)FY" + eF | (W, W), (5.5)
where
), =0Z, —0,Z,,
FZO/;w = auZ; - BUZ;L,
Fu = 8,4, — 8, A4,,
D, W4 = (DemuWg,) —i(etanby Zy,, — grcos OrZr,) W,
D W = (Demu Wy, + igr cos Oy Z, W,

Dermy Gy = (0, + ied,) G, (5.6)
with G, € (W

+
Rv>’ WLv}‘

6. Discussion

6.1.  Hierarchy of VLQ’s mass parameters, vy, and v

In this subsection, we discuss the hierarchy of VLQ’s mass parameters, v;, and vg. From
Egs. (3.70) and (3.71), we have the exact mass eigenvalues of the top and bottom quarks, as
well as the heavy top and bottom quarks, respectively. One of the motivations for the universal
seesaw model in the quark sector is to explain the mass hierarchy of quarks, particularly the
third family quark mass hierarchy in our model. Therefore, the hierarchy of VLQ’s mass pa-
rameters My, Mg, vy, and vg is essential to be studied. We give the analytical and numerical
analysis.

6.1.1.  Analytical analysis. The top quark exact mass eigenvalue in Eq. (3.70) can be written

as follows:
\/M% +ml +m2 + 2my,my, \/M% +ml +m2 — 2my,my,
m, = -
! 2 2
m
~ + muL. (61)
Mz + mik

From the first line to the second line of Eq. (6.1), we use m,, < m,,. We can express the second
line of Eq. (6.1) in terms of Yukawa couplings using Eq. (C.16) as follows:

Y R 3
v 2%
my ~ V2 w 'k (6.2)
) <YM3R)2V%2 \/E
My +—5—
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If we assume YM3L = YM3R =~ (1) and the factor inside the parenthesis is O(1), we can obtain
the top quark mass m, >~ v;. Thisimplies My < vg. In order to determine the hierarchy between
M7t and vg for the large top quark mass, from Eq. (6.2) one can obtain the ratio M7 /vy as
follows:

M T Yu?’L Yu3R 1 1

TN ) ¢

where y?M is the SM Yukawa coupling of the top quark and ¥;} > y?M. If we further require
that the Yukawa couplings are in the perturbative region, y? < ¥,> | ¥ <1, the upper and
lower limits of the ratio My /vg are given by

0< Mr < L L — (6.4)
R V2Y (M)
If we take y™ = 0.9912, we obtain the upper limit of the ratio Mr/vg < 0.0944. This shows
how the seesaw mechanism accommodates the top quark mass and the hierarchy between My
and vg.
Similarly for the bottom sector, by using m,, < my, the bottom quark mass becomes

Y} e .
V2 dLVL
my, ~ . (6.5)
, (aw ) V2
MB + RT

If we assume YjL = Y;’R =~ (1) and the factor inside the parenthesis is much smaller than O(1),
we can obtain the light bottom quark mass. This implies Mp >> vz and we can write Eq. (6.5)
as follows:

3y3
VRYdR YdLVL

3TE (6.6)

my >~
In order to determine the hierarchy between My and vy for the light bottom quark mass, from
Eq. (6.6) one can obtain the ratio Mpg/vg as follows:

VR N

where y?M is the SM Yukawa coupling of the bottom quark. If we further require that the
Yukawa couplings are in the perturbative region, Y3L , Yd3R <1, the upper limit of the ratio
Mpg/vg is given by

MB — YdSLYf;R 1 (6 7)

MB< I 1
v T 2™

If we take ypM = 2.4 x 1072, we obtain the upper limit of the ratio Mp/vg < 29.46. The equal-
ity holds when the Yukawa couplings YjL = Y;R = 1. This shows how the seesaw mechanism
accommodates the bottom quark mass and the hierarchy between Mg and vg. Therefore, when
all the Yukawa couplings Y3L , YjR, Y}, and Y, are O(1), the hierarchy for the three scales

(6.8)
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is My < vg < Mp. If we include the v;, the hierarchy has two possibilities depending on the
numerical inputs. The hierarchy can be v, < M7 < vg <K Mpor My < vy < vg <K Mp.
To summarize, by using the hierarchy that we discussed before, from the exact mass eigenval-
ues in Egs. (3.70) and (3.71) we can obtain the approximate form as follows:
e YuXur (6.9)
23 (1) + 03

2
P \/VTR (Ya)" + M3, (6.10)

3vy3
mzppl‘ox ~ VR YdR YdL 'L ’ (6.11)
2Mp

MmN ~ My, (6.12)

Our results in Egs. (6.9) and (6.10) agree with Egs. (7) and (8) in Ref. [16], as well as Egs. (3.19)
and (3.17) in Ref. [17], respectively. In addition, our results in Egs. (6.11) and (6.12) agree with
Eqgs. (14) and (15) in Ref. [16], as well as Eq. (3.9) in Ref. [17], respectively.

