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We present the study of the quark sector of the uni v ersal seesaw model with 

SU( 2) L 

× SU( 2) R 

× U( 1) Y 

′ gauge symmetry in the massless case of the two lightest quark 

families. This model aims to explain the mass hierarchy of the third family quark by in- 
troducing a vector-like quark (VLQ) partner for each quark. In this model, we introduce 
SU(2) L 

and SU(2) R 

Higgs doublets. We derive explicitly the Lagrangian for the quark 

sector , Higgs sector , and kinetic terms of the gauge fields, starting from the Lagrangian, 
which is invariant under SU( 2) L 

× SU( 2) R 

× U( 1) Y 

′ gauge symmetry. At each stage of 
the symmetry breaking, we present the Lagrangian with the remaining gauge symmetry. 
Additionally, we investigate the flavor-changing neutral currents (FCNCs) of the Higgs 
( h ) and Z-bosons in the interaction with the top, heavy top, bottom, and heavy bottom 

quarks. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Subject Index B40, B55 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/advance-article/doi/10.1093/ptep/ptae127/7733086 by guest on 10 Septem

ber 2024
1. Introduction 

The seesaw mechanism is a well-known approach to explain the smallness of neutrino masses
[ 1–7 ]. It introduces heavy right-handed neutrinos that mix with the light left-handed neutrinos,
giving them a small mass. This inspired the construction of a similar model that can be applied
to other cases. One problem that the Standard Model (SM) cannot explain is the fermion mass
hierarchy. In this paper, we study the quark sector of the uni v ersal seesaw model [ 8–23 ], an
extension of the SM that applies a seesaw-like mechanism to the quark sector to solve the
mass hierarchy problem. In the quark sector, an interesting aspect is the large mass of the top
quark compared to the other quarks. Our focus is on the third family of quarks, and within our
frame wor k, the two lightest quark families are massless. 

Introducing vector-like quarks (VLQs) into this model is essential. VLQs have left- and right-
handed components that transform identically under some gauge group. Using this property,
they can mix with SM quarks, resulting in modified mass matrices that can be diagonalized
and generate a tiny seesaw-like mass. Various studies about adding VLQs to the SM have been
explored, e.g. introducing one down-type isosinglet VLQ [ 24 ], one up-type isosinglet VLQ [ 25 ],
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and both one up-type and one down-type isosinglet VLQ [ 26 ]. The presence of VLQs also has
implications for flavor physics, as they can introduce flavor-changing neutral currents (FCNCs) 
[ 27 ], and weak-basis invariants have been analyzed to understand the flavor structures [ 28 , 29 ].
Effecti v e field theory approaches to VLQs have been studied to understand their contributions
to lo w-ener gy observab les [ 30 , 31 ]. A re vie w of the theory and phenomenology of isosinglet
VLQs can be found in Ref. [ 32 ]. 

This paper aims to study the quark sector within the uni v ersal seesaw model in the mass-
less case of the two lightest quark families. We derive the Lagrangian, including the quark
and Higgs sectors, and gauge kinetic terms. We also demonstrate how the model can naturally
e xplain the observ ed quar k mass hierarchies in the thir d famil y, particularl y the significant
mass of the top quark. We also explore the phenomenological implications of this model by
investigating the interaction of the Higgs and Z-bosons with quarks, which includes FCNC
processes. 

The outline of this paper is as follows. In Section 2 , we introduce the model with the particle
contents and the Lagrangian. Section 3 focuses on the quark sector and Yukawa interactions.
We explain the derivation of the Lagrangian of the kinetic terms and Yukawa interactions.
Starting with the Lagrangian, which is invariant under SU( 2) L 

× SU( 2) R 

× U( 1) Y 

′ , in each 

stage of the symmetry breaking, we present the Lagrangian with the remaining gauge symmetry.
The quark mass eigenvalues and the identification of FCNC within the massi v e thir d family
quarks and their VLQ partners are discussed. 

Section 4 discusses the Higgs sector of this model. The kinetic terms and Higgs potential are
also deri v ed step by step. In the end, we classify the terms based on the number of fields in the
term as linear, quadratic, cubic, and quartic, ensuring a clear understanding of the interactions
of the gauge sector. In addition, we also provide the exact diagonal mass of Z − Z 

′ bosons and
h − H bosons. 

The kinetic terms of gauge fields are discussed in Section 5 . In the final derivation, we show
the difference between our model and the SM. Finally, in Section 6 , we present some phe-
nomenological implications of our model. We start the discussion with the hierarchy of VLQ’s
mass parameters, the nonzero vacuum expectation value (v e v) of the SU(2) L 

Higgs doublet
(v L 

) , and the nonzero v e v of the SU(2) R 

Higgs doublet (v R 

) . Then, we analyze the interaction
of the Higgs (h ) and Z-bosons with the quarks. This leads to a discussion about FCNCs in this
model. 

2. The model 
We consider an extension of the SM with SU(3) C 

× SU(2) L 

× SU(2) R 

× U(1) Y 

′ gauge symme- 
try in the massless case of the two lightest quark families. In addition to the SU(2) L 

SM Higgs
doublet ( φL 

), we have a SU(2) R 

Higgs doublet ( φR 

). We also introduce one up-type and one
down-type isosinglet VLQ, denoted by T and B, respecti v ely. The charge convention we use in
this model is 

Q = I 3 L 

+ I 3 R 

+ Y 

′ , (2.1) 

where Q, I 3 L (R ) , and Y 

′ are electromagnetic charge, left(right) weak-isospin, and U(1) Y 

′ hyper-
charge, respecti v ely. The particle contents and their charge assignments under the model’s gauge
group are gi v en in Table 1 . 
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Table 1. Quark and Higgs fields with their quantum numbers under the SU(3) C 

×
SU( 2) L 

× SU( 2) R 

× U( 1) Y 

′ gauge groups, where i ∈ { 1 , 2 , 3 } is the family index. 

Quark and Higgs fields SU(3) C 

SU(2) L 

SU(2) R 

U(1) Y 

′ 

q 

i 
L 

= 

(
u 

i 
L 

d 

i 
L 

)
3 2 1 1/6 

q 

i 
R 

= 

(
u 

i 
R 

d 

i 
R 

)
3 1 2 1/6 

T L,R 

3 1 1 2/3 

B L,R 

3 1 1 −1 / 3 

φL 

= 

(
χ+ 

L 

χ0 
L 

)
1 2 1 1/2 

φR 

= 

(
χ+ 

R 

χ0 
R 

)
1 1 2 1/2 
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The Lagrangian of this model (excluding the quantum chromodynamics (QCD) part) is as
follows: 

L = L q + L H 

+ L gauge , (2.2) 

L q = q 

i 
L 

i γ μD Lμq 

i 
L 

+ q 

i 
R 

i γ μD Rμq 

i 
R 

+ T i γ μD T μT + B i γ μD BμB 

− Y 

3 
u L q 

3 
L 

˜ φL 

T R 

− Y 

3 
u R T L 

˜ φ
† 
R 

q 

3 
R 

− q 

i 
L 

y 

i 
d L φL 

B R 

− B L 

y 

i∗
d R φ

† 
R 

q 

i 
R 

− h . c . 

− T L 

M T T R 

− B L 

M B 

B R 

− h . c . , (2.3) 

L H 

= ( D 

μ

L 

φL 

) † ( D LμφL 

) + (D 

μ

R 

φR 

) † (D RμφR 

) − V (φL 

, φR 

) , (2.4) 

L gauge = −1 

4 

F 

a 
LμνF 

aμν

L 

− 1 

4 

F 

a 
RμνF 

aμν

R 

− 1 

4 

B 

′ 
μνB 

′ μν, (2.5) 

where 

V (φL 

, φR 

) = μ2 
L 

φ
† 
L 

φL 

+ μ2 
R 

φ
† 
R 

φR 

+ λL 

(φ† 
L 

φL 

) 2 + λR 

(φ† 
R 

φR 

) 2 + 2 λLR 

(φ† 
L 

φL 

)(φ† 
R 

φR 

) , (2.6) 

D L (R ) μq 

i 
L (R ) = 

(
∂ μ + ig L (R ) 

τ a 

2 

W 

a 
L (R ) μ + ig 

′ 
1 Y 

′ 
q B 

′ 
μ

)
q 

i 
L (R ) , (2.7) 

D L (R ) μφL (R ) = 

(
∂ μ + ig L (R ) 

τ a 

2 

W 

a 
L (R ) μ + ig 

′ 
1 Y 

′ 
φB 

′ 
μ

)
φL (R ) , (2.8) 

D T μT = 

(
∂ μ + ig 

′ 
1 Y 

′ 
T B 

′ 
μ

)
T, (2.9) 

D BμB = 

(
∂ μ + ig 

′ 
1 Y 

′ 
B 

B 

′ 
μ

)
B, (2.10) 

F 

a 
Lμν = ∂ μW 

a 
Lν − ∂ νW 

a 
Lμ − g L 

εabc W 

b 
LμW 

c 
Lν, (2.11) 

F 

a 
Rμν = ∂ μW 

a 
Rν − ∂ νW 

a 
Rμ − g R 

εabc W 

b 
RμW 

c 
Rν, (2.12) 

B 

′ 
μν = ∂ μB 

′ 
ν − ∂ νB 

′ 
μ. (2.13) 
3/43 
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The Lagrangian in Eq. ( 2.2 ) is divided into three parts. The first part is the kinetic terms of 
quar k doub let and isosinglet VLQs, Yukawa interactions, and mass terms of isosinglet VLQs,
which are contained in Eq. ( 2.3 ). The second part is the kinetic terms and potential of the Higgs
doublet, which are contained in Eq. ( 2.4 ). The third part is the kinetic terms of the gauge fields,
which are written in Eq. ( 2.5 ). 

The first line of Eq. ( 2.3 ) is the kinetic terms of quark doublet and isosinglet VLQs where the
definitions of the cov ariant deriv atives are written in Eqs. ( 2.7 ), ( 2.9 ), and ( 2.10 ), respecti v ely,
where g L (R ) is SU(2) L(R) gauge coupling, τ a is the Pauli matrix, g 

′ 
1 is U(1) Y 

′ gauge coupling, and
 

′ is the corresponding U(1) Y 

′ hypercharge. For the Yukawa interaction part, one can choose
a weak-basis where the Yukawa couplings of the up-type quar k doub let ( Y 

3 
u L and Y 

3 
u R ) are real

positi v e numbers. In contrast, the Yukawa couplings of the down-type quark are general com-
ple x v ectors as shown in the second line of Eq. ( 2.3 ). The derivation of this weak-basis is briefly
explained in Appendix A . The family index for SM quarks is denoted as i ∈ { 1 , 2 , 3 } and the
charge conjugation of Higgs fields is defined as ˜ φL (R ) = iτ 2 φ∗

L (R ) . In the third line of Eq. ( 2.3 ),
M T and M B 

are isosinglet VLQ mass parameters that we take as real numbers. 
The first two terms of Eq. ( 2.4 ) are the kinetic terms of the Higgs doublet where the definition

of the cov ariant deriv atives is written in Eq. ( 2.8 ). The third term is the Higgs potential, which
is shown in Eq. ( 2.6 ), containing the mass terms and quartic interactions of the Higgs doublet,
including the interaction between φL 

and φR 

. Later φR 

and φL 

acquire nonzero v e vs denoted as
v R 

and v L 

that break SU(2) R 

and SU(2) L 

, respecti v ely, and satisfy v R 

� v L 

. 

3. Quark sector and Yuka w a inter actions 
In this section, we deri v e the kinetic terms of quar k doub let and isosinglet VLQs, Yukawa
interactions, and mass terms of isosinglet VLQs that are contained in Eq. ( 2.3 ) with the
SU( 2) L 

× SU( 2) R 

× U( 1) Y 

′ symmetric Lagrangian. After the SU(2) R 

Higgs doublet acquires 
nonzero v e v, we obtain the Lagrangian, which is invariant under SM gauge symmetry. Fur-
thermore, the SM gauge group is broken into U(1) em 

after the SU(2) L 

Higgs doublet acquires
nonzero v e v. Finally, we obtain the masses of the top and bottom quark, and those of their
heavy partners, Z, Z 

′ , h , and H . FCNC and the Cabibbo–Kobayashi–Maskawa (CKM) matrix
are also generated. 

3.1. SU ( 2 ) R 

× U ( 1 ) Y 

′ → U (1 ) Y 

In this stage, the neutral scalar component of the SU(2) R 

Higgs doublet acquires nonzero vev
and is expanded around the vev as follows: 

φR 

= 

( 

χ+ 

R 

χ0 
R 

) 

= 

1 √ 

2 

( √ 

2 χ+ 

R 

v R 

+ h R 

+ iχ3 
R 

) 

, (3.1) 

where v R 

is the nonzero v e v, h R 

is the neutral CP-e v en state, and χ3 
R 

is the neutral CP-odd state.
The charged component is denoted as χ+ 

R 

= 

1 √ 

2 
(χ1 

R 

+ iχ2 
R 

) . In addition, we rotate the gauge
fields with the following transformation: ( 

B 

′ 
μ

W 

3 
Rμ

) 

= 

( 

cos θR 

− sin θR 

sin θR 

cos θR 

) ( 

B μ

Z Rμ

) 

, (3.2) 
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where the mixing angle, 

sin θR 

= 

g 

′ 
1 √ 

g 

2 
R 

+ g 

′ 2 
1 

, cos θR 

= 

g R √ 

g 

2 
R 

+ g 

′ 2 
1 

. (3.3) 

We also define the SM U(1) Y 

gauge coupling as, 

g 

′ = g 

′ 
1 cos θR 

= g R 

sin θR 

. (3.4) 

After this spontaneous symmetry breaking, the Lagrangian in Eq. ( 2.3 ) becomes 

L q = q 

i 
L 

i γ μD SM μq 

i 
L 

+ T L 

i γ μD SM μT L 

+ B L 

i γ μD SM μB L 

+ u 

i 
R 

i γ μD SM μu 

i 
R 

+ d 

i 
R 

i γ μD SM μd 

i 
R 

+ T R 

i γ μD SM μT R 

+ B R 

iγ μD SM μB R 

− g R √ 

2 

u 

i 
R 

γ μd 

i 
R 

W 

+ 

Rμ − h . c . 

+ g 

′ tan θR 

(
q 

i 
L 

γ μY q q 

i 
L 

+ 

2 

3 

T L 

γ μT L 

− 1 

3 

B L 

γ μB L 

)
Z Rμ

−
{

g R 

2 cos θR 

(
u 

i 
R 

γ μu 

i 
R 

− d 

i 
R 

γ μd 

i 
R 

)
− g 

′ tan θR 

(
2 

3 

(
u 

i 
R 

γ μu 

i 
R 

+ T R 

γ μT R 

)
− 1 

3 

(
d 

i 
R 

γ μd 

i 
R 

+ B R 

γ μB R 

))}
Z Rμ

− Y 

3 
u L q 

3 
L 

˜ φL 

T R 

− Y 

3 
u R 

v R √ 

2 

T L 

u 

3 
R 

− T L 

M T T R 

− h . c . 

− Y 

3 
u R T L 

(
1 √ 

2 

u 

3 
R 

(
h R 

+ iχ3 
R 

)− d 

3 
R 

χ+ 

R 

)
− h . c . 

− q 

i 
L 

y 

i 
d L φL 

B R 

− B L 

y 

i∗
d R 

v R √ 

2 

d 

i 
R 

− B L 

M B 

B R 

− h . c . 

− B L 

y 

i∗
d R 

(
1 √ 

2 

d 

i 
R 

(
h R 

− iχ3 
R 

)+ u 

i 
R 

χ−
R 

)
− h . c . , (3.5) 

where i ∈ { 1 , 2 , 3 } is the family inde x, and the SM covariant deri vati v es hav e the following e x-
pressions: 

D SM μq 

i 
L 

= 

(
∂ μ + ig L 

τ a 

2 

W 

a 
Lμ + ig 

′ Y q L B μ

)
q 

i 
L 

, (3.6) 

D SM μ f u = 

(
∂ μ + 

2 

3 

ig 

′ B μ

)
f u , (3.7) 

D SM μ f d = 

(
∂ μ − 1 

3 

ig 

′ B μ

)
f d , (3.8) 

where f u ∈ 

{
u 

i 
R 

, T L,R 

}
and f d ∈ 

{
d 

i 
R 

, B L,R 

}
. At this stage, the U(1) Y 

hypercharge can be ob-
tained as following Eq. ( 2.1 ), Y = I 3 R 

+ Y 

′ . In Eqs. ( 3.7 ) and ( 3.8 ), we write the U(1) Y 

hyper-
charge of the corresponding fields e xplicitly. Ne xt, we follow se v eral steps to reach the La-
grangian invariant under SU( 2) L 

× U( 1) Y 

gauge symmetry. 