6.1.2.  Numerical analysis. We start by analyzing the constraints in the top sector, as shown
in Fig. 1(a). We consider an asymmetric left-right model with g; # ggz. By assuming gg >~ 1
and using the value of ¢ >~ 0.357, we obtain 6z with Eq. (3.4). Additionally, we assume Yu3R ~
Yu3L ~ 1. The following are the constraints that we used [33]: (1) the top quark mass obtained by
the direct measurement is m, = 172.57 GeV; (2) the lower bound for the heavy top quark mass
is set to be m, > 1310 GeV; (3) the lower bound for the Z’-boson mass is set to be M, > 5150
GeV. Using the exact mass eigenvalue for the Z’-boson mass in Eq. (4.18), we compute the
lower bound for the Wg-boson mass as My, 2 5 TeV. Consequently, we find the constraint for
vg using Eq. (4.13), yielding vg 2 10 TeV. At vg = 10 TeV, My is 942.3 GeV as shown by the
black dot in Fig. 1(a). Using these vz and M7 values, we further calculate the heavy top quark
mass with Eq. (3.71) and obtain m, = 7.13 TeV.

Next, we analyze the constraints in the bottom sector, as depicted in Fig. 1(b). Here, we also
assume YjR ~ Y;L =~ 1. The constraints are [33]: (1) the SM bottom quark mass we use is the
running mass at bottom mass n1;, = 4.183 GeV; (2) the lower bound for the heavy bottom quark
mass is set to be my > 1390 GeV; (3) the constraint for vg = 10 TeV is derived from the lower
bound for the Z’-boson mass. For the bottom sector, at vg = 10 TeV, Mp is 293.74 TeV as
indicated by the black dot in Fig. 1(b). Using these vg and M values, we further calculate the
heavy bottom quark mass with Eq. (3.71) and obtain my = 293.82 TeV. This result indicates
that my >~ Msp.

From the above facts, the mass parameter of the top partner VLQ (M) is smaller than v but
it could be larger or smaller than v; depending on the other parameters. On the other hand, in
the bottom sector, the mass parameter of the bottom partner VLQ (M3) is significantly larger
compared to vg. This explains the mass hierarchy problem, where the smallness of the bottom
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1000 1
Top quark mass m; =172.57 GeV

Lower bound for my = 1310 GeV

800 1 Lower bound for My, =5 TeV constrained by Mz,
700 - Mr=942.3 GeV

900 1

600 1

500 1
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6
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Bottom quark mass m, =4.183 GeV

Allowed region for my > 1390 GeV

Lower bound for My, =5 TeV constrained hyMa
M =293.74 TeV 3

Mg (TeV)

vg (TeV)

(b)

Fig. 1. Constraints on vg and VLQ mass parameters of different sectors. (a) Top sector. (b) Bottom
sector.

quark mass is suppressed by the large mass of the bottom VLQ through a seesaw mechanism.
Mathematically, our choice of numerical input satisfies the following hierarchy: (1) for the top
sector: v < My < vg; (2) for the bottom sector: v, < vg <K Mp.

One can compute the masses in the approximation form given in Egs. (6.9), (6.10), (6.11), and
(6.12) by using our choice of numerical input and obtain n;"""** = 172.58 GeV, m/*"** = 7.13
TeV, mP"™* = 4.19 GeV, and m)’™™" = 293.74 TeV. These values are very close to the exact
mass eigenvalues formula. We will use vg = 10 TeV for the rest of our numerical analysis. This
vg = 10 TeV is also used in Ref. [22], although unlike this paper, they considered the model
with left-right symmetry where g; = gg.
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6.2. Higgs FCNC

In this subsection, we discuss the interaction between Higgs and quarks in our model. From
Eq. (3.90), we extract the interactions between /1; — hg and quarks, given by

SN (i) ) @)+ (me2n) ) (i)

k13
ot ) @) + otz ()’ () |

[ ) i ;
S [(EEALE AN

k,i=3

+ (Znt 0= z00) " @) @) + (0 - zaomdezs,) " (d2)" (dF)
b (znamd 1 - 20) ()" (cizf)’} . (6.13)

where Z7,, Zp,, Z1,, Zp,, mi %, and m{“® are given in Egs. (3.84), (3.85), (3.88), (3.89), (3.68),
and (3.69), respectively. By transforming the iy, — hg basis into the 4 — H mass eigenstate with
Eq. (4.23), the Lagrangian in Eq. (6.13) transforms into

h AN . .
Lur == {¢ > [ (zmmte) " ) )+ (2 )"

v
L pi=3

et () @)+ ) ) )]

' : i ki NK [ ami K—
=S8 S (= znomezn) @) @) + (2nt™ 0 - 20)) @) )

v
R =3

o (0 ez (@) () + (2o - 2) (d2)" (d”g’)l} ] !

ki

| X [ (i) ) @)+ (me2n) ) (i)

diag ki
+ (ZBLmb )

[

3
N—
~

[
=3
~—

+
A
9

Qa

N
\_/
X

ISY
>3
N——
~

[

=3
~—

L 1

ﬁ?é%&w%ﬁ@%w%&waﬁ@w
(0= znmizn) (dr) (@) + (znota - z00) (i) () || .

(6.14)
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where 4 and H denote the Higgs and the heavy Higgs bosons, respectively. In this discussion,
we will focus on the interaction of the Higgs boson with the quarks in our model.

6.2.1.  Top sector. We collect the interaction terms between the Higgs boson and the top
quark (7) and heavy top quark (¢) from Eq. (6.14):

cos ¢ sin

cos’ or,m; — ¢ (sin2 o, cos’ Br.m;

VL

»ChH D) »Cht = _|:

— sin ¢, cos ¢r, sin Br, cos ,BTRm,/>:| tth

cos¢o . sing /. )
+ . sin @, COS P, My + . ( sin ¢, cos @7, sin” B, my
L R

— sin” ¢, sin Br, cos ,BTRm,):| (Totg + TptL) h

cos¢o . sing /. 5
+ y sin ¢TL cos ¢TLmt + V < s ¢TL cos ¢TL COs ﬂTRmt
L R

— cos? ¢r, sin Br, cos ,BTRmt/):| (7ptr+ t'Rz/L) h

cos¢ . sin .
— |: ¢ sin’ o1, my — —¢ ( cos’ o1, sin’ Br.my
173 VR

— sin ¢y, cos ¢, sin Bz, cos ,BTRmt>:| 1't'h, (6.15)

where we substitute the elements of Z7, and Z7, in Eqgs. (3.84) and (3.88), respectively. Then,
we take the approximations for the mixing angles in Egs. (C.26) and (D.13). In addition, us-
ing the hierarchy in the top sector, i.e. v, < M7 < vg, and the approximation of mixing an-
gle ¢ in Eq. (4.31), we obtain the interaction between the Higgs and top-sector quarks as

follows:
m Arr M3 v\ - M Ar VN - _
Ly~ —cosp— [1— E—ZT—f tth — cos¢ T (1 + E—ZL) (ZLZQQ + t}QtL) h
VI )\.R WluR VR ug )uR VR

Mt v A - - myvy (M7 X -
— cosp— L (1 + %) (Tptr + Irty) h — cosqbv—tv—L (m_zT — %) 7't'h.
R VR \ My, R

(6.16)

In this expression, we also assume that Yu3L ~ Yu3R ~ 1. From Eq. (6.16) we extract some useful
information regarding our model: the Higgs and top quark pairs coupling receives a small
correction, while the Higgs and heavy top quark pairs coupling receives an overall suppression
of O (vy/vr). Another important point is the tree-level FCNC interaction is suppressed. The
Higgs FCNC of 7, 7z and gt type is more suppressed by a factor O (v, /vg) compared to the
11t and Tty type.
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6.2.2.  Bottom sector. In the same way, from Eq. (6.14) we collect the interactions between
the Higgs boson and the bottom quark (b) and heavy bottom quark (4"). By expressing Zp,
and Zp, in terms of their elements, we obtain

cos sin .
¢ cos’ ¢, My — ¢ (sm2 B, cos’ Bp.Mp
VL VR

Lyg D Ly = —|:

— sin¢p, cos ¢p, sin B, cos ,BBRmb/)}l_th

os¢ . sing /. .2
+ sin ¢p, COS pp, My + (sm @B, COSPp, SIN” Bp, My
VL VR

— sin® ¢, sin Bg, cos ,BBRmb>j| <13Lb’R + h.c.) h

cos¢ . sing / . 2
+ . sin ¢p, COS ¢pp, My + (sm @B, COS Pp, COS” Bp,myp
L

VR

— cos’ ¢p, sin B, cos ,BBRmb/>:| <13’LbR + h.c.) h

cos sin .
—|: ¢ sin’ ¢, My — ¢ (0052 @B, sin’ Bp,my
VL VR

— singg, cos ¢p, sin Bp, cos ﬂBRmb>i|B/b/h- (6.17)

We use the approximations for the mixing angles in Egs. (C.26), (D.13), and (4.31). In addition,
by using the hierarchy in the bottom sector v; < vg < Mp, we obtain the interaction between
the Higgs and bottom-sector quarks as follows:
N mp ALR VL mpny ALR VL / /
Ly~ —cosp (1 - )bbh cos ¢ (1+ Y (Brble + Biebr) h

VL R VR mq, My R Mp

ALR 7/ 7 1/ mg, ALR /77
- —R ( + M2> (BLbr +brby ) h o (1 - >bbh (6.18)

Similarly to the top sector, the interaction between the Higgs and the bottom quark pairs re-
ceives a small correction compared to the SM. The interaction between the Higgs and the heavy
bottom quark pairs is suppressed by a factor O(vy/Mp). The Higgs FCNC of l_)’Lb zand b rb;
type is suppressed by a factor O(vz/vg). On the other hand, the Higgs FCNC of b bz and B’Rb L
type is not suppressed. This is because we assume Y3 ~ 1.