� Step 1 : Rotate d 

i 
R 

by the following transformation: 

d 

i = ( V d ) i j ( d 

′ ) j , (3.9) 
R R R 
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where V d R is a 3 × 3 unitary matrix, which is related to Yukawa coupling parameterization
as shown in Eq. ( A.3 ), 

y d R = 

⎛ ⎜ ⎝ 

sin θd 
R 

sin φd 
R 

e iα
1 
d R 

sin θd 
R 

cos φd 
R 

e iα
2 
d R 

cos θd 
R 

e iα
3 
d R 

⎞ ⎟ ⎠ 

Y 

3 
d R = e d R 3 

Y 

3 
d R , (3.10) 

V d R = 

(
e d R 1 

e d R 2 
e d R 3 

)
. (3.11) 

If we m ultipl y Eq. ( 3.11 ) by the Hermitian conjugate of Eq. ( 3.10 ) from the left, it can
be shown that the terms in Eq. ( 3.5 ) which are proportional to the comple x v ector y 

∗
d R 

are
replaced by a real positi v e number Y 

3 
d R 

multiplied with δ3 j . Then, we can extract the mass
terms from the Lagrangian as follows: 

L q ⊃ L mass = −T L 

(
Y 

3 
u R 

v R √ 

2 
M T 

)( 

u 

3 
R 

T R 

) 

− h . c . 

− B L 

(
Y 

3 
d R 

v R √ 

2 
M B 

)( (
d 

′ 
R 

)3 

B R 

) 

− h . c . . (3.12) 

After doing transformation in Eq. ( 3.9 ), V d R appears as a CKM-like matrix in the right-
handed charged current term, 

L q ⊃ L RCC 

= − g R √ 

2 

3 ∑ 

i, j=1 

u 

i 
R 

γ μ ( V d R ) 
i j (d 

′ 
R 

) j 
W 

+ 

Rμ − h . c . . (3.13) 

Equation ( 3.12 ) shows that the first and second families are decoupled from the Yukawa
coupling. This leads to the fact that we have the freedom to do another U(2) transformation
for the right-handed quark fields. This rotation should keep the third family unchanged. 

� Step 2: Rotate u 

i 
R 

and (d 

′ 
R 

) i by the following transformations: 

u 

i 
R 

= 

3 ∑ 

j=1 

(˜ U u R 

)i j 
( ̃  u R 

) j , (3.14) 

(
d 

′ 
R 

)i = 

3 ∑ 

j=1 

(˜ W d R 

)i j 
(

˜ d 

′ 
R 

) j 
, (3.15) 

where ˜ U u R and 

˜ W d R are 3 × 3 unitary matrices and written in matrix form as follows: 

˜ U u R = 

⎛ ⎜ ⎝ 

0 

U u R 0 

0 0 1 

⎞ ⎟ ⎠ 

, (3.16) 

˜ W d R = 

⎛ ⎜ ⎝ 

0 

W d R 0 

0 0 1 

⎞ ⎟ ⎠ 

, (3.17) 

where U u R and W d R are 2 × 2 unitary matrices that rotate (u 

1 
R 

, u 

2 
R 

) and ((d 

′ 
R 

) 1 , (d 

′ 
R 

) 2 ) , respec-
ti v el y. By a ppl ying the transformations in Eqs. ( 3.14 ) and ( 3.15 ) to the charged current in
Eq. ( 3.13 ), we further define ˜ V d R = 

˜ U 

† 
u R V d R ̃

 W d R . (3.18) 
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As shown in Eq. ( B.6 ), by choosing 

˜ U u R and ̃

 W d R properly, the unphysical phases and angles
in V d R are removed and 

˜ V d R has the following matrix form: 

˜ V d R = 

⎛ ⎜ ⎜ ⎜ ⎝ 

1 0 0 

0 cos θd 
R 

sin θd 
R 

e i 
α3 

d R 
2 

0 − sin θd 
R 

e i 
α3 

d R 
2 cos θd 

R 

e iα
3 
d R 

⎞ ⎟ ⎟ ⎟ ⎠ 

. (3.19) 

The details of the parameterization and the procedure for the removal of unphysical phases
and angles of V d R are shown in Appendix B. 

� Step 3 : Rotate ( ̃  u R 

) α and ( ˜ d 

′ 
R 

) α by the following transformations: 

( ̃  u R 

) α = 

4 ∑ 

β=1 

(˜ W T R 

)αβ (
˜ u 

′ 
R 

)β
, (3.20) 

(
˜ d 

′ 
R 

)α

= 

4 ∑ 

β=1 

(˜ W B R 

)αβ
(

˜ d 

′′ 
R 

)β

, (3.21) 

where α = { 1 , 2 , 3 , 4 } , ( ̃  u R 

) 4 = T R 

, and ( ˜ d 

′ 
R 

) 4 = B R 

. The 4 × 4 unitary matrices ̃  W T R and ̃

 W B R 

ar e expr essed as follows: 

˜ W T R = 

( 

I 2 0 2 

0 2 W T R 

) 

, (3.22) 

˜ W B R = 

( 

I 2 0 2 

0 2 W B R 

) 

, (3.23) 

where I 2 and 0 2 are the 2 × 2 identity matrix and zero matrix, respecti v ely. The 2 × 2 sub-
matrices W T R and W B R rotate ( ( ̃  u R 

) 3 , ( ̃  u R 

) 4 ) and ( ( ˜ d 

′ 
R 

) 3 , ( ˜ d 

′ 
R 

) 4 ) , respecti v ely, by the following
expressions: 

( ̃  u R 

) i = 

4 ∑ 

j=3 

( W T R ) 
i j ( ˜ u 

′ 
R 

) j 
, (3.24) 

(
˜ d 

′ 
R 

)i 
= 

4 ∑ 

j=3 

( W B R ) 
i j 
(

˜ d 

′′ 
R 

) j 
, (3.25) 

where i ∈ { 3 , 4 } . The explicit matrix forms of W T R and W B R are as follows: 

W T R = 

( 

cos θT R sin θT R 

− sin θT R cos θT R 

) 

, (3.26) 

W B R = 

( 

cos θB R sin θB R 

− sin θB R cos θB R 

) 

, (3.27) 

where the mixing angles have the following expressions: 

cos θT R = 

M T 

m u 4 
, sin θT R = 

Y 

3 
u R 

m u 4 

v R √ 

2 

, cos θB R = 

M B 

m d 4 
, sin θB R = 

Y 

3 
d R 

m d 4 

v R √ 

2 

, 

m u 4 = 

√ (
Y 

3 
u R 

)2 
v 2 R 

2 

+ M 

2 
T , m d 4 = 

√ √ √ √ 

(
Y 

3 
d R 

)2 
v 2 R 

2 

+ M 

2 
B 

. (3.28) 
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By using Eqs. ( 3.24 ) and ( 3.25 ), the mass terms in Eq. ( 3.12 ) transform into 

L q ⊃ L mass = −m u 4 T L 

(
˜ u 

′ 
R 

)4 − m d 4 B L 

(
˜ d 

′′ 
R 

)4 
− h . c . . (3.29) 

The right-handed charged current in Eq. ( 3.13 ) becomes 

L q ⊃ L RCC 

= − g R √ 

2 

4 ∑ 

α,β=1 

(
˜ u 

′ 
R 

)α
γ μ

(
V 

CKM 

R 

)αβ
(

˜ d 

′′ 
R 

)β

W 

+ 

Rμ − h . c . , (3.30) 

where 

(
V 

CKM 

R 

)αβ = 

3 ∑ 

i, j=1 

(˜ W 

† 
T R 

)αi (
˜ V d R 

)i j (˜ W B R 

) jβ ; α, β ∈ { 1 , 2 , 3 , 4 } (3.31) 

is a 4 × 4 “intermedia te” right-handed CKM-like ma trix. We call this ma trix intermedia te
because it is not the final expression of the right-handed CKM-like matrix. The explicit
matrix form of V 

CKM 

R 

is shown in Eq. ( D.1 ). 
In addition, we define the right-handed weak isospin current in Eq. ( 3.5 ) as 

j μ3 R 

≡ u 

i 
R 

γ μu 

i 
R 

− d 

i 
R 

γ μd 

i 
R 

. (3.32) 

Following steps 1–3, Eq. ( 3.32 ) transforms into 

j μ3 R 

= 

2 ∑ 

i=1 

(
˜ u 

′ 
R 

)i 
γ μ

(
˜ u 

′ 
R 

)i + 

4 ∑ 

j,k=3 

(
˜ u 

′ 
R 

) j 
γ μ ( Z T R ) 

jk ( ˜ u 

′ 
R 

)k 

−
2 ∑ 

i=1 

(
˜ d 

′′ 
R 

)i 
γ μ

(
˜ d 

′′ 
R 

)i 
−

4 ∑ 

j,k=3 

(
˜ d 

′′ 
R 

) j 
γ μ ( Z B R ) 

jk 
(

˜ d 

′′ 
R 

)k 
, (3.33) 

where the tree-le v el FCNC couplings are generated with the following definitions: 

( Z T R ) 
jk ≡

(
W 

† 
T R 

) j3 
( W T R ) 

3 k , (3.34) 

( Z B R ) 
jk ≡

(
W 

† 
B R 

) j3 
( W B R ) 

3 k , (3.35) 

with j, k ∈ { 3 , 4 } . Furthermor e, Eqs. ( 3.34 ) and ( 3.35 ) can be expr essed explicitly in 2 × 2
matrix form as follows: 

Z T R = 

( 

cos 2 θT R sin θT R cos θT R 

sin θT R cos θT R sin 

2 
θT R 

) 

, (3.36) 

Z B R = 

( 

cos 2 θB R sin θB R cos θB R 

sin θB R cos θB R sin 

2 
θB R 

) 

. (3.37) 

These tree-le v el FCNC couplings are generated due to mixing between the thir d flavor of 
up and down quarks and their corresponding isosinglet right-handed VLQs. 
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After following steps 1–3, the Lagrangian in Eq. ( 3.5 ) becomes 

L q = q 

i 
L 

i γ μD SM μq 

i 
L 

+ T L 

i γ μD SM μT L 

+ B L 

i γ μD SM μB L 

+ 

(
˜ u 

′ 
R 

)α
i γ μD SM μ

(
˜ u 

′ 
R 

)α + 

(
˜ d 

′′ 
R 

)α

i γ μD SM μ

(
˜ d 

′′ 
R 

)α

− g R √ 

2 

4 ∑ 

α,β=1 

(
˜ u 

′ 
R 

)α
γ μ

(
V 

CKM 

R 

)αβ
(

˜ d 

′′ 
R 

)β

W 

+ 

Rμ − h . c . 

+ g 

′ tan θR 

(
q 

i 
L 

γ μY q q 

i 
L 

+ 

2 

3 

T L 

γ μT L 

− 1 

3 

B L 

γ μB L 

)
Z Rμ

−
{

g R 

2 cos θR 

(
j μ3 R 

)
− g 

′ tan θR 

(
2 

3 

(
˜ u 

′ 
R 

)α
γ μ

(
˜ u 

′ 
R 

)α − 1 

3 

(
˜ d 

′′ 
R 

)α

γ μ
(

˜ d 

′′ 
R 

)α
)}

Z Rμ

− Y 

3 
u L q 

3 
L 

˜ φL 

⎛ ⎝ 

4 ∑ 

j=3 

( W T R ) 
4 j ( ˜ u 

′ 
R 

) j 

⎞ ⎠ − m u 4 T L 

(
˜ u 

′ 
R 

)4 − h . c . 

− m u 4 

v R 

T L 

⎡ ⎣ 

⎛ ⎝ 

4 ∑ 

j=3 

( Z T R ) 
4 j ( ˜ u 

′ 
R 

) j 

⎞ ⎠ 

(
h R 

+ iχ3 
R 

)−
√ 

2 

⎛ ⎝ 

4 ∑ 

β=2 

(
V 

CKM 

R 

)4 β
(

˜ d 

′′ 
R 

)β

⎞ ⎠ χ+ 

R 

⎤ ⎦ − h . c . 

− q 

i 
L 

y 

i 
d L φL 

⎛ ⎝ 

4 ∑ 

j=3 

( W B R ) 
4 j 
(

˜ d 

′′ 
R 

) j 

⎞ ⎠ − m d 4 B L 

(
˜ d 

′′ 
R 

)4 
− h . c . 

− m d 4 

v R 

B L 

⎡ ⎣ 

⎛ ⎝ 

4 ∑ 

j=3 

( Z B R ) 
4 j 
(

˜ d 

′′ 
R 

) j 

⎞ ⎠ 

(
h R 

− iχ3 
R 

) + 

√ 

2 

⎛ ⎝ 

4 ∑ 

β=2 

(
V 

CKM † 
R 

)4 β (
˜ u 

′ 
R 

)β⎞ ⎠ χ−
R 

⎤ ⎦ − h . c . , 

(3.38)

where i = { 1 , 2 , 3 } , α = { 1 , 2 , 3 , 4 } , and the definitions of W T R , W B R , m u 4 , m d 4 , V 

CKM 

R 

, Z T R , and
Z B R are written in Eqs. ( 3.26 ), ( 3.27 ), ( 3.28 ), ( D.1 ), ( 3.36 ), and ( 3.37 ), respecti v ely. One can show
that the Lagrangian in Eq. ( 3.38 ) is invariant under SU( 2) L 

× U( 1) Y 

gauge symmetry. 

3.2. SU ( 2 ) L 

× U ( 1 ) Y 

→ U (1 ) em 

In this stage, the neutral scalar component of the SU(2) L 

Higgs doublet acquires nonzero v e v
and is expanded around vev’s as follows: 

φL 

= 

( 

χ+ 

L 

χ0 
L 

) 

= 

1 √ 

2 

( √ 

2 χ+ 

L 

v L 

+ h L 

+ iχ3 
L 

) 

, (3.39) 

where v L 

is the nonzero v e v, h L 

is the neutral CP-e v en state, and χ3 
L 

is the neutral CP-odd state.
The charged component, χ+ 

L 

= 

1 √ 

2 
(χ1 

L 

+ iχ2 
L 

) . In addition, we rotate the gauge fields with the
f ollowing transf ormation: ( 

B μ

W 

3 
Lμ

) 

= 

( 

cos θW 

− sin θW 

sin θW 

cos θW 

) ( 

A μ

Z Lμ

) 

, (3.40) 

where the mixing angles are defined as 

cos θW 

= 

g L √ 

g 

2 
L 

+ g 

′ 2 
, sin θW 

= 

g 

′ √ 

g 

2 
L 

+ g 

′ 2 
. (3.41) 
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We also define the electromagnetic U(1) em 

gauge coupling as 

e = g 

′ cos θW 

= g L 

sin θW 

. (3.42) 

After this breaking, the Lagrangian in Eq. ( 3.38 ) becomes 

L q = u 

i 
L 

i γ μD em μu 

i 
L 

+ T L 

i γ μD em μT L 

+ d 

i 
L 

i γ μD em μd 

i 
L 

+ B L 

i γ μD em μB L 

+ 

(
˜ u 

′ 
R 

)α
i γ μD em μ

(
˜ u 

′ 
R 

)α + 

(
˜ d 

′′ 
R 

)α

i γ μD em μ

(
˜ d 

′′ 
R 

)α

− g L √ 

2 

u 

i 
L 

γ μd 

i 
L 

W 

+ 

Lμ − h . c . 

−
(

g L 

2 cos θW 

(
j μ3 L 

)− e tan θW 

(
j μem 

))
Z Lμ

− g R √ 

2 

4 ∑ 

α,β=1 

(
˜ u 

′ 
R 

)α
γ μ

(
V 

CKM 

R 

)αβ
(

˜ d 

′′ 
R 

)β

W 

+ 

Rμ − h . c . 

−
{

g R 

2 cos θR 

(
j μ3 R 

)
− g 

′ tan θR 

((
j μem 

)− 1 

2 

(
j μ3 L 

))}
Z Rμ

− Y 

3 
u L 

v L √ 

2 

u 

3 
L 

⎛ ⎝ 

4 ∑ 

j=3 

( W T R ) 
4 j ( ˜ u 

′ 
R 

) j 

⎞ ⎠ − m u 4 T L 

(
˜ u 

′ 
R 

)4 − h . c . 

− Y 

3 
u L 

⎛ ⎝ 

1 √ 

2 

u 

3 
L 

⎛ ⎝ 

4 ∑ 

j=3 

( W T R ) 
4 j ( ˜ u 

′ 
R 

) j 

⎞ ⎠ 

(
h L 

− iχ3 
L 

)− d 

3 
L 

⎛ ⎝ 

4 ∑ 

j=3 

( W T R ) 
4 j ( ˜ u 

′ 
R 

) j 

⎞ ⎠ χ−
L 

⎞ ⎠ − h . c . 

− m u 4 

v R 

T L 

⎡ ⎣ 

⎛ ⎝ 

4 ∑ 

j=3 

( Z T R ) 
4 j ( ˜ u 

′ 
R 

) j 

⎞ ⎠ 

(
h R 

+ iχ3 
R 

)−
√ 

2 

⎛ ⎝ 

4 ∑ 

β=2 

(
V 

CKM 

R 

)4 β
(

˜ d 

′′ 
R 

)β

⎞ ⎠ χ+ 

R 

⎤ ⎦ − h . c . 

− y 

i 
d L 

v L √ 

2 

d 

i 
L 

⎛ ⎝ 

4 ∑ 

j=3 

( W B R ) 
4 j 
(

˜ d 

′′ 
R 

) j 

⎞ ⎠ − m d 4 B L 

(
˜ d 

′′ 
R 

)4 
− h . c . 

− y 

i 
d L 

⎛ ⎝ 

1 √ 

2 

d 

i 
L 

⎛ ⎝ 

4 ∑ 

j=3 

( W B R ) 
4 j 
(

˜ d 

′′ 
R 

) j 

⎞ ⎠ 

(
h L 

+ iχ3 
L 

)+ u 

i 
L 

⎛ ⎝ 

4 ∑ 

j=3 

( W B R ) 
4 j 
(

˜ d 

′′ 
R 

) j 

⎞ ⎠ χ+ 

L 

⎞ ⎠ − h . c . 

− m d 4 

v R 

B L 

⎡ ⎣ 

⎛ ⎝ 

4 ∑ 

j=3 

( Z B R ) 
4 j 
(

˜ d 

′′ 
R 

) j 

⎞ ⎠ 

(
h R 

− iχ3 
R 

) + 

√ 

2 

⎛ ⎝ 

4 ∑ 

β=2 

(
V 

CKM † 
R 

)4 β (
˜ u 

′ 
R 

)β⎞ ⎠ χ−
R 

⎤ ⎦ − h . c . , 

(3.43)

where the covariant deri vati v es are 

D em μ f ′ u = 

(
∂ μ + 

2 

3 

ieA μ

)
f ′ u , (3.44) 

D em μ f ′ d = 

(
∂ μ − 1 

3 

ieA μ

)
f ′ d . (3.45) 

The left-handed weak isospin current and electromagnetic current are 

j μ = u 

i 
L 

γ μu 

i 
L 

− d 

i 
L 

γ μd 

i 
L 

, (3.46) 
3 L 
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j μem 

= 

2 

3 

(
u 

i 
L 

γ μu 

i 
L 

+ T L 

γ μT L 

+ 

(
˜ u 

′ 
R 

)α
γ μ

(
˜ u 

′ 
R 

)α)
− 1 

3 

(
d 

i 
L 

γ μd 

i 
L 

+ B L 

γ μB L 

+ 

(
˜ d 

′′ 
R 

)α

γ μ
(

˜ d 

′′ 
R 

)α)
, (3.47) 

where f ′ u ∈ 

{
u 

i 
L 

, ( ̃  u 

′ 
R 

) α, T L 

}
, f ′ d ∈ 

{ 

d 

i 
L 

, ( ˜ d 

′′ 
R 

) α, B L 

} 

, i ∈ { 1 , 2 , 3 } , α ∈ { 1 , 2 , 3 , 4 } , and the right-

handed weak isospin current j μ3 R 

is written in Eq. ( 3.33 ). Our main goal is to obtain the mass
eigenvalues of the top and bottom quarks and their heavy partners. The following steps outline
our approach (the number of counting steps continues from the previous subsection). 

� Step 4: Rotate d 

i 
L 

by the following transformation: 

d 

i 
L 

= ( V d L ) 
i j (d 

′ 
L 

) j 
, (3.48) 

where V d L is a 3 × 3 unitary ma trix, associa ted with the parameterization of Yukawa cou-
plings as demonstrated in Eq. ( A.3 ), 

y d L = 

⎛ ⎜ ⎝ 

sin θd 
L 

sin φd 
L 

e iα
1 
d L 

sin θd 
L 

cos φd 
L 

e iα
2 
d L 

cos θd 
L 

e iα
3 
d L 

⎞ ⎟ ⎠ 

Y 

3 
d L = e d L 3 

Y 

3 
d L , (3.49) 

V d L = 

(
e d L 1 

e d L 2 
e d L 3 

)
. (3.50) 

If we m ultipl y Eq. ( 3.49 ) by the Hermitian conjugate of Eq. ( 3.50 ) from the left, it can be
shown that the terms in Eq. ( 3.43 ) that are proportional to the complex vector y d L are re-
placed by the product of a real positi v e number Y 

3 
d L 

and δ j3 . The mass terms can be extracted
from the Lagrangian and written as follows: 

L q ⊃ L mass = −
(

u 

3 
L 

T L 

)( 

Y 

3 
u L 

v L √ 

2 
( W T R ) 

43 Y 

3 
u L 

v L √ 

2 
( W T R ) 

44 

0 m u 4 

) ( (
˜ u 

′ 
R 

)3 (
˜ u 

′ 
R 

)4 

) 

− h . c . 

−
((

d 

′ 
L 

)3 
B L 

)( 

Y 

3 
d L 

v L √ 

2 
( W B R ) 

43 Y 

3 
d L 

v L √ 

2 
( W B R ) 

44 

0 m d 4 

) 

⎛ ⎜ ⎝ 

(
˜ d 

′′ 
R 

)3 (
˜ d 

′′ 
R 

)4 

⎞ ⎟ ⎠ 

− h . c . . 

(3.51) 

Additionally, an important outcome of the transformation in Eq. ( 3.48 ) is that V d L appears
as a CKM-like matrix in the left-handed charged current term, 

L q ⊃ L LCC 

= − g L √ 

2 

3 ∑ 

i, j=1 

u 

i 
L 

γ μ ( V d L ) 
i j (d 

′ 
L 

) j 
W 

+ 

Lμ − h . c . . (3.52) 

From Eq. ( 3.51 ), we have freedom to a ppl y another U(2) transformation to the left-handed
quark fields while keeping the third family unchanged. 

� Step 5: Rotate u 

i 
L 

and (d 

′ 
L 

) i by the following transformations: 

u 

i 
L 

= 

3 ∑ 

j=1 

(˜ U u L 

)i j 
( ̃  u L 

) j , (3.53) 

(
d 

′ 
L 

)i = 

3 ∑ 

j=1 

(˜ W d L 

)i j 
(

˜ d 

′ 
L 

) j 
, (3.54) 
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where ˜ U u L and 

˜ W d L are 3 × 3 unitary matrices and written in the matrix form as follows: 

˜ U u L = 

⎛ ⎜ ⎝ 

0 

U u L 0 

0 0 1 

⎞ ⎟ ⎠ 

, (3.55) 

˜ W d L = 

⎛ ⎜ ⎝ 

0 

W d L 0 

0 0 1 

⎞ ⎟ ⎠ 

, (3.56) 

where U u L and W d L are 2 × 2 unitary matrices which rotate (u 

1 
L 

, u 

2 
L 

) and ( ( d 

′ 
L 

) 1 , ( d 

′ 
L 

) 2 ) , re-
specti v el y. By a ppl ying the transformations in Eqs. ( 3.53 ) and ( 3.54 ) to the charged current
in Eq. ( 3.52 ), we further define 

˜ V d L = 

˜ U 

† 
u L V d L ̃

 W d L . (3.57) 

By properly choosing 

˜ U u L and ̃

 W d L , the unphysical phases and angles in V d L are eliminated,
resulting in 

˜ V d L , which has the same matrix form as Eq. ( 3.19 ), with the R index replaced
by L . 

� Step 6: Rotate ( ̃  u L 

) α, ( ̃  u 

′ 
R 

) α, ( ˜ d 

′ 
L 

) α, and ( ˜ d 

′′ 
R 

) α into the mass basis by the f ollowing transf or-
mations: 

( ̃  u L 

) α = 

4 ∑ 

β=1 

(˜ K T L 

)αβ (
u 

m 

L 

)β
, (3.58) 

(
˜ u 

′ 
R 

)α = 

4 ∑ 

β=1 

(˜ K T R 

)αβ (
u 

m 

R 

)β
, (3.59) 

(
˜ d 

′ 
L 

)α

= 

4 ∑ 

β=1 

(˜ K B L 

)αβ (
d 

m 

L 

)β
, (3.60) 

(
˜ d 

′′ 
R 

)α

= 

4 ∑ 

β=1 

(˜ K B R 

)αβ (
d 

m 

R 

)β
, (3.61) 

where α ∈ { 1 , 2 , 3 , 4 } , ( ̃  u L 

) 4 = T L 

, and ( ˜ d 

′ 
L 

) 4 = B L 

. The 4 × 4 unitary matrices ˜ K T L , ˜ K T R , ˜ K B L ,
and 

˜ K B R are expressed as follows: 

˜ K T L = 

( 

I 2 0 2 

0 2 K T L 

) 

, (3.62) 

˜ K T R = 

( 

I 2 0 2 

0 2 K T R 

) 

, (3.63) 

˜ K B L = 

( 

I 2 0 2 

0 2 K B L 

) 

, (3.64) 

˜ K B R = 

( 

I 2 0 2 

0 2 K B R 

) 

, (3.65) 

where I 2 and 0 2 are the 2 × 2 identity matrix and zero matrix, respecti v ely. The 2 × 2 unitary
submatrices K T L , K T R , K B L , and K B R rotate ( ( ̃  u L 

) 3 , ( ̃  u L 

) 4 ) , ( ( ̃  u 

′ 
R 

) 3 , ( ̃  u 

′ 
R 

) 4 ) , ( ( ˜ d 

′ 
L 

) 3 , ( ˜ d 

′ 
L 

) 4 ) , and
( ( ˜ d 

′′ 
R 

) 3 , ( ˜ d 

′′ 
R 

) 4 ) pairs, respecti v el y, w here the explicit forms are written in Eqs. ( C .19 ), ( C .20 ),
( C.24 ), and ( C.25 ). 
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We denote the top and bottom quarks as the third component of the fields in the mass basis,
while the heavy top and bottom quarks are the fourth component. We can diagonalize the
mass matrices in Eq. ( 3.51 ), which are defined as 

M t ≡
( 

Y 

3 
u L 

v L √ 

2 
(W T R ) 

43 Y 

3 
u L 

v L √ 

2 
(W T R ) 

44 

0 m u 4 

) 

, (3.66) 

M b ≡
( 

Y 

3 
d L 

v L √ 

2 
(W B R ) 

43 Y 

3 
d L 

v L √ 

2 
(W B R ) 

44 

0 m d 4 

) 

, (3.67) 

by using the appropriate submatrices in Eqs. ( 3.58 )–( 3.61 ), resulting in: 

K 

† 
T L 

M t K T R = 

(
m 

diag 
t 

)
= diag ( m t , m t ′ ) , (3.68) 

K 

† 
B L 

M b K B R = 

(
m 

diag 
b 

)
= diag ( m b , m b ′ ) . (3.69) 

From this diagonalization process, we obtain 

m t(b) = −
√ 

M 

2 
T (B) + (m u (d ) R − m u (d ) L ) 2 

2 

+ 

√ 

M 

2 
T (B) + (m u (d ) R + m u (d ) L ) 2 

2 

, (3.70) 

m t ′ (b ′ ) = 

√ 

M 

2 
T (B) + (m u (d ) R − m u (d ) L ) 2 

2 

+ 

√ 

M 

2 
T (B) + (m u (d ) R + m u (d ) L ) 2 

2 

, (3.71) 

where m t(b) and m t ′ (b ′ ) are the exact mass eigenvalues for the top(bottom) and heavy
top(bottom), respecti v ely. The definitions of m u L , m u R , m d L , and m d R are shown in Eqs. ( C.16 )
and ( C .23 ). The diagonaliza tion procedure is explained in Appendix C . The mass eigenval-
ues for t and t ′ in Eqs. ( 3.70 ) and ( 3.71 ) agree with Eq. (10) of Ref. [ 31 ]. 
Moreover, the left-handed and right-handed charged currents in Eqs. ( 3.52 ) and ( 3.30 ) now
become 

L q ⊃ L CC 

= L LCC 

+ L RCC 

= − g L √ 

2 

4 ∑ 

α,β=1 

(
u 

m 

L 

)α
γ μ

(
V 

CKM 

L 

)αβ (
d 

m 

L 

)β
W 

+ 

Lμ − h . c . 

− g R √ 

2 

4 ∑ 

α,β=1 

(
u 

m 

R 

)α
γ μ

(
V 

CKM 

R 

)αβ (
d 

m 

R 

)β
W 

+ 

Rμ − h . c . , (3.72) 

where (
V 

CKM 

L 

)αβ = 

3 ∑ 

i, j=1 

(˜ K 

† 
T L 

)αi (˜ V d L 

)i j (˜ K B L 

) jβ
, (3.73) 

(
V 

CKM 

R 

)αβ = 

4 ∑ 

ρ,η=1 

(˜ K 

† 
T R 

)αρ (
V 

CKM 

R 

)ρη (˜ K B R 

)ηβ
(3.74) 

are the left-handed and right-handed CKM-like matrices, respecti v ely. The matrix forms
are shown in Eqs. ( D.3 ) and ( D.5 ), respecti v ely. Howe v er, ther e ar e some unphysical phases
which can be eliminated from the left-handed and right-handed CKM-like matrices. We
have the freedom to rephase the quark fields with the following transformations: (

u 

m 

L ( R ) 

)α

= 

(
θu L ( R ) 

)α
δαβ

(
ˆ u 

m 

L ( R ) 

)β

, (3.75) 
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(
d 

m 

L ( R ) 

)α

= 

(
θd L ( R ) 

)α
δαβ

(
ˆ d 

m 

L ( R ) 

)β

, (3.76) 

where 

θu L (R ) = diag (e iθu L (R )1 , e iθu L (R )2 , e iθu 3 , e iθu 4 ) , (3.77) 

θd L (R ) = diag (e iθd L (R )1 , e iθd L (R )2 , e iθd 3 , e iθd 4 ) . (3.78) 

After rephasing the quark fields, the left-handed and right-handed CKM-like matrices be- 
come the final versions denoted as ˆ V 

CKM 

L 

and 

ˆ V 

CKM 

R 

, whose matrix forms are as follows: 

ˆ V 

CKM 

L 

= 

⎛ ⎜ ⎜ ⎜ ⎝ 

1 0 0 0 

0 c θd 
L 

s θd 
L 
c φB L 

−s θd 
L 
s φB L 

0 −c φT L 
s θd 

L 
c φT L 

c θd 
L 
c φB L 

−c φT L 
c θd 

L 
s φB L 

0 s φT L 
s θd 

L 
−s φT L 

c θd 
L 
c φB L 

s φT L 
c θd 

L 
s φB L 

⎞ ⎟ ⎟ ⎟ ⎠ 

, (3.79) 

ˆ V 

CKM 

R 

= 

⎛ ⎜ ⎜ ⎜ ⎝ 

1 0 0 0 

0 c θd 
R 

−s θd 
R 
c βB R 

e i 
δ
2 s θd 

R 
s βB R 

e i 
δ
2 

0 c βT R 
s θd 

R 
e i 

δ
2 c βT R 

c θd 
R 
c βB R 

e iδ −c βT R 
c θd 

R 
s βB R 

e iδ

0 −s βT R 
s θd 

R 
e i 

δ
2 −s βT R 

c θd 
R 
c βB R 

e iδ s βT R 
c θd 

R 
s βB R 

e iδ

⎞ ⎟ ⎟ ⎟ ⎠ 

, (3.80) 

where 

c θd 
L 

= cos θd 
L 

, s θd 
L 

= sin θd 
L 

, c φT L 
= cos φT L , 

s φT L 
= sin φT L , c φB L 

= cos φB L , s φB L 
= sin φB L , 

c θd 
R 

= cos θd 
R 

, s θd 
R 

= sin θd 
R 

, c βT R 
= cos βT R , 

s βT R 
= sin βT R , c βB R 

= cos βB R , s βB R 
= sin βB R , 

βT R = θT R − φT R , βB R = θB R − φB R , δ = α3 
d R − α3 

d L . (3.81) 

The number of the CP-violating phase in this model is one. This agrees with the result in Ref.
[ 18 ] for the N = 1 case. The details of the rephasing process are explained in Appendix D . 
In addition, the final expressions of the left-handed FCNC couplings, which appear in the
left-handed weak isospin current in Eq. ( 3.46 ), are defined as follows: 

( Z T L ) 
i j ≡

(
K 

† 
T L 

)i3 
( K T L ) 

3 j , (3.82) 

( Z B L ) 
i j ≡

(
K 

† 
B L 

)i3 
( K B L ) 

3 j , (3.83) 

where i, j ∈ { 3 , 4 } . These hav e e xplicit matrix f orm as f ollows: 

Z T L = 

( 

cos 2 φT L − sin φT L cos φT L 

− sin φT L cos φT L sin 

2 
φT L 

) 

, (3.84) 

Z B L = 

( 

cos 2 φB L − sin φB L cos φB L 

− sin φB L cos φB L sin 

2 
φB L 

) 

. (3.85) 

Similarly, for the right-handed weak isospin current from Eq. ( 3.33 ), the intermediate right-
handed FCNC couplings transform into their final expressions as 
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( Z T R ) 
i j ≡

4 ∑ 

k,l=3 

(
K 

† 
T R 

)ik 
( Z T R ) 

kl ( K T R ) 
l j , (3.86) 

( Z B R ) 
i j ≡

4 ∑ 

k,l=3 

(
K 

† 
B R 

)ik 
( Z B R ) 

kl ( K B R ) 
l j 

, (3.87) 

where i, j ∈ { 3 , 4 } . These can be expressed in matrix f orm as f ollows: 

Z T R = 

( 

cos 2 βT R − sin βT R cos βT R 

− sin βT R cos βT R sin 

2 
βT R 

) 

, (3.88) 

Z B R = 

( 

cos 2 βB R − sin βB R cos βB R 

− sin βB R cos βB R sin 

2 
βB R 

) 

, (3.89) 

with βT R = θT R − φT R and βB R = θB R − φB R . 