6.3. ZFCNC

In this subsection we discuss interaction between the Z-boson and quarks. We begin by extract-
ing the interaction terms between Z; — Z and quarks from Eq. (3.90), which reads as

LyDLzz =— |:—2C§SL9W (jé‘L) — etan Oy (]é‘m):| Z1,
8R (o _ L1
_ [2008 5 Uir) = & tanbr (Jé‘m —5( Jg‘L))] Z . (6.19)
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Here ji,, jiz. and jéy are defined in Egs. (3.92-3.94), respectively. Next, we change the basis
from the Z; — Zy basis to the Z — Z’ basis using Eq. (4.14), and it leads to
A |: grsing
77 = —

2cos g 3k

—_— 0 —etanfgsin0) )i, —
2COSGW(chos etanfrsin®) /3,

sin @y cos® — tanbrsinB)j* | Z
COS@W( w R ).]em:| 123

grcost .,

sin@ + etan Oz cos ) ¥, +
(gL R )J3L 2COS@RJ3R

1
B |:200s9W

03O (sin Oy sin 6 + tan O cos O)jé‘m] z,. (6.20)

In this discussion, we will focus on the interaction between the SM Z-boson and quarks.
We expressed the Z-boson interaction in terms of vector and axial-vector couplings as

follows:
4

8L — . o N
Lzz D LL, = “cosOn Z (M’”)"V”[(gv)uﬂ - (gA)uﬁ)/S](um)ﬂZu
a,B=1

Z (dmyy [<gy> — gy 5](£’">ﬁzm (6.21)

2cos9
where
1
(e = 5 (k1) = (k7)) = 20,87, (6.22)
1
(g0iF = 3 ((er,)*? + (1,7 (6.23)
o 1 o o o
(@) = =5 (k5" = (kp)") = 26 Q™ (624)
o 1 o o
(1) = =5 ((ks)” + (k5,)"). (6.25)
Y . . aln\*?
(k7,)*” = (cos® — sin Oy tan O sin ) (ZTL> , (6.26)
wp _ SINOpy sind zall ap 6.7
Uer) ™ = sin Og cos O < TR) ’ (6.27)
aoff : : all ap
(kp,)"" = (cos@ — sinfy tanOrsin o) <ZBL> , (6.28)
«p _ SINOy sind zall ap 6.2
(o)™ = sin Og cos O < BR) ’ (6.29)
Kk = sin” @y cos® — sin Oy tan Og sin 6. (6.30)
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The matrix forms of 4 x 4 unitary matrices Z%ILI, ZglLl, Z%g, and Zglli are given as follows:

gai _ (2 02 gai _ (2 O
T 0, 2Zg)’ T 0, 2Zr)’

I 0 I 0
Zall — 2 2 Zall — 2 2 31
By <02 ZBL ) Br 02 ZBR ) (6 3 )

where I, and 0, are the 2 x 2 unit matrix and zero matrix, respectively. The 2 x 2 submatrices
Z71,, Zp,, Z1,, and Zp, are given in Eqgs. (3.84), (3.85), (3.88), and (3.89), respectively. O, = 2/3,
0, = —1/3 are the electric charge of up-type and down-type quarks, respectively.

6.3.1.  Up sector. In this part, we analyze the interaction between the Z-boson and the up
sector in our model. From Eq. (6.21), it reads as

L2 = ooty {(“"”1 [<gv>2} —(gA);lys]mmv

+ WY“[(gV)ﬁz - (gA)zzyS}(a’”)Z + fw[(gy)ff - (gA)ffyS]t
+ fy"[(gv)i“—(gA)34V5]t/+7y“[(gv)23 (8402’ y 5]

+ ry* [(gv)ﬁ4 - (gA)34V5:|Z/} Z,, (6.32)

where the vector coupling (gy ), and axial-vector coupling (g,), are defined in Egs. (6.22) and
(6.23), respectively. By using the definitions of «7,, k7,, and k¥ which are written in Egs. (6.26),
(6.27), and (6.30), we obtain

2
(cr)'! = (k7,)? = cos B (1 — sin Gy tan 0zO <V—§)) : (6.33)
VR
" 5, sinfy coso vy
=—0|=), 6.34
Uer) ™ = (kry) sin O cos O (v%2 6.34)
2
(k7,3 = cos 0 (1 — sin 6y tan 60 <V—2L)) , (6.35)
VR
;3 sinfy cosf v\ M2
=— 0| =) —, 6.36
Ger) sin g cos O (v%2 m2, (6.36)
(I(TL)34 = (KTL)43 = cosf (1 — sin Oy tan OrO ( ) , (6.37)
6 6 My
()™ = (g, = — Smbweost (6.38)
" sin Or cosBOr v muR
2 2 M2
(k7,)* = cos® (1 — sin @y tan OO (V—g)) —u T (6.39)
vR muR
44 _ Sin Oy cosd Vi
o -L), 6.40
(er) sin O cos O (v%z (6.40)
2
K = cos6 (sin2 Ow — sin Oy tan 0RO (:—f)) . (6.41)
R
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Here we write the suppression coming from the small mixing angle 6 as O(v3 /v%). The exact
form of the mixing angle 6 is given in Eq. (4.19). From Egs. (6.37) and (6.38), the «7, and k7,
terms related to the Z-boson FCNC process with the top and heavy top quarks are suppressed
by O(vp. M7 /v%) and O(v; Mt /v3), respectively. This indicates that the Z-mediated FCNC pro-
cess in the up sector is suppressed within our model. In addition, the interaction between the
Z-boson and heavy top quark is also suppressed. Moreover, the deviation of the SM-like terms
in (k7,)" and k, with i € {1, 2, 3} are suppressed by a factor O(v7 /v%).