Finally, we obtain the expression of the Lagrangian for the quark and Yukawa interaction
after following all steps as follows: 

L q = 

4 ∑ 

α=1 

( ̂  u 

m ) αi γ μD em μ ( ̂  u 

m ) α + 

4 ∑ 

α=1 

( ˆ d 

m ) αi γ μD em μ( ˆ d 

m ) α

− g L √ 

2 

⎛ ⎝ 

4 ∑ 

α,β=1 

(
ˆ u 

m 

L 

)α
γ μ

(
ˆ V 

CKM 

L 

)αβ (
ˆ d 

m 

L 

)β

W 

+ 

Lμ + h . c . 

⎞ ⎠ 

−
(

g L 

2 cos θW 

(
j μ3 L 

)− e tan θW 

(
j μem 

))
Z Lμ

− g R √ 

2 

⎛ ⎝ 

4 ∑ 

α,β=1 

(
ˆ u 

m 

R 

)α
γ μ

(
ˆ V 

CKM 

R 

)αβ (
ˆ d 

m 

R 

)β

W 

+ 

Rμ + h . c . 

⎞ ⎠ 

−
{

g R 

2 cos θR 

(
j μ3 R 

)
− g 

′ tan θR 

((
j μem 

)− 1 

2 

(
j μ3 L 

))}
Z Rμ

−
4 ∑ 

j=3 

(
m 

diag 
t 

) j j 
( ̂  u 

m ) j ( ̂  u 

m ) j −
4 ∑ 

j=3 

(
m 

diag 
b 

) j j 
( ˆ d 

m ) j ( ˆ d 

m ) j 

− 1 

v L 

4 ∑ 

k,i=3 

((
Z T L m 

diag 
t 

)ki (
ˆ u 

m 

L 

)k ( ˆ u 

m 

R 

)i + 

(
m 

diag 
t Z T L 

)ki (
ˆ u 

m 

R 

)k ( ˆ u 

m 

L 

)i 

+ 

(
Z B L m 

diag 
b 

)ki (
ˆ d 

m 

L 

)k (
ˆ d 

m 

R 

)i 
+ 

(
m 

diag 
b Z B L 

)ki (
ˆ d 

m 

R 

)k (
ˆ d 

m 

L 

)i 
) 

h L 

−
√ 

2 

v L 

[ 

4 ∑ 

k=3 

4 ∑ 

α=2 

((
ˆ u 

m 

L 

)α ( ˆ V 

CKM 

L 

m 

diag 
b 

)αk (
ˆ d 

m 

R 

)k 
− (

ˆ u 

m 

R 

)k 
(

m 

diag 
t 

ˆ V 

CKM 

L 

)kα (
ˆ d 

m 

L 

)α
)

χ+ 

L 

+ h . c .

(3.9
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+ 

1 

v L 

4 ∑ 

k,i=3 

((
Z T L m 

diag 
t 

)ki (
ˆ u 

m 

L 

)k ( ˆ u 

m 

R 

)i −
(

m 

diag 
t Z T L 

)ki (
ˆ u 

m 

R 

)k ( ˆ u 

m 

L 

)i 

−
(
Z B L m 

diag 
b 

)ki (
ˆ d 

m 

L 

)k (
ˆ d 

m 

R 

)i 
+ 

(
m 

diag 
b Z B L 

)ki (
ˆ d 

m 

R 

)k (
ˆ d 

m 

L 

)i 
) 

iχ3 
L 

− 1 

v R 

4 ∑ 

k,i=3 

((
( 1 − Z T L ) m 

diag 
t Z T R 

)ki (
ˆ u 

m 

L 

)k ( ˆ u 

m 

R 

)i + 

(
Z T R m 

diag 
t ( 1 − Z T L ) 

)ki (
ˆ u 

m 

R 

)k ( ˆ u 

m 

L 

)i 

+ 

(
( 1 − Z B L ) m 

diag 
b Z B R 

)ki (
ˆ d 

m 

L 

)k (
ˆ d 

m 

R 

)i 
+ 

(
Z B R m 

diag 
b ( 1 − Z B L ) 

)ki (
ˆ d 

m 

R 

)k (
ˆ d 

m 

L 

)i 
) 

h R 

−
√ 

2 

v R 

[ 

4 ∑ 

k=3 

4 ∑ 

α=2 

((
ˆ u 

m 

R 

)α ( ˆ V 

CKM 

R 

m 

diag 
b ( 1 − Z B L ) 

)αk (
ˆ d 

m 

L 

)k 

− (
ˆ u 

m 

L 

)k 
(

( 1 − Z T L ) m 

diag 
t 

ˆ V 

CKM 

R 

)kα (
ˆ d 

m 

R 

)α
)

χ+ 

R 

+ h . c . 
]

+ 

1 

v R 

4 ∑ 

k,i=3 

( (
( 1 − Z B L ) m 

diag 
b Z B R 

)ki (
ˆ d 

m 

L 

)k (
ˆ d 

m 

R 

)i 
−
(
Z B R m 

diag 
b ( 1 − Z B L ) 

)ki (
ˆ d 

m 

R 

)k (
ˆ d 

m 

L 

)i 

−
(

( 1 − Z T L ) m 

diag 
t Z T R 

)ki (
ˆ u 

m 

L 

)k ( ˆ u 

m 

R 

)i + 

(
Z T R m 

diag 
t ( 1 − Z T L ) 

)ki (
ˆ u 

m 

R 

)k ( ˆ u 

m 

L 

)i 
)

iχ3 
R 

, 

where we define ˆ u 

m = ˆ u 

m 

L 

+ ˆ u 

m 

R 

and 

ˆ d 

m = 

ˆ d 

m 

L 

+ 

ˆ d 

m 

R 

. As mentioned before, the top and bottom
quarks are the third component of the fields in the mass basis, while the heavy partners are the
fourth component, (

ˆ u 

m 

L (R ) 

)3 
= t L (R ) , 

(
ˆ u 

m 

L (R ) 

)4 
= t ′ L (R ) , 

(
ˆ d 

m 

L (R ) 

)3 
= b L (R ) , 

(
ˆ d 

m 

L (R ) 

)4 
= b 

′ 
L (R ) . (3.91) 

The left-handed, right-handed weak isospin, and electromagnetic current in Eq. ( 3.90 ) now
have the following final expressions: 

j μ3 L 

= 

2 ∑ 

i=1 

(
ˆ u 

m 

L 

)i 
γ μ

(
ˆ u 

m 

L 

)i + 

4 ∑ 

l, j=3 

(
ˆ u 

m 

L 

)l 
γ μ ( Z T L ) 

l j ( ˆ u 

m 

L 

) j 

−
2 ∑ 

i=1 

(
ˆ d 

m 

L 

)i 
γ μ

(
ˆ d 

m 

L 

)i 
−

4 ∑ 

l, j=3 

(
ˆ d 

m 

L 

)l 
γ μ ( Z B L ) 

l j 
(

ˆ d 

m 

L 

) j 
, (3.92) 

j μ3 R 

= 

2 ∑ 

i=1 

(
ˆ u 

m 

R 

)i 
γ μ

(
ˆ u 

m 

R 

)i + 

4 ∑ 

l, j=3 

(
ˆ u 

m 

R 

)l 
γ μ ( Z T R ) 

l j ( ˆ u 

m 

R 

) j 

−
2 ∑ 

i=1 

(
ˆ d 

m 

R 

)i 
γ μ

(
ˆ d 

m 

R 

)i 
+ 

4 ∑ 

l, j=3 

(
ˆ d 

m 

R 

)l 
γ μ ( Z B R ) 

l j 
(

ˆ d 

m 

R 

) j 
, (3.93) 

j μem 

= 

2 

3 

4 ∑ 

α=1 

( ̂  u 

m ) αγ μ ( ̂  u 

m ) α − 1 

3 

4 ∑ 

α=1 

( ˆ d 

m ) αγ μ( ˆ d 

m ) α, (3.94) 

where the definitions and matrix forms of the FCNC couplings are shown in Eqs. ( 3.82 )–( 3.89 ).
It should be noted that the Lagrangian, written in Eq. ( 3.90 ), can be expressed in the mass
eigenstate of the Higgs and Z-bosons. We will discuss this in Section 4 . 
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4. Higgs sector 
In this section, we deri v e the kinetic terms and potential of the Higgs, which are contained in
Eq. ( 2.4 ). In the same way as in Section 3 , we deri v e these step by step from the SU( 2) R 

× U( 1) Y 

′ 

breaking into U(1) Y 

and finally SU( 2) L 

× U( 1) Y 

breaking into U(1) em 

. 

4.1. SU ( 2 ) R 

× U ( 1 ) Y 

′ → U (1 ) Y 

This stage occurs after the SU(2) R 

Higgs doublet acquires nonzero v e v and takes the param-
eterization in Eq. ( 3.1 ). In addition, there is a mixing between B 

′ 
μ and W 

3 
Rμ into B μ and Z Rμ

f ollowing the transf ormation shown in Eq. ( 3.2 ). We will analyze the kinetic terms and poten-
tial separately. Furthermore, we classify the terms based on the number of fields in the term as
linear, quadratic, cubic, and quartic. The gauge fields inside the covariant deri vati v es are not
counted as fields. 

4.1.1. Kinetic terms. The kinetic terms in Eq. ( 2.4 ) become 

L H 

⊃ L kin = 

(
D 

μ

SM 

φL 

)† (
D SM μφL 

)− ig 

′ Y φ tan θR 

Z Rμ

{ (
D SM μφL 

)† 
φL 

− φ
† 
L 

(
D 

μ

SM 

φL 

)} 

+ g 

′ 2 Y 

2 
φ tan 

2 θR 

Z 

μ

R 

Z Rμφ
† 
L 

φL 

+ 

(
D 

μ

SM 

χ−
R 

) (
D SM μχ+ 

R 

)
+ i 

g R 

v R 

2 

{
W 

+ μ

R 

(
D SM μχ−

R 

)− W 

−μ

R 

(
D SM μχ+ 

R 

)}
+ 

g 

2 
R 

v 2 R 

4 

W 

−μ

R 

W 

+ 

Rμ + 

1 

2 

(
∂ μh R 

)2 + 

1 

2 

(
∂ μχ3 

R 

− g R 

v R 

2 cos θR 

Z Rμ

)2 

− g R 

2 

χ3 
R 

{(
W 

+ μ

R 

D SM μχ−
R 

)+ W 

−μ

R 

(
D SM μχ+ 

R 

)}
+ i 

g R 

2 

{
W 

+ μ

R 

(
D SM μχ−

R 

)− W 

−μ

R 

(
D SM μχ+ 

R 

)}
h R 

+ 

g 

2 
R 

v R 

2 

h R 

W 

−μ

R 

W 

+ 

Rμ

+ i 
g R 

2 

cos 2 θR 

cos θR 

Z 

μ

R 

{
χ+ 

R 

(
D SM μχ−

R 

) − χ−
R 

(
D SM μχ+ 

R 

)}
+ 

g 

2 
R 

v R 

4 

(
cos 2 θR 

− 1 

cos θR 

)(
W 

+ 

Rμχ−
R 

+ W 

−
Rμχ+ 

R 

)
Z 

μ

R 

+ 

g R 

2 

(
W 

+ 

Rμχ−
R 

+ W 

−
Rμχ+ 

R 

)
∂ μχ3 

R 

− i 
g R 

2 

(
W 

+ 

Rμχ−
R 

− W 

−
Rμχ+ 

R 

)
∂ μh R 

+ 

g R 

2 cos θR 

{
χ3 

R 

( ∂ μh R 

) − (
∂ μχ3 

R 

)
h R 

}
Z Rμ + 

(
g R 

2 cos θR 

)2 

v R 

h R 

Z 

μ

R 

Z Rμ

+ 

g 

2 
R 

( cos 2 θR 

) − 1 

4 cos θR 

{ (
W 

+ 

Rμχ−
R 

− W 

−
Rμχ+ 

R 

)
iχ3 

R 

+ 

(
W 

+ 

Rμχ−
R 

+ W 

−
Rμχ+ 

R 

)
h R 

} 

Z 

μ

R 

+ 

g 

2 
R 

4 

(
1 

2 cos 2 θR 

Z RμZ 

μ

R 

+ W 

+ μ

R 

W 

−
Rμ

)((
χ3 

R 

)2 + h 

2 
R 

)
+ 

g 

2 
R 

2 

(
W 

+ μ

R 

W 

−
Rμ + 

cos 2 2 θR 

2 cos 2 θR 

Z 

μ

R 

Z Rμ

)(
χ−

R 

χ+ 

R 

)
, (4.1) 

where 

D SM μφL 

= 

(
∂ μ + ig L 

W 

a 
Lμ

τ a 
L 

2 

+ ig 

′ Y φB μ

)
φL 

, (4.2) 
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D SM μχ+ 

R 

= (∂ μ + ig 

′ B μ) χ+ 

R 

, (4.3) 

are the definition of the SM covariant deri vati v es for φL 

and χ+ 

R 

, respecti v ely. 

4.1.2. Higgs potential. The Higgs potential which is written in Eq. ( 2.6 ) now becomes 

V ( φL 

, φR 

) = 

(
μ2 

L 

+ λLR 

v 2 R 

)
φ
† 
L 

φL 

+ λL 

(
φ
† 
L 

φL 

)2 

+ 2 λLR 

v R 

(
φ
† 
L 

φL 

)
h R 

+ 2 λLR 

(
φ
† 
L 

φL 

)(
χ−

R 

χ+ 

R 

+ 

1 

2 

(
h 

2 
R 

+ 

(
χ3 

R 

)2 
))

+ 

μ2 
R 

2 

v 2 R 

+ 

λR 

4 

v 4 R 

+ h R 

(
μ2 

R 

v R 

+ λR 

v 3 R 

)
+ 

h 

2 
R 

2 

(
μ2 

R 

+ 3 λR 

v 2 R 

)+ 

(
μ2 

R 

+ λR 

v 2 R 

) (
χ−

R 

χ+ 

R 

+ 

1 

2 

(
χ3 

R 

)2 
)

+ 2 v R 

λR 

h R 

(
χ−

R 

χ+ 

R 

+ 

1 

2 

(
h 

2 
R 

+ 

(
χ3 

R 

)2 
))

+ λR 

(
χ−

R 

χ+ 

R 

+ 

1 

2 

(
h 

2 
R 

+ 

(
χ3 

R 

)2 
))2 

. (4.4) 

4.2. SU ( 2 ) L 

× U ( 1 ) Y 

→ U (1 ) em 

This stage occurs after the SU(2) L 

Higgs doublet acquires nonzero v e v and takes the parame-
teriza tion tha t is written in Eq. ( 3.39 ). As happens in the SM, there is a mixing between B μ and

 

3 
Lμ into A μ and Z Lμ following the transformation shown in Eq. ( 3.40 ). 

4.2.1. Kinetic terms. At this stage, one can show that the first line of Eq. ( 4.1 ) has a similar
result, with SU( 2) R 

× U( 1) Y 

′ breaking by replacing R → L , θR 

→ θW 

, and D SM 

→ D em 

. After
computing all terms, the kinetic terms of the Higgs in Eq. ( 4.1 ) become 