6.3.2.  Down sector. In this part, we analyze the interaction between the Z-boson and the
down sector in our model. From Eq. (6.21), we extract

8L m m
Lig D LF = st {(d )y [(gv)bl—(gA)L‘ys](d )

+ (cim>2y“[(gv) — (g0)2y 5](4'")2+5y“[<gv) —(g4)y 5}
4 By [(gv (gA)?ﬁyﬁ}wa[(gV) (g S]b
+ FV“[(gV) —(ga)3'y 5] }Zu, (6.42)

where the vector coupling (g) ), and axial-vector coupling (g), are defined in Egs. (6.24) and
(6.25), respectively. By using the definitions of «p,, k5., and « written in Egs. (6.28), (6.29), and
(6.30) respectively, we obtain

2
(KBL)U = (kp,)** = cos @ <1 — sin Oy tan 6RO (:—f)) , (6.43)
R
" 5 sinfy cosd _(v2
= =—O0=5]), 6.44
(KBR) (KBR) sin QR cos 0R (V% ( )
2
(k) = cos 6 (1 — sin 6y tan B0 (%)) , (6.45)
R
(ep) = s‘inQW cost v ’ (6.46)
sin Oz cos O V2
2
(k3,)** = (kp,)¥ = cos @ <1 — sin @y tan 6rO (V—2L>> mdL, (6.47)
VR MB
3 4 sin Oy cos 2\ Mg,
= =0\ = , 6.48
(KBR) (KBR) sin QR cos 9R <V%€ MB ( )
2 m>
(kp,)** = cos 6 (1 — sin By tan 6O (V—ZL>> Mdé’ (6.49)
VR B
. 2
44 SNy coso vi\ My,
=—0(—= , 6.50
(Be) sin Oz cos O < M3 (6.50)
2
Kk = cos6 (sm Oy — sin Oy tan 6rO (:—2)) . (6.51)
R

34/43

20z Jequiaydag Q| uo 1senb Aq 980¢€¢////z1Loeid/dard/e60L 0L /10p/a1o1e-aoueApe/dad/wod-dno-olwapede//:sdily woly papeojumoq



PTEP 2024, 093B02 T. Morozumi and A. H. Panuluh

The FCNC process in the down sector is suppressed, similarly to the up sector. As shown
in Eqgs. (6.47) and (6.48), the kp, and «p, terms are suppressed by a factor O(v./Mp) and
(’)(v% /vrMp), respectively. In addition, the interaction between the Z-boson and heavy bot-
tom quark is also suppressed. Furthermore, the deviation of the SM-like terms in («,)" and
i, with i € {1, 2, 3} is suppressed by a factor O(v3 /v3,).

7. Conclusion

We have presented a systematic analysis of the quark sector in the universal seesaw model.
We derived the Lagrangian of the model, including the quark sector, Higgs sector, and ki-
netic terms of the gauge fields. We start by writing the Lagrangian which is invariant un-
der SU(2)L x SU(2)r x U(1)y.. After the SU(2)r Higgs doublet acquires nonzero vev, we
obtain the Lagrangian, which is invariant under SM gauge symmetry. Furthermore, the SM
gauge group is broken into U(1).y, after the SU(2). Higgs doublet acquires nonzero vev.
In the gauge interactions sector, we classify the terms based on the number of fields, such
as linear, quadratic, cubic, and quartic interactions. In addition, we found that the mass-
less Nambu—-Goldstone bosons are mixed to become new states x> and xz. We have shown
clearly that y, and x» become the longitudinal components of the massive Z- and Z’-bosons,
respectively.

Our model focuses on the third family of the quark sector. Within this framework we explain
the hierarchy between the top and bottom quark masses by mixing with the heavy VLQs. We
use the direct measurement of the top quark mass and the running mass of the bottom quark.
Additionally, the lower bounds on the heavy top and heavy bottom quark masses also serve as
constraints. The lower mass limit of the Z’-boson, linked to the Wx-boson mass, also imposes
a stringent constraint on vg. By setting gz and the Yukawa couplings equal to 1, the lower limit
of vg is 10 TeV in this model. We obtained that the heavy top quark mass is in the order of
vg (my = 7.13 TeV) and the heavy bottom mass is in the order of Mp (my = 293.82 TeV). We
confirmed that the hierarchy of VLQ’s mass parameters, v;, and vg in our modelis v, < My <
VR K Mp.