L H 

⊃ L kin = 

(
D 

μ
em 

χ−
L 

) (
D em μχ+ 

L 

)+ 

(
D 

μ
em 

χ−
R 

) (
D em μχ+ 

R 

)
+ i 

g L 

v L 

2 

{
W 

+ μ

L 

(
D em μχ−

L 

)− W 

−μ

L 

(
D em μχ+ 

L 

)}+ 

g 

2 
L 

v 2 L 

4 

W 

−μ

L 

W 

+ 

Lμ

+ i 
g R 

v R 

2 

{
W 

+ μ

R 

(
D em μχ−

R 

) − W 

−μ

R 

(
D em μχ+ 

R 

)}+ 

g 

2 
R 

v 2 R 

4 

W 

−μ

R 

W 

+ 

Rμ

+ 

1 

2 

(
∂ μh L 

)2 + 

1 

2 

(
∂ μχ3 

L 

− g L 

v L 

2 cos θW 

Z Lμ

)2 

+ 

1 

2 

(
∂ μh R 

)2 + 

1 

2 

(
∂ μχ3 

R 

− g R 

v R 

2 cos θR 

Z Rμ

+ 

1 

2 

g 

′ tan θR 

Z Rμ

{
−v L 

(
∂ μχ3 

L 

)+ 

g L 

v 2 L 

2 cos θW 

Z 

μ

L 

}
+ 

1 

8 

v 2 L 

g 

′ 2 tan 

2 θR 

Z 

μ

R 

Z Rμ

− g L 

2 

χ3 
L 

{
W 

+ μ

L 

(
D em μχ−

L 

) + W 

−μ

L 

(
D em μχ+ 

L 

)}
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− g R 

2 

χ3 
R 

{
W 

+ μ

R 

(
D em μχ−

R 

) + W 

−μ

R 

(
D em μχ+ 

R 

)}
+ i 

g L 

2 

{
W 

+ μ

L 

(
D em μχ−

L 

)− W 

−μ

L 

(
D em μχ+ 

L 

)}
h L 

+ 

g 

2 
L 

v L 

2 

h L 

W 

−μ

L 

W 

+ 

Lμ

+ i 
g R 

2 

{
W 

+ μ

R 

(
D em μχ−

R 

)− W 

−μ

R 

(
D em μχ+ 

R 

)}
h R 

+ 

g 

2 
R 

v R 

2 

h R 

W 

−μ

R 

W 

+ 

Rμ

+ i 
g L 

2 

cos 2 θW 

cos θW 

{
χ+ 

L 

(
D em μχ−

L 

)− χ−
L 

(
D em μχ+ 

L 

)}
Z 

μ

L 

+ i 
g R 

2 

cos 2 θR 

cos θR 

{
χ+ 

R 

(
D em μχ−

R 

) − χ−
R 

(
D em μχ+ 

R 

)}
Z 

μ

R 

+ 

g 

2 
L 

v L 

4 

(
cos 2 θW 

− 1 

cos θW 

)(
W 

+ 

Lμχ−
L 

+ W 

−
Lμχ+ 

L 

)
Z 

μ

L 

+ 

g 

2 
R 

v R 

4 

(
cos 2 θR 

− 1 

cos θR 

)(
W 

+ 

Rμχ−
R 

+ W 

−
Rμχ+ 

R 

)
Z 

μ

R 

+ 

g L 

2 

(
W 

+ 

Lμχ−
L 

+ W 

−
Lμχ+ 

L 

)
∂ μχ3 

L 

− i 
g L 

2 

(
W 

+ 

Lμχ−
L 

− W 

−
Lμχ+ 

L 

)
∂ μh L 

+ 

g R 

2 

(
W 

+ 

Rμχ−
R 

+ W 

−
Rμχ+ 

R 

)
∂ μχ3 

R 

− i 
g R 

2 

(
W 

+ 

Rμχ−
R 

− W 

−
Rμχ+ 

R 

)
∂ μh R 

+ 

g L 

2 cos θW 

{
χ3 

L 

(
∂ μh L 

)− (
∂ μχ3 

L 

)
h L 

}
Z 

μ

L 

+ 

(
g L 

2 cos θW 

)2 

v L 

h L 

Z 

μ

L 

Z Lμ

+ 

g R 

2 cos θR 

{
χ3 

R 

(
∂ μh R 

)− (
∂ μχ3 

R 

)
h R 

}
Z 

μ

R 

+ 

(
g R 

2 cos θR 

)2 

v R 

h R 

Z 

μ

R 

Z Rμ

− ie tan θW 

{
χ+ 

R 

(
D em μχ−

R 

) − χ−
R 

(
D em μχ+ 

R 

)}
Z 

μ

L 

− i 
1 

2 

g 

′ tan θR 

{
χ+ 

L 

(
D em μχ−

L 

)− χ−
L 

(
D em μχ+ 

L 

)}
Z 

μ

R 

− g R 

2 

v R 

e tan θW 

(
W 

+ 

Rμχ−
R 

+ W 

−
Rμχ+ 

R 

)
Z 

μ

L 

− g L 

2 

v L 

g 

′ tan θR 

(
W 

+ 

Lμχ−
L 

+ W 

−
Lμχ+ 

L 

)
Z 

+ g 

′ 1 

2 

tan θR 

{(
∂ μh L 

)
χ3 

L 

− (
∂ μχ3 

L 

)
h L 

}
Z 

μ

R 

+ g 

′ 1 

2 

tan θR 

g L 

cos θW 

v L 

h L 

Z RμZ 

μ

L 

+ v L 

g 

′ 2 1 

4 

tan 

2 θR 

h L 

Z RμZ 

μ

R 

+ 

g 

2 
L 

( cos 2 θW 

− 1 ) 
4 cos θW 

{ (
W 

+ 

Lμχ−
L 

− W 

−
Lμχ+ 

L 

)
iχ3 

L 

+ 

(
W 

+ 

Lμχ−
L 

+ W 

−
Lμχ+ 

L 

)
h L 

} 

Z 

μ

L 

+ 

g 

2 
R 

( cos 2 θR 

− 1 ) 
4 cos θR 

{ (
W 

+ 

Rμχ−
R 

− W 

−
Rμχ+ 

R 

)
iχ3 

R 

+ 

(
W 

+ 

Rμχ−
R 

+ W 

−
Rμχ+ 

R 

)
h R 

} 

Z 

μ

R 

− i 
g R 

2 

e tan θW 

χ3 
R 

(
W 

+ 

Rμχ−
R 

− W 

−
Rμχ+ 

R 

)
Z 

μ

L 

− i 
g L 

2 

g 

′ tan θR 

χ3 
L 

(
W 

+ 

Lμχ−
L 

− W 

−
Lμχ+ 

L 

)
− g R 

2 

e tan θW 

h R 

(
W 

+ 

Rμχ−
R 

+ W 

−
Rμχ+ 

R 

)
Z 

μ

L 

− g L 

2 

g 

′ tan θR 

h L 

(
W 

+ 

Lμχ−
L 

+ W 

−
Lμχ+ 

L 

)
Z
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+ 

g 

2 
L 

4 

(
W 

+ μ

L 

W 

−
Lμ

)((
χ3 

L 

)2 + h 

2 
L 

)
+ 

g 

2 
R 

4 

(
W 

+ μ

R 

W 

−
Rμ

)((
χ3 

R 

)2 + h 

2 
R 

)
+ 

g 

2 
L 

2 

W 

+ μ

L 

W 

−
Lμχ+ 

L 

χ−
L 

+ 

g 

2 
R 

2 

W 

+ μ

R 

W 

−
Rμχ+ 

R 

χ−
R 

+ 

g 

2 
L 

2 

cos 2 2 θW 

2 cos 2 θW 

χ+ 

L 

χ−
L 

Z LμZ 

μ

L 

+ 

g 

2 
R 

2 

cos 2 2 θR 

2 cos 2 θR 

χ+ 

R 

χ−
R 

Z RμZ 

μ

R 

+ e 2 tan 

2 θW 

χ+ 

R 

χ−
R 

Z LμZ 

μ

L 

+ 

g 

′ 2 

4 

tan 

2 θR 

χ−
L 

χ+ 

L 

Z RμZ 

μ

R 

− g R 

2 

e tan θW 

cos 2 θR 

cos θR 

(
2 χ+ 

R 

χ−
R 

)
Z LμZ 

μ

R 

− g L 

2 

g 

′ tan θR 

cos 2 θW 

cos θW 

χ−
L 

χ+ 

L 

Z LμZ 

μ

R 

+ 

g 

2 
L 

4 

1 

2 cos 2 θW 

Z LμZ 

μ

L 

((
χ3 

L 

)2 + h 

2 
L 

)
+ 

g 

2 
R 

4 

1 

2 cos 2 θR 

Z RμZ 

μ

R 

((
χ3 

R 

)2 + h 

2 
R 

)
+ 

g 

′ 2 

4 

1 

2 

tan 

2 θR 

Z RμZ 

μ

R 

((
χ3 

L 

)2 + h 

2 
L 

)
, (4.5) 

where 

D em μχ+ 

L (R ) = (∂ μ + ieA μ) χ+ 

L (R ) . (4.6) 

4.2.2. Higgs potential. At this stage, the Higgs potential in Eq. ( 4.4 ) becomes 

V ( φL 

, φR 

) = 

μ2 
L 

2 

v 2 L 

+ 

μ2 
R 

2 

v 2 R 

+ 

λL 

4 

v 4 L 

+ 

λR 

4 

v 4 R 

+ 

λLR 

2 

v 2 R 

v 2 L 

+ h L 

(
μ2 

L 

v L 

+ λL 

v 3 L 

+ λLR 

v 2 R 

v L 

)+ h R 

(
μ2 

R 

v R 

+ λR 

v 3 R 

+ λLR 

v R 

v 2 L 

)
+ h L 

( 2 λLR 

v R 

v L 

) h R 

+ 

h 

2 
L 

2 

(
μ2 

L 

+ 3 λL 

v 2 L 

+ λLR 

v 2 R 

)+ 

h 

2 
R 

2 

(
μ2 

R 

+ 3 λR 

v 2 R 

+ λLR 

v 2 L 

)
+ 

(
μ2 

L 

+ λL 

v 2 L 

+ λLR 

v 2 R 

)(
χ−

L 

χ+ 

L 

+ 

1 

2 

(
χ3 

L 

)2 
)

+ 

(
μ2 

R 

+ λR 

v 2 R 

+ λLR 

v 2 L 

)(
χ−

R 

χ+ 

R 

+ 

1 

2 

(
χ3 

R 

)2 
)

+ 2 v L 

{
λL 

(
χ−

L 

χ+ 

L 

+ 

1 

2 

(
h 

2 
L 

+ 

(
χ3 

L 

)2 
))

+ λLR 

(
χ−

R 

χ+ 

R 

+ 

1 

2 

(
h 

2 
R 

+ 

(
χ3 

R 

)2 
))}

h L 

+ 2 v R 

{
λR 

(
χ−

R 

χ+ 

R 

+ 

1 

2 

(
h 

2 
R 

+ 

(
χ3 

R 

)2 
))

+ λLR 

(
χ−

L 

χ+ 

L 

+ 

1 

2 

(
h 

2 
L 

+ 

(
χ3 

L 

)2 
))}

h R 

+ λL 

(
χ−

L 

χ+ 

L 

+ 

1 

2 

(
h 

2 
L 

+ 

(
χ3 

L 

)2 
))2 

+ λR 

(
χ−

R 

χ+ 

R 

+ 

1 

2 

(
h 

2 
R 

+ 

(
χ3 

R 

)2 
))2 

+ 2 λLR 

(
χ−

L 

χ+ 

L 

+ 

1 

2 

(
h 

2 
L 

+ 

(
χ3 

L 

)2 
))(

χ−
R 

χ+ 

R 

+ 

1 

2 

(
h 

2 
R 

+ 

(
χ3 

R 

)2 
))

, (4.7) 

where μ2 
L 

and μ2 
R 

are negati v e. The minimization conditions of the potential are 

v L 

(
μ2 

L 

+ λL 

v 2 L 

+ λLR 

v 2 R 

) = 0 , (4.8) 

v R 

(
μ2 

R 

+ λR 

v 2 R 

+ λLR 

v 2 L 

) = 0 . (4.9) 
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We can obtain the expressions of the nonzero vevs as follows: 

v L 

= 

√ 

−μ2 
L 

λR 

+ λLR 

μ2 
R 

λR 

λL 

− λ2 
LR 

and v R 

= 

√ 

−μ2 
R 

λL 

+ λLR 

μ2 
L 

λR 

λL 

− λ2 
LR 

, (4.10) 

where the v e vs are taken to be positi v e. One can show that the linear terms of the Higgs fields
and quadratic terms of χ±

L (R ) and χ3 
L (R ) will vanish by using Eqs. ( 4.8 ) and ( 4.9 ). 

4.3. Boson mass 
We collect the quadratic terms from the kinetic terms in Eq. ( 4.5 ) and Higgs potential in
Eq. ( 4.7 ) below: 

L H 

⊃ L quad = 

(
D 

μ
em 

χ−
L 

) (
D em μχ+ 

L 

) + 

(
D 

μ
em 

χ−
R 

) (
D em μχ+ 

R 

)
+ i 

g L 

v L 

2 

{
W 

+ μ

L 

(
D em μχ−

L 

)− W 

−μ

L 

(
D em μχ+ 

L 

)}+ 

g 

2 
L 

v 2 L 

4 

W 

−μ

L 

W 

+ 

Lμ

+ i 
g R 

v R 

2 

{
W 

+ μ

R 

(
D em μχ−

R 

)− W 

−μ

R 

(
D em μχ+ 

R 

)}+ 

g 

2 
R 

v 2 R 

4 

W 

−μ

R 

W 

+ 

Rμ

+ 

1 

2 

(
g L 

2 

v L 

cos θW 

)2 

Z 

μ

L 

Z Lμ + 

1 

2 

{ (
g R 

2 

v R 

cos θR 

)2 

+ 

(
g 

′ 

2 

v L 

tan θR 

)2 
} 

Z 

μ

R 

Z Rμ

+ 

g 

′ v L 

2 

tan θR 

g L 

2 

v L 

cos θW 

Z 

μ

L 

Z Rμ + 

1 

2 

(
∂ μχ3 

L 

)2 + 

1 

2 

(
∂ μχ3 

R 

)2 

− 1 

2 

g L 

v L 

cos θW 

Z Lμ

(
∂ μχ3 

L 

)− 1 

2 

g R 

v R 

cos θR 

Z Rμ

(
∂ μχ3 

R 

)− g 

′ v L 

2 

tan θR 

Z Rμ

(
∂ μχ3 

L 

)
+ 

1 

2 

(
∂ μh L 

)2 + 

1 

2 

(
∂ μh R 

)2 

− h L 

( 2 λLR 

v R 

v L 

) h R 

− h 

2 
L 

2 

(
2 λL 

v 2 L 

)− h 

2 
R 

2 

(
2 λR 

v 2 R 

)
. (4.11) 

From Eq. ( 4.11 ), we obtain the W L 

and W R 

mass, 

M W L = 

g L 

2 

v L 

, (4.12) 

M W R = 

g R 

2 

v R 

. (4.13) 

Since there is mixing between Z L 

and Z R 

as well as h L 

and h R 

, then we need to diagonalize
the mass matrices to obtain the mass eigenstate for the Z-bosons and the Higgs bosons. In line
with that, the Nambu–Goldstone bosons χ3 

L 

and χ3 
R 

also mix. 