Moreover, the presence of VLQs in the model induces the FCNC at the tree level. In the
SM, the FCNC process is highly suppressed and only occurs at the loop level due to the
Glashow-Iliopoulos—Maiani (GIM) mechanism. In our model, we have shown that the Z-
boson-mediated FCNC process is suppressed for both (up and down) sectors. The deviation
from the SM values is suppressed by O(v2 /v%), which comes from the small mixture in the
lighter mass eigenstate Z from Zg. On the other hand, Higgs-mediated FCNCs of b}, and
1_7/Rb 1 types are not suppressed when Y3L ~ 1.
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Appendix A. Weak-basis of Yukawa interaction
In this appendix, we show how to obtain the Yukawa interaction that is written in Eq. (2.3).
We start from the general Yukawa interaction terms,

Lym = —41V, Tk — Toyin kg — TeMrTr — hec.
~ 41V, $LBr — BLylj ¢ pdy — BLMpBr — h.c.. (A1)
The Yukawa couplings are general complex vectors in C* with the following parameterization:

il
. u . u Ia"LR
sin GL(R) sin ¢>L(R)e ®

i . o2 3
Vurgy = Yurwy = | SN0} ) cOS P} R)e“ wo [ Y (A.2)
o]
cos GE(R)e LK)
. d . d iall,
sin GL(R) sin ¢>L(R)e . L(R)
] . o 3
Y i’L(R) = Ydip = | sIn gg(R) cos ¢Z(R)e e YdL(R)’ (A.3)
d
cos GL(R)e LR
where Y} « and Yj{ «, re real positive numbers. Define the following weak-basis transforma-
tions (WBTs) as follows:
(q)) = e ™ugh, (A.4)
(qR) = e gy, (A.5)

Applying this WBT into Eq. (A.1), we obtain
Lym = —~(¢7) (1,) B Tr = T ()" B (4)' — TeMr Te — hic.

— (4,)'v,, ¢ Br — Bry':. ¢} (¢%)' — BLMgBg — h.c., (A.6)

where
(y;L)l = yf‘Lef"“l"L, (A.7)
(i) = e (A8)

are real vectors. On the other hand, y;L and yQR remain complex vectors with the redefined
phases.
Next we write the (y;L)i Yukawa coupling explained above as,
sin 6} sin ¢}
: i 3
(,,) = |sinf}cosg} | Y,

ur

cos 0
=e} Y, (A.9)
and define another WBT,
(4,) = (V) (), (A.10)

where in general V,, is a 3 x 3 unitary matrix formed by three orthonormal vectors with the
third column chosen as €7 in Eq. (A.9),

Vi = (e, ¢, ¢t ) (A.11)
which leads to the product (V! )7(y,, ) = 8°Y;} .
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For the (y,,, )" Yukawa coupling, it can be derived similarly by changing L — R in Egs. (A.9—-
A.11). For the down sector, the product of Eq. (A.11) and the down-type Yukawa coupling
yields down-type Yukawa coupling on another basis. For example, (V, )/ (y,, ) = (v};,). There-
fore, the Lagrangian in Eq. (A.6) becomes

Lym=-Y, (‘I/L/)3¢3L Tk — YuiTngjg (%@)3 — T M7 Tg —hc.
—(45)' (V) #.Br = BL (v},)" 0k (¢) — BiMpBr —hec..  (A12)

and it has the form such that the Yukawa couplings of the up-type quark doublet (Y,fL and
Yu3R) are given by real positive numbers while the Yukawa couplings of the down-type quark
are general complex vectors as written in Eq. (2.3).

Appendix B. Parameterization of V,, and V,,

In this appendix, we explain in more detail how to parameterize and remove the unphysical
phases of V, and V,,. Both V, and V;, have the following form:

V = <V1 A\ V3> s (Bl)
where the third column is related to either y,4, or y,;, and is parameterized by,

sin @ sin e
v3 = | sin@ cos e | . (B.2)
cos fe

Since V' is a unitary matrix, the column vectors satisfy viT -Vj = ;7 and V' has a matrix form as
follows:

V' = (a1, a2, a3)R12(¢)R23(0)(0, 8, 0)R12(a)(p, 0, 0), (B.3)

where (a1, ar, a3) = diag(e™™, e, e); (0, 8, 0) = diag(1, €?, 1);(p, o, 0) = diag(e”, €, 1);
and

cos ¢ sin¢g 0 1 0 0
Rip(p)=| —sing cos¢p O], Rp3@)=|0 cosod sinf |,
0 0 1 0 —sinf cosf

/cosa sinae 0
Rp(a)=| —sina  cosa 0

- (B.4)
0 0 u

We have the freedom to rotate V' by U(2) transformations from both sides. As shown in
Eqgs. (3.18) and (3.57), we can remove the unphysical phases and angles in Eq. (B.3) by fol-
lowing

V=Uvw, (B.5)
where U and W are 3 x 3 unitary matrices which have the following expressions:

=5 0) Ry (¢)(—a1, —at, 0),
W = (=p. =0 R @)(0.~5.0) (0. =5 0) (B.6)