4.3.1. Z- and Z 

′ -boson mass. We define the following transformation from the Z L 

and Z R 

basis into the mass eigenstates: ( 

Z Lμ

Z Rμ

) 

= 

( 

cos θ sin θ

− sin θ cos θ

) ( 

Z μ

Z 

′ 
μ

) 

. (4.14) 

From Eq. ( 4.11 ), the mass matrix in the Z L 

and Z R 

basis is as follows: 

M 

2 
Z 

= 

⎛ ⎜ ⎝ 

(
g L v L 

2 cos θW 

)2 
1 
2 g 

′ v L 

tan θR 

g L v L 
2 cos θW 

1 
2 g 

′ v L 

tan θR 

g L v L 
2 cos θW 

(
g R v R 

2 cos θR 

)2 
+ 

( 1 
2 g 

′ v L 

tan θR 

)2 

⎞ ⎟ ⎠ 

. (4.15) 
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The mass matrix M 

2 
Z 

can be diagonalized, 

O 

T 
Z 

M 

2 
Z 

O Z 

= diag 

(
M 

2 
Z 

, M 

2 
Z 

′ 
)
, (4.16) 

where O Z 

is the mixing matrix in Eq. ( 4.14 ). The exact mass eigenvalues and mixing angles are
as follows: 

M 

2 
Z 

= 

M 

2 
W R 

2 c 2 R 

⎧ ⎪ ⎨ ⎪ ⎩ 

1 + 

(
c 2 R 

+ t 2 W 

) M 

2 
W L 

M 

2 
W R 

−

√ √ √ √ 1 − 2 M 

2 
W L 

M 

2 
W R 

(
c 2 R 

− s 2 W 

s 2 R 

c 2 W 

)
+ 

(
c 2 R 

+ t 2 W 

)2 

( 

M 

2 
W L 

M 

2 
W R 

) 2 
⎫ ⎪ ⎬ ⎪ ⎭ 

,

(4.17) 

M 

2 
Z 

′ = 

M 

2 
W R 

2 c 2 R 

⎧ ⎪ ⎨ ⎪ ⎩ 

1 + 

(
c 2 R 

+ t 2 W 

) M 

2 
W L 

M 

2 
W R 

+ 

√ √ √ √ 1 − 2 M 

2 
W L 

M 

2 
W R 

(
c 2 R 

− s 2 W 

s 2 R 

c 2 W 

)
+ 

(
c 2 R 

+ t 2 W 

)2 

( 

M 

2 
W L 

M 

2 
W R 

) 2 
⎫ ⎪ ⎬ ⎪ ⎭ 

,

(4.18) 

tan 2 θ = 

2 c R 

s 3 R 

s W 

v 2 L 

v 2 R 

s 2 W 

− s 2 R 

(
s 2 W 

cos 2 θR 

+ c 2 W 

c 2 R 

) v 2 L 

v 2 R 

, 0 ≤ θ ≤ π

4 

, (4.19) 

where 

c R 

= cos θR 

, s R 

= sin θR 

, c W 

= cos θW 

, s W 

= sin θW 

, t W 

= tan θW 

. (4.20) 

When M W R � M W L , the masses of the Z- and Z 

′ -bosons are a pproximatel y gi v en as follows: 

M 

2 
Z 

� 

M 

2 
W L 

c 2 W 

( 

1 − M 

2 
W L 

M 

2 
W R 

s 2 R 

t 2 W 

) 

, (4.21) 

M 

2 
Z 

′ � 

M 

2 
W R 

c 2 R 

( 

1 + 

M 

2 
W L 

M 

2 
W R 

s 2 R 

t 2 W 

) 

. (4.22) 

4.3.2. Higgs boson mass. We define the following transformation from the h L 

and h R 

basis
into the mass eigenstate: ( 

h L 

h R 

) 

= 

( 

cos φ sin φ

− sin φ cos φ

) ( 

h 

H 

) 

. (4.23) 

The mass matrix of the Higgs in the h L 

and h R 

basis is as follows: 

M 

2 
h = 

( 

2 λL 

v 2 L 

2 λLR 

v R 

v L 

2 λLR 

v R 

v L 

2 λR 

v 2 R 

) 

. (4.24) 

By defining the mixing matrix in Eq. ( 4.23 ) as O h , we can diagonalize M h as 

O 

T 
h M 

2 
h O h = diag 

(
m 

2 
h , m 

2 
H 

)
, (4.25) 

which gi v es the e xact mass eigenvalues, 

m 

2 
h = λL 

v 2 L 

+ λR 

v 2 R 

−
√ (

λL 

v 2 L 

− λR 

v 2 R 

)2 + 4 λ2 
LR 

v 2 L 

v 2 R 

, (4.26) 

m 

2 
H 

= λL 

v 2 L 

+ λR 

v 2 R 

+ 

√ (
λL 

v 2 L 

− λR 

v 2 R 

)2 + 4 λ2 
LR 

v 2 L 

v 2 R 

. (4.27) 
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In addition, the mixing angle in Eq. ( 4.23 ) is gi v en by 

tan 2 φ = 

2 λLR 

v R 

v L 

λR 

v 2 R 

− λL 

v 2 L 

, 0 ≤ | φ| ≤ π

4 

. (4.28) 

Furthermore, the mass eigenvalues and mixing angle can be expressed in the following approx-
imation forms: 

m 

2 
h � 2 λL 

(
1 − λ2 

LR 

λL 

λR 

)
v 2 L 

, (4.29) 

m 

2 
H 

� 2 λR 

v 2 R 

, (4.30) 

tan 2 φ � 

2 λLR 

λR 

v L 

v R 

, (4.31) 

if we ignore the correction of O 

(
v 2 L 

/v 2 R 

)
. 

4.4. χ 3 
L 

and χ 3 
R 

mixing 

From Eq. ( 4.11 ), we extract the following form: 

L quad ⊃ L χ = 

1 

2 

(
∂ μχ3 

L 

)2 + 

1 

2 

(
∂ μχ3 

R 

)2 − 1 

2 

g L 

v L 

cos θW 

Z Lμ

(
∂ μχ3 

L 

)
− 1 

2 

g R 

v R 

cos θR 

Z Rμ

(
∂ μχ3 

R 

) − g 

′ v L 

2 

tan θR 

Z Rμ

(
∂ μχ3 

L 

)
. (4.32) 

By changing into the mass eigenstate using Eq. ( 4.14 ) and writing in terms of the diagonal mass
eigenvalues (M Z 

, M Z 

′ ) , Eq. ( 4.32 ) can be written as 

L quad ⊃ L χ = 

1 

2 

( ∂ μχZ 

) 2 + 

1 

2 

( ∂ μχZ 

′ ) 2 − M Z 

( ∂ μχZ 

) Z μ − M Z 

′ ( ∂ μχZ 

′ ) Z 

′ 
μ, (4.33) 

where ( 

χ3 
L 

χ3 
R 

) 

= 

( 

cos α sin α

− sin α cos α

) ( 

χZ 

χZ 

′ 

) 

, (4.34) 

cos α = 

M Z 

cos θ√ 

M 

2 
Z 

cos 2 θ + M 

2 
Z 

′ sin 

2 
θ

, (4.35) 

sin α = 

M Z 

′ sin θ√ 

M 

2 
Z 

cos 2 θ + M 

2 
Z 

′ sin 

2 
θ

. (4.36) 

Ther efor e, the quadratic terms in Eq. ( 4.11 ) are written in terms of the mass basis of the
Z-bosons, Higgs bosons, and Nambu–Goldstone bosons, 

L H 

⊃ L quad = 

(
D 

μ
em 

χ−
L 

− iM W L W 

μ−
L 

) (
D em μχ+ 

L 

+ iM W L W 

+ 

Lμ

)
+ 

(
D 

μ
em 

χ−
R 

− iM W R W 

μ−
R 

) (
D em μχ+ 

R 

+ iM W R W 

+ 

Rμ

)
+ 

1 

2 

(
∂ μχZ 

− M Z 

Z μ

)2 + 

1 

2 

(
∂ μχZ 

′ − M Z 

′ Z 

′ 
μ

)2 

+ 

1 

2 

(
∂ μh 

)2 − 1 

2 

m 

2 
h h 

2 + 

1 

2 

(
∂ μH 

)2 − 1 

2 

m 

2 
H 

H 

2 , (4.37) 

where the covariant deri vati v es of χL 

and χR 

are in Eq. ( 4.6 ). We have shown explicitly that χ3 
L 

and χ3 
R 

are mixed in this model. From Eq. ( 4.37 ), it is shown clearly that the degrees of freedom
χZ 

and χZ 

′ become the longitudinal components of the massi v e Z- and Z 

′ -bosons, respecti v ely.
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5. Kinetic terms of gauge fields 
In this section we deri v e the kinetic terms of the gauge fields starting from the Lagrangian in
Eq. ( 2.5 ). 

5.1. SU ( 2 ) R 

× U ( 1 ) Y 

′ → U (1 ) Y 

At this stage, the kinetic terms of the gauge fields change from the B 

′ 
μ and W Rμ basis into the

B μ and Z Rμ basis. Following transformation in Eq. ( 3.2 ), the Lagrangian in Eq. ( 2.5 ) becomes 

L gauge = −1 

4 

F 

a 
LμνF 

aμν

L 

− 1 

4 

B μνB 

μν − 1 

2 

(
∂ μW 

+ 

Rν − ∂ νW 

+ 

Rμ

) (
∂ μW 

−ν
R 

− ∂ νW 

−μ

R 

)
− i 

(
∂ μW 

+ 

Rν − ∂ νW 

+ 

Rμ

) (
g R 

cos θR 

Z 

ν
R 

+ g 

′ B 

ν
)

W 

−μ

R 

+ i 
(
∂ μW 

−ν
R 

− ∂ νW 

−μ

R 

) (
g R 

cos θR 

Z Rν + g 

′ B ν

)
W 

+ 

Rμ

−
{ (

g R 

cos θR 

Z Rν + g 

′ B ν

)
W 

+ 

Rμ

(
g R 

cos θR 

Z 

ν
R 

+ g 

′ B 

ν
)

W 

−μ

R 

− (
g R 

cos θR 

Z Rμ + g 

′ B μ

)
W 

+ 

Rν

(
g R 

cos θR 

Z 

ν
R 

+ g 

′ B 

ν
)

W 

−μ

R 

}
− 1 

4 

F 

0 
Z R μνF 

0 μν

Z R 
+ iW 

−
RμW 

+ 

Rν

(
g R 

cos θR 

F 

0 μν

Z R 
+ g 

′ B 

μν
)

+ 

1 

2 

g 

2 
R 

(
W 

−
RμW 

+ 

Rν − W 

+ 

RμW 

−
Rν

) (
W 

−μ

R 

W 

+ ν
R 

)
, (5.1) 

where 

B μν = ∂ μB ν − ∂ νB μ, (5.2) 

F 

a 
Lμν = ∂ μW 

a 
Lν − ∂ νW 

a 
Lμ − g L 

εabc W 

b 
LμW 

c 
Lν, (5.3) 

F 

0 
Z R μν = ∂ μZ Rν − ∂ νZ Rμ. (5.4) 

5.2. SU ( 2 ) L 

× U ( 1 ) Y 

→ U (1 ) em 

At this stage, there is a mixing between B μ and W 

3 
Lμ into A μ and Z Lμ following the transforma-

tion shown in Eq. ( 3.40 ). In addition, we also express in the diagonal basis of Z and Z 

′ where
the transformation is shown in Eq. ( 4.14 ). So the Lagrangian in Eq. ( 5.1 ) becomes 

L gauge = −1 

4 

F 

0 
ZμνF 

0 μν

Z 

− 1 

4 

F 

0 
Z 

′ μνF 

0 μν

Z 

′ − 1 

4 

F μνF 

μν

− 1 

2 

(
D μW 

+ 

Lν − D νW 

+ 

Lμ

) (
D 

μW 

−ν
L 

− D 

νW 

−μ

L 

)
− 1 

2 

(
D μW 

+ 

Rν − D νW 

+ 

Rμ

) (
D 

μW 

−ν
R 

− D 

νW 

−μ

R 

)
+ 

g 

2 
L 

2 

(
( W 

−
L 

· W 

−
L 

)( W 

+ 

L 

· W 

+ 

L 

) − (
W 

−
L 

· W 

+ 

L 

)2 
)

24/43 



PTEP 2024 , 093B02 T. Morozumi and A. H. Panuluh 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/advance-article/doi/10.1093/ptep/ptae127/7733086 by guest on 10 Septem

ber 2024
+ 

g 

2 
R 

2 

(
( W 

−
R 

· W 

−
R 

)( W 

+ 

R 

· W 

+ 

R 

) − (
W 

−
R 

· W 

+ 

R 

)2 
)

+ i 
{ 

g L 

cos θW 

cos θF 

0 μν

Z 

+ g L 

cos θW 

sin θF 

0 μν

Z 

′ + eF 

μν
} (

W 

−
LμW 

+ 

Lν

)
+ i 

{ 

−(g R 

cos θR 

sin θ + e tan θW 

cos θ ) F 

0 μν

Z 

+ (g R 

cos θR 

cos θ − e tan θW 

sin θ ) F 

0 μν

Z 

′ + eF 

μν
} (

W 

−
RμW 

+ 

Rν

)
, (5.5) 

where 

F 

0 
Zμν = ∂ μZ ν − ∂ νZ μ, 

F 

0 
Z 

′ μν = ∂ μZ 

′ 
ν − ∂ νZ 

′ 
μ, 

F μν = ∂ μA ν − ∂ νA μ, 

D μW 

+ 

Rν = 

(
D em μW 

+ 

Rν

)− i 
(
e tan θW 

Z Lμ − g R 

cos θR 

Z Rμ

)
W 

+ 

Rν, 

D μW 

+ 

Lν = 

(
D em μW 

+ 

Lν

)+ ig L 

cos θW 

Z LμW 

+ 

Lν, 

D em μG ν = 

(
∂ μ + ieA μ

)
G ν, (5.6) 

with G ν ∈ { W 

+ 

Rν, W 

+ 

Lν} . 

6. Discussion 

6.1. Hierarchy of VLQ’s mass parameters, v L 

, and v R 

In this subsection, we discuss the hierarchy of VLQ’s mass parameters, v L 

, and v R 

. From
Eqs. ( 3.70 ) and ( 3.71 ), we have the exact mass eigenvalues of the top and bottom quarks, as
well as the heavy top and bottom quar ks, respecti v ely. One of the moti vations for the uni v ersal
seesaw model in the quark sector is to explain the mass hierarchy of quarks, particularly the
thir d family quar k mass hierarchy in our model. Ther efor e, the hierar chy of VLQ’s mass pa-
rameters M T , M B 

, v L 

, and v R 

is essential to be studied. We gi v e the analytical and numerical
analysis. 

6.1.1. Anal ytical anal ysis. The top quar k e xact mass eigenvalue in Eq. ( 3.70 ) can be written
as follows: 

m t = 

√ 

M 

2 
T + m 

2 
u R + m 

2 
u L + 2 m u L m u R 

2 

−
√ 

M 

2 
T + m 

2 
u R + m 

2 
u L − 2 m u L m u R 

2 

� 

⎛ ⎝ 

m u R √ 

M 

2 
T + m 

2 
u R 

⎞ ⎠ m u L . (6.1) 

From the first line to the second line of Eq. ( 6.1 ), we use m u L < m u R . We can express the second
line of Eq. ( 6.1 ) in terms of Yukawa couplings using Eq. ( C.16 ) as follows: 

m t � 

⎛ ⎜ ⎜ ⎝ 

Y 

3 
u R 

v R √ 

2 √ 

M 

2 
T + 

(
Y 

3 
u R 

)2 
v 2 R 

2 

⎞ ⎟ ⎟ ⎠ 

Y 

3 
u L v L √ 

2 

. (6.2) 
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If we assume Y 

3 
u L = Y 

3 
u R � O(1) and the factor inside the parenthesis is O(1) , we can obtain

the top quark mass m t � v L 

. This implies M T < v R 

. In order to determine the hierarchy between
M T and v R 

for the large top quark mass, from Eq. ( 6.2 ) one can obtain the ratio M T /v R 

as
follows: 

M T 

v R 

= 

Y 

3 
u L Y 

3 
u R √ 

2 

√ 

1 (
y 

SM 

t 

)2 −
1 (

Y 

3 
u L 

)2 , (6.3) 

where y 

SM 

t is the SM Yukawa coupling of the top quark and Y 

3 
u L ≥ y 

SM 

t . If we further r equir e
that the Yukawa couplings are in the perturbati v e region, y 

SM 

t ≤ Y 

3 
u L , Y 

3 
u R ≤ 1 , the upper and

lower limits of the ratio M T /v R 

are gi v en by 

0 ≤ M T 

v R 

≤ 1 √ 

2 

√ 

1 (
y 

SM 

t 

)2 − 1 . (6.4) 

If w e take y 

SM 

t = 0 . 9912 , w e obtain the upper limit of the ratio M T /v R 

≤ 0 . 0944 . This shows
how the seesaw mechanism accommodates the top quark mass and the hierarchy between M T 

and v R 

. 
Similarly for the bottom sector, by using m d L < m d R the bottom quark mass becomes 

m b � 

⎛ ⎜ ⎜ ⎝ 

Y 

3 
d R 

v R √ 

2 √ 

M 

2 
B 

+ 

(
Y 

3 
d R 

)2 
v 2 R 

2 

⎞ ⎟ ⎟ ⎠ 

Y 

3 
d L 

v L √ 

2 

. (6.5) 

If we assume Y 

3 
d L 

= Y 

3 
d R 

� O(1) and the factor inside the parenthesis is much smaller than O(1) ,
we can obtain the light bottom quark mass. This implies M B 

� v R 

and we can write Eq. ( 6.5 )
as follows: 

m b � 

v R 

Y 

3 
d R 

Y 

3 
d L 

v L 

2 M B 

. (6.6) 

In order to determine the hierarchy between M B 

and v R 

for the light bottom quark mass, from
Eq. ( 6.6 ) one can obtain the ratio M B 

/v R 

as follows: 

M B 

v R 

= 

Y 

3 
d L 

Y 

3 
d R √ 

2 

1 

y 

SM 

b 

, (6.7) 

where y 

SM 

b is the SM Yukawa coupling of the bottom quark. If we further r equir e that the
Yukawa couplings are in the perturbati v e region, Y 

3 
d L 

, Y 

3 
d R 

≤ 1 , the upper limit of the ratio
M B 

/v R 

is gi v en by 

M B 

v R 

≤ 1 √ 

2 

1 

y 

SM 

b 

. (6.8) 

If we take y 

SM 

b = 2 . 4 × 10 

−2 , we obtain the upper limit of the ratio M B 

/v R 

≤ 29 . 46 . The equal-
ity holds when the Yukawa couplings Y 

3 
d L 

= Y 

3 
d R 

= 1 . This sho ws ho w the seesaw mechanism
accommodates the bottom quark mass and the hierarchy between M B 

and v R 

. Ther efor e, when
all the Yukawa couplings Y 

3 
d , Y 

3 
d , Y 

3 
u L , and Y 

3 
u R are O(1) , the hierarchy for the three scales
L R 
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is M T < v R 

 M B 

. If we include the v L 

, the hierarchy has two possibilities depending on the
numerical inputs. The hierarchy can be v L 

< M T < v R 

 M B 

or M T < v L 

< v R 

 M B 

. 
To summarize, by using the hierarchy that we discussed before, from the exact mass eigenval-

ues in Eqs. ( 3.70 ) and ( 3.71 ) we can obtain the approximate form as follows: 

m 

approx 
t � 

v R 

Y 

3 
u R Y 

3 
u L v L 

2 

√ 

v 2 R 
2 

(
Y 

3 
u R 

)2 + M 

2 
T 

, (6.9) 

m 

approx 
t ′ � 

√ 

v 2 R 

2 

(
Y 

3 
u R 

)2 + M 

2 
T , (6.10) 

m 

approx 
b � 

v R 

Y 

3 
d R 

Y 

3 
d L 

v L 

2 M B 

, (6.11) 

m 

approx 
b ′ � M B 

. (6.12) 

Our results in Eqs. ( 6.9 ) and ( 6.10 ) agree with Eqs. (7) and (8) in Ref. [ 16 ], as well as Eqs. (3.19)
and (3.17) in Ref. [ 17 ], respecti v ely. In addition, our results in Eqs. ( 6.11 ) and ( 6.12 ) agree with
Eqs. (14) and (15) in Ref. [ 16 ], as well as Eq. (3.9) in Ref. [ 17 ], respecti v ely. 

6.1.2. Numerical analysis. We start by analyzing the constraints in the top sector, as shown
in Fig. 1 (a). We consider an asymmetric left-right model with g L 

� = g R 

. By assuming g R 

� 1
and using the value of g 

′ � 0 . 357 , we obtain θR 

with Eq. ( 3.4 ). Additionally, we assume Y 

3 
u R �

 

3 
u L � 1 . The following are the constraints that we used [ 33 ]: (1) the top quark mass obtained by

the dir ect measur ement is m t = 172 . 57 GeV; (2) the lower bound for the heavy top quark mass
is set to be m t ′ > 1310 GeV; (3) the lower bound for the Z 

′ -boson mass is set to be M Z 

′ > 5150
GeV. Using the exact mass eigen value f or the Z 

′ -boson mass in Eq. ( 4.18 ), we compute the
lower bound for the W R 

-boson mass as M W R � 5 TeV. Consequently, we find the constraint for
v R 

using Eq. ( 4.13 ), yielding v R 

� 10 TeV. At v R 

= 10 TeV, M T is 942.3 GeV as shown by the
black dot in Fig. 1 (a). Using these v R 

and M T values, we further calculate the heavy top quark
mass with Eq. ( 3.71 ) and obtain m t ′ = 7 . 13 TeV. 

Next, we analyze the constraints in the bottom sector, as depicted in Fig. 1 (b). Here, we also
assume Y 

3 
d R 

� Y 

3 
d L 

� 1 . The constraints are [ 33 ]: (1) the SM bottom quark mass we use is the
running mass at bottom mass m b = 4 . 183 GeV; (2) the lower bound for the heavy bottom quark
mass is set to be m b ′ > 1390 GeV; (3) the constraint for v R 

� 10 TeV is deri v ed from the lower
bound for the Z 

′ -boson mass. For the bottom sector, at v R 

= 10 TeV, M B 

is 293.74 TeV as
indicated by the black dot in Fig. 1 (b). Using these v R 

and M B 

values, we further calculate the
heavy bottom quark mass with Eq. ( 3.71 ) and obtain m b ′ = 293 . 82 TeV. This result indicates
that m b ′ � M B 

. 
From the above facts, the mass parameter of the top partner VLQ ( M T ) is smaller than v R 

but
it could be larger or smaller than v L 

depending on the other parameters. On the other hand, in
the bottom sector, the mass parameter of the bottom partner VLQ ( M B 

) is significantly larger
compared to v R 

. This explains the mass hierarchy problem, where the smallness of the bottom
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Fig. 1. Constraints on v R 

and VLQ mass parameters of different sectors. (a) Top sector. (b) Bottom 

sector. 
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quark mass is suppressed by the large mass of the bottom VLQ through a seesaw mechanism.
Ma thema tically, our choice of numerical input satisfies the f ollowing hierarchy: (1) f or the top
sector: v L 

< M T < v R 

; (2) for the bottom sector: v L 

< v R 

 M B 

. 
One can compute the masses in the approximation form gi v en in Eqs. ( 6.9 ), ( 6.10 ), ( 6.11 ), and

( 6.12 ) by using our choice of numerical input and obtain m 

approx 
t = 172 . 58 GeV, m 

approx 
t ′ = 7 . 13

TeV, m 

approx 
b = 4 . 19 GeV, and m 

approx 
b ′ = 293 . 74 TeV. These values are very close to the exact

mass eigenvalues formula. We will use v R 

= 10 TeV for the rest of our numerical analysis. This
v R 

= 10 TeV is also used in Ref. [ 22 ], although unlike this paper, they considered the model
with left-right symmetry where g L 

= g R 

. 
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6.2. Higgs FCNC 

In this subsection, we discuss the interaction between Higgs and quarks in our model. From
Eq. ( 3.90 ), we extract the interactions between h L 

− h R 

and quarks, given by 

L q ⊃ L hH 

= − 1 

v L 

4 ∑ 

k,i=3 

[(
Z T L m 

diag 
t 

)ki (
ˆ u 

m 

L 

)k ( ˆ u 

m 

R 

)i + 

(
m 

diag 
t Z T L 

)ki (
ˆ u 

m 

R 

)k ( ˆ u 

m 

L 

)i 

+ 

(
Z B L m 

diag 
b 

)ki (
ˆ d 

m 

L 

)k (
ˆ d 

m 

R 

)i 
+ 

(
m 

diag 
b Z B L 

)ki (
ˆ d 

m 

R 

)k (
ˆ d 

m 

L 

)i 
] 

h L 

− 1 

v R 

4 ∑ 

k,i=3 

[(
( 1 − Z T L ) m 

diag 
t Z T R 

)ki (
ˆ u 

m 

L 

)k ( ˆ u 

m 

R 

)i 

+ 

(
Z T R m 

diag 
t ( 1 − Z T L ) 

)ki (
ˆ u 

m 

R 

)k ( ˆ u 

m 

L 

)i + 

(
( 1 − Z B L ) m 

diag 
b Z B R 

)ki (
ˆ d 

m 

L 

)k (
ˆ d 

m 

R 

)i 

+ 

(
Z B R m 

diag 
b ( 1 − Z B L ) 

)ki (
ˆ d 

m 

R 

)k (
ˆ d 

m 

L 

)i 
] 

h R 

, (6.13) 

where Z T L , Z B L , Z T R , Z B R , m 

diag 
t , and m 

diag 
b are gi v en in Eqs. ( 3.84 ), ( 3.85 ), ( 3.88 ), ( 3.89 ), ( 3.68 ),

and ( 3.69 ), respecti v ely. By transforming the h L 

− h R 

basis into the h − H mass eigenstate with
Eq. ( 4.23 ), the Lagrangian in Eq. ( 6.13 ) transforms into 

L hH 

= −
⎧ ⎨ ⎩ 

cos φ
v L 

4 ∑ 

k,i=3 

[(
Z T L m 

diag 
t 

)ki (
ˆ u 

m 

L 

)k ( ˆ u 

m 

R 

)i + 

(
m 

diag 
t Z T L 

)ki (
ˆ u 

m 

R 

)k ( ˆ u 

m 

L 

)i 

+ 

(
Z B L m 

diag 
b 

)ki (
ˆ d 

m 

L 

)k (
ˆ d 

m 

R 

)i 
+ 

(
m 

diag 
b Z B L 

)ki (
ˆ d 

m 

R 

)k (
ˆ d 

m 

L 

)i 
] 

− sin φ

v R 

4 ∑ 

k,i=3 

[(
( 1 − Z T L ) m 

diag 
t Z T R 

)ki (
ˆ u 

m 

L 

)k ( ˆ u 

m 

R 

)i + 

(
Z T R m 

diag 
t ( 1 − Z T L ) 

)ki (
ˆ u 

m 

R 

)k ( ˆ u 

m 

L 

)i 

+ 

(
( 1 − Z B L ) m 

diag 
b Z B R 

)ki (
ˆ d 

m 

L 

)k (
ˆ d 

m 

R 

)i 
+ 

(
Z B R m 

diag 
b ( 1 − Z B L ) 

)ki (
ˆ d 

m 

R 

)k (
ˆ d 

m 

L 

)i 
] } 

h 

−
⎧ ⎨ ⎩ 

sin φ

v L 

4 ∑ 

k,i=3 

[(
Z T L m 

diag 
t 

)ki (
ˆ u 

m 

L 

)k ( ˆ u 

m 

R 

)i + 

(
m 

diag 
t Z T L 

)ki (
ˆ u 

m 

R 

)k ( ˆ u 

m 

L 

)i 

+ 

(
Z B L m 

diag 
b 

)ki (
ˆ d 

m 

L 

)k (
ˆ d 

m 

R 

)i 
+ 

(
m 

diag 
b Z B L 

)ki (
ˆ d 

m 

R 

)k (
ˆ d 

m 

L 

)i 
] 

+ 

cos φ
v R 

4 ∑ 

k,i=3 

[(
( 1 − Z T L ) m 

diag 
t Z T R 

)ki (
ˆ u 

m 

L 

)k ( ˆ u 

m 

R 

)i + 

(
Z T R m 

diag 
t ( 1 − Z T L ) 

)ki (
ˆ u 

m 

R 

)k ( ˆ u 

m 

L 

)i 

+ 

(
( 1 − Z B L ) m 

diag 
b Z B R 

)ki (
ˆ d 

m 

L 

)k (
ˆ d 

m 

R 

)i 
+ 

(
Z B R m 

diag 
b ( 1 − Z B L ) 

)ki (
ˆ d 

m 

R 

)k (
ˆ d 

m 

L 

)i 
] } 

H, 

(6.14)
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where h and H denote the Higgs and the heavy Higgs bosons, respecti v ely. In this discussion,
we will focus on the interaction of the Higgs boson with the quarks in our model. 

6.2.1. Top sector. We collect the interaction terms between the Higgs boson and the top
quark ( t) and heavy top quark ( t ′ ) from Eq. ( 6.14 ): 

L hH 

⊃ L ht = −
[ 

cos φ
v L 

cos 2 φT L m t − sin φ

v R 

(
sin 

2 
φT L cos 2 βT R m t 

− sin φT L cos φT L sin βT R cos βT R m t ′ 
)] 

t̄ th 

+ 

[ 

cos φ
v L 

sin φT L cos φT L m t ′ + 

sin φ

v R 

(
sin φT L cos φT L sin 

2 
βT R m t ′ 

− sin 

2 
φT L sin βT R cos βT R m t 

)] (
t̄ L 

t ′ R 

+ t̄ ′ R 

t L 

)
h 

+ 

[ 

cos φ
v L 

sin φT L cos φT L m t + 

sin φ

v R 

(
sin φT L cos φT L cos 2 βT R m t 

− cos 2 φT L sin βT R cos βT R m t ′ 
)] (

t̄ ′ L 

t R 

+ t̄ R 

t ′ L 

)
h 

−
[ 

cos φ
v L 

sin 

2 
φT L m t ′ − sin φ

v R 

(
cos 2 φT L sin 

2 
βT R m t ′ 

− sin φT L cos φT L sin βT R cos βT R m t 

)] 

t̄ ′ t ′ h, (6.15) 

where we substitute the elements of Z T L and Z T R in Eqs. ( 3.84 ) and ( 3.88 ), respecti v ely. Then,
we take the approximations for the mixing angles in Eqs. ( C.26 ) and ( D.13 ). In addition, us-
ing the hierarchy in the top sector, i.e. v L 

< M T < v R 

, and the approximation of mixing an-
gle φ in Eq. ( 4.31 ), we obtain the interaction between the Higgs and top-sector quarks as
follows: 

L ht � − cos φ
m t 

v L 

( 

1 − λLR 

λR 

M 

2 
T 

m 

2 
u R 

v 2 L 

v 2 R 

) 

t̄ th − cos φ
M T 

m u R 

(
1 + 

λLR 

λR 

v 2 L 

v 2 R 

) (
t̄ L 

t ′ R 

+ t̄ ′ R 

t L 

)
h 

− cos φ
M T 

m u R 

v L 

v R 

(
1 + 

λLR 

λR 

) (
t̄ ′ L 

t R 

+ t̄ R 

t ′ L 

)
h − cos φ

m t ′ 

v R 

v L 

v R 

( 

M 

2 
T 

m 

2 
u R 

− λLR 

λR 

) 

t̄ ′ t ′ h. 

(6.16) 

In this expression, we also assume that Y 

3 
u L � Y 

3 
u R � 1 . From Eq. ( 6.16 ) we extract some useful

information regarding our model: the Higgs and top quark pairs coupling recei v es a small
correction, while the Higgs and heavy top quark pairs coupling recei v es an ov erall suppression
of O ( v L 

/v R 

) . Another important point is the tree-le v el FCNC interaction is suppressed. The
Higgs FCNC of t̄ ′ L 

t R 

and t̄ R 

t ′ L 

type is more suppressed by a factor O ( v L 

/v R 

) compared to the
t̄ L 

t ′ R 

and t̄ ′ R 

t L 

type. 
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6.2.2. Bottom sector. In the same way, from Eq. ( 6.14 ) we collect the interactions between
the Higgs boson and the bottom quark (b) and heavy bottom quar k (b 

′ ) . By e xpressing Z B L 

and Z B R in terms of their elements, we obtain 

L hH 

⊃ L hb = −
[ 

cos φ
v L 

cos 2 φB L m b − sin φ

v R 

(
sin 

2 
φB L cos 2 βB R m b 

− sin φB L cos φB L sin βB R cos βB R m b ′ 
)] 

b̄ bh 

+ 

[ 

cos φ
v L 

sin φB L cos φB L m b ′ + 

sin φ

v R 

(
sin φB L cos φB L sin 

2 
βB R m b ′ 

− sin 

2 
φB L sin βB R cos βB R m b 

)] (
b̄ L 

b 

′ 
R 

+ h . c . 
)

h 

+ 

[ 

cos φ
v L 

sin φB L cos φB L m b + 

sin φ

v R 

(
sin φB L cos φB L cos 2 βB R m b 

− cos 2 φB L sin βB R cos βB R m b ′ 
)] (

b̄ 

′ 
L 

b R 

+ h . c . 
)

h 

−
[ 

cos φ
v L 

sin 

2 
φB L m b ′ − sin φ

v R 

(
cos 2 φB L sin 

2 
βB R m b ′ 

− sin φB L cos φB L sin βB R cos βB R m b 

)] 

b̄ 

′ b 

′ h. (6.17) 

We use the approximations for the mixing angles in Eqs. ( C.26 ), ( D.13 ), and ( 4.31 ). In addition,
by using the hierarchy in the bottom sector v L 

< v R 

 M B 

, we obtain the interaction between
the Higgs and bottom-sector quarks as follows: 

L hb � − cos φ
m b 

v L 

(
1 − λLR 

λR 

v 2 L 

v 2 R 

)
b̄ bh − cos φ

m b m b ′ 

m d L m d R 

(
1 + 

λLR 

λR 

v 2 L 

M 

2 
B 

)(
b̄ L 

b 

′ 
R 

+ b̄ 

′ 
R 

b L 

)
h 

− v L 

v R 

(
λLR 

λR 

+ 

v 2 R 

M 

2 
B 

)(
b̄ 

′ 
L 

b R 

+ b̄ R 

b 

′ 
L 

)
h − cos φ

m d L 

m b ′ 

(
1 − λLR 

λR 

)
b̄ 

′ b 

′ h. (6.18) 

Similarly to the top sector, the interaction between the Higgs and the bottom quark pairs re-
cei v es a small corr ection compar ed to the SM. The interaction between the Higgs and the heavy
bottom quark pairs is suppressed by a factor O(v L 

/M B 

) . The Higgs FCNC of b̄ 

′ 
L 

b R 

and b̄ R 

b 

′ 
L 

type is suppressed by a factor O(v L 

/v R 

) . On the other hand, the Higgs FCNC of b̄ L 

b 

′ 
R 

and b̄ 

′ 
R 

b L 

type is not suppressed. This is because we assume Y 

3 
d L 

� 1 . 