ﬁ:@x
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Thus, we obtain,

0 0
sin@e's | . (B.7)
—sinfels  cosfel®

A
Il
o o~
o
o
w2
SN

Appendix C. Diagonalization of quark mass matrix

In this appendix, we derive the exact mass eigenvalues of the top-bottom SM quarks and the
heavy VLQ partners, as well as the matrices used for the diagonalization procedure. We will
show the diagonalization procedure for the top sector. The bottom sector can be done similarly

because the form of 1} is the same as IM,. We start from Eq. (3.66), explicitly writing the (W7, )*
and (Wr,)* values,
Y,ﬁ Yu3 VILVR 3 M
o= (2 Talsm ) = (T M) (C1)
0 my, 0 my,
where m,, and m;, in Eq. (C.1) are defined as follows:
Y3Y3vry M
my, = e LR, u3LV_L T (C.2)
2m,, V2 my,

The top quark mass matrix in Eq. (C.1) can be diagonalized by bi-unitary transformation,
which gives

K} MKy, = (m;“ag) — diag (m,, my). (C.3)
Initially, we transform M, into a real symmetric matrix by multiplying it on the left side with an
orthogonal matrix S;, which yields

M; = S,Mz, (C4)
where
S, = (C,OS o7, —sin ¢T1> : (C.5)
sin ¢, cos ¢,

1) becomes a real symmetric matrix with the following expression:

M; _ (—m1 cos ¢, —my, sin ¢y, ) (C.6)

—my, singy,  my, sin g, + m,, cos ¢,

if the mixing angle satisfies the following condition:
tangy = —2 (C.7)
my, — My,
Then, a real symmetric matrix can be diagonalized by multiplying from both sides another

2 x 2 orthogonal matrix R, and its transpose,

R M RT = diag(—m,, my), (C.8)
where
R = ( cosPr - sin d’“). (C9)
—singr,  Cos¢ry

The minus sign inside the diagonal matrix on the right-hand side of Eq. (C.8) arises because the
determinant of the top quark mass matrix I, is negative. Since m1, is lighter than m,,, we assign
the minus sign to m,. However, we could eliminate the minus sign by multiplying Eq. (C.8) by
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—13 on the right side, where 3 is the third component of the Pauli matrices. The mixing angle

can then be obtained as
2my, my,

tan2¢7, = (C.10)

m2, +m; —m;
The eigenvalues of Eq. (C.8) can be computed using the following equation:
A2 — (trd1)) A + deth; = 0. (C.11)

After performing the calculations, we obtain

\/mtzz + (mu4 — my, )2 \/mtzz + (mu4 + my, )2

A= —my = 5 5 , (C.12)
\/mtzz =+ (mu4 — My, )2 \/mtzz + (mu4 + my, )2
Ay =my = 5 + 5 : (C.13)

We can also equivalently express them with the parameters of the mass matrix as follows:

MG+ Ony =y, 2 JMG o+ O+, P

, C.14
nmy 3 + D ( )
\/M%" +(muR _muL)2 \/M%" +(muR +muL)2
my = + , (C.15)
2 2
where
VR VL
WluR = :]{E, muL = jLE (C16)
Finally, we can summarize all the matrix transformations explained above as
R, S, Rl (—13) = diag(m,, my). (C.17)

Additionally, the product of two orthogonal matrices is also an orthogonal matrix. Then we
can define O; as

(C.18)

0, = RS, = ( cos ¢, sm¢TL>

—singy,  cosér,
with ¢7, = ¢7, — ¢1,. Hence, by comparing Eq. (C.17) and Eq. (C.3) we obtain the expression
for the mixing matrices as follows:

Kt ( coson sm¢n>, (C.19)
L —singy,  cos¢r,

KTR — CS)S d)TR —sin d)TR -1 0 — - Cf)S ¢TR —sin d)TR . (CQO)
sin¢r,  cos¢r, 0 1 —sin¢gr,  cos¢r,
For the bottom sector, we can derive the results similarly by replacing ¢ with b, T with B, and

u with d. Thus, we write the mass eigenvalues and the mixing matrices for the bottom sector as
follows:

M+ Ona = ma 2 MG+ Ong, +ma, 2

my > + > , (C.21)
\/M]23 + (de - mdl_)2 \/Mlzg + (de + mdL)2
my = 5 + 5 , (C.22)

where
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VR VL
de — Y[?RE’ mdL = ;LE, (C23)
KngL _ [ cos¢s,  sings, (C.24)

—singp, cos¢p, |’
KBR — C?S ¢BR —sin ¢BR -1 0 — - C?S ¢BR —sin ¢BR ) (C25)
sin ¢p, COoS Pp, 0 1 —sin¢g, COS Pp,,
For the approximate masses already written in Eqgs. (6.9-6.12) and the approximate mixing
angle this yields,

2
. - my, Mt N ) N my,, My, Mr _
sin ¢7, =~ TR cos¢pr, ~ 1, sin¢r, ~ — cos ¢, >~ 1
T Ty, (M3 +m2))
my m? my
. . d R
sin ¢p, >~ —ML, cos¢p, ~ 1, singp, ~ [(‘43 , cos¢p, ~ 1, (C.26)
B B
or in the approximate matrix form as follows:
1 _my My 1 _mﬁLmuRMT
to M2+m? - (M324m? )2
Ky, = | iy mtr e K= ® (C.27)
M%-‘rmgk - (M%-l—m,le )2 1
. A -1 —m";jfd’*
T~ Mp ~ B
Kp, >\ my, ) Kp, >~ 2 mag . (C.28)
Mp - ;13 1

Appendix D. CKM-like matrices

In this appendix, we will discuss CKM-like matrices in this model and the rephasing of the
CKM-like matrices. The CKM-like matrix, which appears for the first time in Section 3, is an
“intermediate” right-handed CKM-like matrix which has explicit form as follows:

1 0 0 0
Cpd SpaCp, € 2 SpdSp, € 2
0 0408 04905
VCKM _ R 3 R R R R (D 1)
R - l'L i()l31 iD(31 ) .
— a a
0 CQTR SGI“{’ e 2 C@TR CQ% CQBR € “R CQTR 69% SQBR e ‘R
o3
0 i 4R i} ot}
—SQTR S9¢R1 e 2 S@TR CQR{ C@BR € ‘R SQTR Cezki SQBR € ‘R

where

Cgg = COS o4, Spg = sin 04, Cor, = COSOTy,

Sor, = sin Oz, Coy, = COSOp,,  Sp, = sinOp,. (D.2)

After Step 6 is done, we have the expressions of the left-handed CKM-like matrix and right-
handed CKM-like matrix, which are defined in Eq. (3.73) and Eq. (3.74), respectively. The
matrix forms of the left-handed CKM-like matrix and right-handed CKM-like matrix are as
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follows:
1 0 0 0
113 013
0 c SpdC e"% SydsS, e"#
d d - d Z
VCKM _ o7 p 04 ¢, 04°¢p, (D 3)
r 0 —cy S F  Cy Coaly, €% —cy Coasy, €% |
#1260 @1, “04 o, 1“0 B
Yy i3 i3
0 Sy 8,062 =Sy CoaCepn €0 Sy CoaSe, €L
#1260 ¢1; “04 C o, @1, “0°PB;
where
_ d — «inpnd _
Cga = COSO,  Spe =sIMOp, cp = COSPr;,
Spr, = SINPT,,  Cp, =COSPp,, Sy, =Singp, (D.4)
and
1 0 0 0
3 3
0 c SpaC e"adTR Sy e"al#
d —dpd d
YCKM _ A p 04¢Png 04° B (D.5)
“ o e e _ . | |
CBry, S@% e \ Chrg CB;Q CBg, € Chry c@,’ésﬂsk e
¢ 3 -3
0 —sp su€ X  —sg cocs. €% sp cossg. €
Brp 04 Brr ©04Psy Bz ©04° By
where

— d — qinp4 —
Coa = COSOR,  Spg = SINbp,  Cp, = COSPry,
Spr, = SN PBry,  Cpy, = COS Py,  Sp, = sINPp,,

Bry = 01, — d1s  BBr = OBy — Py (D.6)
Recall the mass terms in the diagonal mass basis (including the massless two lightest quark
fields) as follows:

ﬁq D Liass = —(uzl)a (m;iiag) (u';;)a — h.c.

-\« .
— () () ()" = e (D.7)
We have the freedom to rephase the quark fields with the following transformations:

o o . B

(”'Z(R)) = (Ouy)” 87 (u’f(m) , (D.8)
o A B

(@) = Curan) 6 (i) (D)

where 6, , = diag(eie"L(R)l , eieuL(mz, e, e%4) and Oy = diag(eiedum] , eieduR)z, e e4). One

can show that Eq. (D.7) is invariant under transformation in Egs. (D.8-D.9).
We apply this rephasing transformation into the £,,. The left-handed and right-handed CKM-
like matrices are rephased and become
i =0l VviXMe,,, VREM =6) VMo, (D.10)
By choosing the proper phase and phase difference, we could rephase the left-handed and right-
handed CKM-like matrices and they become the following matrix forms:

1 0 0 0

PERM _ 0 Coy Sog Co, —Sod 5S¢, ’ (D.11)
0 —Cor, Sod Cor, Cod Cop, —Cor, Cod S,
0 S¢r, Seg —S¢r, 002’ Cop, S¢r, C@ZS¢BL
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1 0 0 0
¥ 8
— 13 )
DCKM _ 0 Cod S94Cpy, € S48, € (D.12)
R 710 ¢4 5,00 Cp CoaCp, €0 —cg cousg, €0 |’ ’
Brx >0 ; Brr ©04CBry Br ©08°Bry
i s . s
0 —=Spr,800€"? =81, CouCpu, @ Spr,CouSps,€

where we redefine the phase difference as § = “531,( - ozf,L. Therefore, in this model, we have one
CP-violating phase § and in our choice, it is included in the right-handed CKM-like matrix as
shown in Eq. (D.12).
Moreover, the mixing angles 7, and B, can be expressed in the approximate form as,
. m M . m
sin Br, & ———& oS Br, & ——  sinfp, = VdR cos Bp, == 1.
M3+, M2+, n
(D.13)
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