6.3. Z FCNC 

In this subsection we discuss interaction between the Z-boson and quarks. We begin by extract-
ing the interaction terms between Z L 

− Z R 

and quarks from Eq. ( 3.90 ), which reads as 

L q ⊃ L Z Z 

′ = −
[

g L 

2 cos θW 

(
j μ3 L 

) − e tan θW 

(
j μem 

)]
Z Lμ

−
[

g R 

2 cos θR 

(
j μ3 R 

)− g 

′ tan θR 

(
j μem 

− 1 

2 

(
j μ3 L 

))]
Z Rμ. (6.19) 
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Here j μ3 L 

, j μ3 R 

, and j μem 

are defined in Eqs. ( 3.92 –3.94 ), respecti v ely. Ne xt, we change the basis
from the Z L 

− Z R 

basis to the Z − Z 

′ basis using Eq. ( 4.14 ), and it leads to 

L Z Z 

′ = −
[

1 

2 cos θW 

(g L 

cos θ − e tan θR 

sin θ ) j μ3 L 

− g R 

sin θ

2 cos θR 

j μ3 R 

− e 
cos θW 

( sin θW 

cos θ − tan θR 

sin θ ) j μem 

]
Z μ

−
[

1 

2 cos θW 

(g L 

sin θ + e tan θR 

cos θ ) j μ3 L 

+ 

g R 

cos θ
2 cos θR 

j μ3 R 

− e 
cos θW 

( sin θW 

sin θ + tan θR 

cos θ ) j μem 

]
Z 

′ 
μ. (6.20) 

In this discussion, we will focus on the interaction between the SM Z-boson and quarks.
We expressed the Z-boson interaction in terms of vector and axial-vector couplings as
follows: 

L Z Z 

′ ⊃ L 

Z 

q̄ q = − g L 

2 cos θW 

4 ∑ 

α,β=1 

( ̂  u 

m ) αγ μ

[
( g V 

) αβ
u − ( g A 

) αβ
u γ 5 

]
( ̂  u 

m ) βZ μ

− g L 

2 cos θW 

4 ∑ 

α,β=1 

( ˆ d 

m ) αγ μ

[
( g V 

) αβ

d − ( g A 

) αβ

d γ 5 
]

( ˆ d 

m ) βZ μ, (6.21) 

where 

(g V 

) αβ
u = 

1 

2 

(
( κT L ) 

αβ − ( κT R ) 
αβ
)− 2 κQ u δ

αβ, (6.22) 

(g A 

) αβ
u = 

1 

2 

(
( κT L ) 

αβ + ( κT R ) 
αβ
)
, (6.23) 

(g V 

) αβ

d = −1 

2 

(
( κB L ) 

αβ − ( κB R ) 
αβ
)− 2 κQ d δ

αβ, (6.24) 

(g A 

) αβ

d = −1 

2 

(
( κB L ) 

αβ + ( κB R ) 
αβ
)
, (6.25) 

( κT L ) 
αβ = ( cos θ − sin θW 

tan θR 

sin θ ) 
(
Z 

all 
T L 

)αβ

, (6.26) 

( κT R ) 
αβ = 

sin θW 

sin θ

sin θR 

cos θR 

(
Z 

all 
T R 

)αβ

, (6.27) 

( κB L ) 
αβ = ( cos θ − sin θW 

tan θR 

sin θ ) 
(
Z 

all 
B L 

)αβ

, (6.28) 

( κB R ) 
αβ = 

sin θW 

sin θ

sin θR 

cos θR 

(
Z 

all 
B R 

)αβ

, (6.29) 

κ = sin 

2 
θW 

cos θ − sin θW 

tan θR 

sin θ. (6.30) 
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The matrix forms of 4 × 4 unitary matrices Z 

all 
T L 

, Z 

all 
B L 

, Z 

all 
T R 

, and Z 

all 
B R 

are gi v en as follows: 

Z 

all 
T L = 

( 

I 2 0 2 

0 2 Z T L 

) 

, Z 

all 
T R = 

( 

I 2 0 2 

0 2 Z T R 

) 

, 

Z 

all 
B L 

= 

( 

I 2 0 2 

0 2 Z B L 

) 

, Z 

all 
B R 

= 

( 

I 2 0 2 

0 2 Z B R 

) 

, (6.31) 

where I 2 and 0 2 are the 2 × 2 unit matrix and zero matrix, respecti v ely. The 2 × 2 submatrices
Z T L , Z B L , Z T R , and Z B R are gi v en in Eqs. ( 3.84 ), ( 3.85 ), ( 3.88 ), and ( 3.89 ), respecti v ely. Q u = 2 / 3 ,
Q d = −1 / 3 are the electric charge of up-type and down-type quarks, respectively. 

6.3.1. Up sector. In this part, we analyze the interaction between the Z-boson and the up
sector in our model. From Eq. ( 6.21 ), it reads as 

L 

Z 

q̄ q ⊃ L 

Z 

t = − g L 

2 cos θW 

{
( ̂  u 

m ) 1 γ μ

[
( g V 

) 11 
u − ( g A 

) 11 
u γ

5 
]

( ̂  u 

m ) 1 

+ ( ̂  u 

m ) 2 γ μ

[
( g V 

) 22 
u − ( g A 

) 22 
u γ

5 
]

( ̂  u 

m ) 2 + t γ μ

[
( g V 

) 33 
u − ( g A 

) 33 
u γ

5 
]

t 

+ t γ μ

[
( g V 

) 34 
u − ( g A 

) 34 
u γ

5 
]

t ′ + t ′ γ μ

[
( g V 

) 43 
u − ( g A 

) 43 
u γ

5 
]

t 

+ t ′ γ μ

[
( g V 

) 44 
u − ( g A 

) 44 
u γ

5 
]

t ′ 
}

Z μ, (6.32) 

where the vector coupling (g V 

) u and axial-vector coupling (g A 

) u are defined in Eqs. ( 6.22 ) and
( 6.23 ), respecti v ely. By using the definitions of κT L , κT R , and κ which are written in Eqs. ( 6.26 ),
( 6.27 ), and ( 6.30 ), we obtain 

(κT L ) 
11 = (κT L ) 

22 = cos θ
(

1 − sin θW 

tan θR 

O 

(
v 2 L 

v 2 R 

))
, (6.33) 

(κT R ) 
11 = (κT R ) 

22 = 

sin θW 

cos θ
sin θR 

cos θR 

O 

(
v 2 L 

v 2 R 

)
, (6.34) 

(κT L ) 
33 = cos θ

(
1 − sin θW 

tan θR 

O 

(
v 2 L 

v 2 R 

))
, (6.35) 

(κT R ) 
33 = 

sin θW 

cos θ
sin θR 

cos θR 

O 

(
v 2 L 

v 2 R 

)
M 

2 
T 

m 

2 
u R 

, (6.36) 

(κT L ) 
34 = (κT L ) 

43 = cos θ
(

1 − sin θW 

tan θR 

O 

(
v 2 L 

v 2 R 

))
m u L M T 

m 

2 
u R 

, (6.37) 

(κT R ) 
34 = (κT R ) 

43 = − sin θW 

cos θ
sin θR 

cos θR 

O 

(
v 2 L 

v 2 R 

)
M T 

m u R 
, (6.38) 

(κT L ) 
44 = cos θ

(
1 − sin θW 

tan θR 

O 

(
v 2 L 

v 2 R 

))
m 

2 
u L M 

2 
T 

m 

4 
u R 

, (6.39) 

(κT R ) 
44 = 

sin θW 

cos θ
sin θR 

cos θR 

O 

(
v 2 L 

v 2 R 

)
, (6.40) 

κ = cos θ
(

sin 

2 
θW 

− sin θW 

tan θR 

O 

(
v 2 L 

v 2 

))
. (6.41) 
R 
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Here we write the suppression coming from the small mixing angle θ as O(v 2 L 

/v 2 R 

) . The exact
form of the mixing angle θ is gi v en in Eq. ( 4.19 ). From Eqs. ( 6.37 ) and ( 6.38 ), the κT L and κT R 

terms related to the Z-boson FCNC process with the top and heavy top quarks are suppressed
by O(v L 

M T /v 2 R 

) and O(v 2 L 

M T /v 3 R 

) , respecti v ely. This indica tes tha t the Z-media ted FCNC pro-
cess in the up sector is suppressed within our model. In addition, the interaction between the
Z-boson and heavy top quark is also suppr essed. Mor eov er, the de viation of the SM-like terms
in (κT L ) 

ii and κ, with i ∈ { 1 , 2 , 3 } are suppressed by a factor O(v 2 L 

/v 2 R 

) . 

6.3.2. Down sector. In this part, we analyze the interaction between the Z-boson and the
down sector in our model. From Eq. ( 6.21 ), we extract 

L 

Z 

q̄ q ⊃ L 

Z 

b = − g L 

2 cos θW 

{
( ˆ d 

m ) 1 γ μ

[
( g V 

) 11 
d − ( g A 

) 11 
d γ

5 
]

( ˆ d 

m ) 1 

+ ( ˆ d 

m ) 2 γ μ

[
( g V 

) 22 
d − ( g A 

) 22 
d γ

5 
]

( ˆ d 

m ) 2 + b γ μ

[
( g V 

) 33 
d − ( g A 

) 33 
d γ

5 
]

b 

+ b γ μ

[
( g V 

) 34 
d − ( g A 

) 34 
d γ

5 
]

b 

′ + b 

′ γ μ

[
( g V 

) 43 
d − ( g A 

) 43 
d γ

5 
]

b 

+ b 

′ γ μ

[
( g V 

) 44 
d − ( g A 

) 44 
d γ

5 
]

b 

′ 
}

Z μ, (6.42) 

where the vector coupling (g V 

) d and axial-vector coupling (g A 

) d are defined in Eqs. ( 6.24 ) and
( 6.25 ), respecti v ely. By using the definitions of κB L , κB R , and κ written in Eqs. ( 6.28 ), ( 6.29 ), and
( 6.30 ) respecti v ely, we obtain 

(κB L ) 
11 = (κB L ) 

22 = cos θ
(

1 − sin θW 

tan θR 

O 

(
v 2 L 

v 2 R 

))
, (6.43) 

(κB R ) 
11 = (κB R ) 

22 = 

sin θW 

cos θ
sin θR 

cos θR 

O 

(
v 2 L 

v 2 R 

)
, (6.44) 

(κB L ) 
33 = cos θ

(
1 − sin θW 

tan θR 

O 

(
v 2 L 

v 2 R 

))
, (6.45) 

(κB R ) 
33 = 

sin θW 

cos θ
sin θR 

cos θR 

O 

(
v 2 L 

v 2 R 

)
, (6.46) 

(κB L ) 
34 = (κB L ) 

43 = cos θ
(

1 − sin θW 

tan θR 

O 

(
v 2 L 

v 2 R 

))
m d L 

M B 

, (6.47) 

(κB R ) 
34 = (κB R ) 

43 = − sin θW 

cos θ
sin θR 

cos θR 

O 

(
v 2 L 

v 2 R 

)
m d R 

M B 

, (6.48) 

(κB L ) 
44 = cos θ

(
1 − sin θW 

tan θR 

O 

(
v 2 L 

v 2 R 

)) m 

2 
d L 

M 

2 
B 

, (6.49) 

(κB R ) 
44 = 

sin θW 

cos θ
sin θR 

cos θR 

O 

(
v 2 L 

v 2 R 

) m 

2 
d R 

M 

2 
B 

, (6.50) 

κ = cos θ
(

sin 

2 
θW 

− sin θW 

tan θR 

O 

(
v 2 L 

v 2 R 

))
. (6.51) 
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The FCNC process in the down sector is suppressed, similarly to the up sector. As shown
in Eqs. ( 6.47 ) and ( 6.48 ), the κB L and κB R terms are suppressed by a factor O(v L 

/M B 

) and
O(v 2 L 

/v R 

M B 

) , respecti v ely. In addition, the interaction between the Z-boson and heavy bot-
tom quark is also suppr essed. Furthermor e, the deviation of the SM-like terms in (κB L ) 

ii and
κ, with i ∈ { 1 , 2 , 3 } is suppressed by a factor O(v 2 L 

/v 2 R 

) . 

7. Conclusion 

We have presented a systematic analysis of the quark sector in the universal seesaw model.
We deri v ed the Lagrangian of the model, including the quark sector , Higgs sector , and ki-
netic terms of the gauge fields. We start by writing the Lagrangian which is invariant un-
der SU( 2) L 

× SU( 2) R 

× U( 1) Y 

′ . After the SU(2) R 

Higgs doublet acquires nonzero vev, we
obtain the Lagrangian, which is invariant under SM gauge symmetry. Furthermore, the SM
gauge group is broken into U(1) em 

after the SU(2) L 

Higgs doublet acquires nonzero v e v.
In the gauge interactions sector, we classify the terms based on the number of fields, such
as linear, quadratic, cubic, and quartic interactions. In addition, we found that the mass-
less Nambu–Goldstone bosons are mixed to become new states χZ 

and χZ 

′ . We have shown
clearly that χZ 

and χZ 

′ become the longitudinal components of the massi v e Z- and Z 

′ -bosons,
respecti v ely. 

Our model focuses on the third family of the quark sector. Within this framework we explain
the hierarchy between the top and bottom quark masses by mixing with the heavy VLQs. We
use the direct measurement of the top quark mass and the running mass of the bottom quark.
Additionally, the lower bounds on the heavy top and heavy bottom quark masses also serve as
constraints. The lower mass limit of the Z 

′ -boson, linked to the W R 

-boson mass, also imposes
a stringent constraint on v R 

. By setting g R 

and the Yukawa couplings equal to 1, the lower limit
of v R 

is 10 TeV in this model. We obtained that the heavy top quark mass is in the order of 
v R 

( m t ′ = 7 . 13 TeV) and the heavy bottom mass is in the order of M B 

( m b ′ = 293 . 82 TeV). We
confirmed that the hierarchy of VLQ’s mass parameters, v L 

, and v R 

in our model is v L 

< M T <

v R 

 M B 

. 
Mor eover, the pr esence of VLQs in the model induces the FCNC at the tree le v el. In the

SM, the FCNC process is highly suppressed and only occurs at the loop le v el due to the
Glashow–Iliopoulos–Maiani (GIM) mechanism. In our model, we have shown that the Z-
boson-mediated FCNC process is suppressed for both (up and down) sectors. The deviation
from the SM values is suppressed by O(v 2 L 

/v 2 R 

) , which comes from the small mixture in the
lighter mass eigenstate Z from Z R 

. On the other hand, Higgs-mediated FCNCs of b̄ L 

b 

′ 
R 

and
b̄ 

′ 
R 

b L 

types are not suppressed when Y 

3 
d L 

� 1 . 
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Appendix A. Weak-basis of Yuka w a inter action 

In this appendix, we show how to obtain the Yukawa interaction that is written in Eq. ( 2.3 ).
We start from the general Yukawa interaction terms, 

L YM 

= −q 

i 
L 

y 

i 
u L 

˜ φL 

T R 

− T L 

y 

i∗
u R 

˜ φ
† 
R 

q 

i 
R 

− T L 

M T T R 

− h . c . 

− q 

i 
L 

y 

i 
d L φL 

B R 

− B L 

y 

i∗
d R φ

† 
R 

q 

i 
R 

− B L 

M B 

B R 

− h . c . . (A.1) 

The Yukawa couplings are general comple x v ectors in C 

3 with the following parameterization: 

y 

i 
u L (R ) = y u L (R ) = 

⎛ ⎜ ⎜ ⎝ 

sin θu 
L (R ) sin φu 

L (R ) e 
iα1 

u L (R ) 

sin θu 
L (R ) cos φu 

L (R ) e 
iα2 

u L (R ) 

cos θu 
L (R ) e 

iα3 
u L (R ) 

⎞ ⎟ ⎟ ⎠ 

Y 

3 
u L (R ) , (A.2) 

y 

i 
d L (R ) = y d L (R ) = 

⎛ ⎜ ⎜ ⎝ 

sin θd 
L (R ) sin φd 

L (R ) e 
iα1 

d L (R ) 

sin θd 
L (R ) cos φd 

L (R ) e 
iα2 

d L (R ) 

cos θd 
L (R ) e 

iα3 
d L (R ) 

⎞ ⎟ ⎟ ⎠ 

Y 

3 
d L (R ) , (A.3) 

where Y 

3 
u L (R ) and Y 

3 
d L (R ) 

are real positi v e numbers. Define the following weak-basis transforma-
tions (WBTs) as follows: 

(q 

′ 
L 

) i = e −iαi 
u L q 

i 
L 

, (A.4) 

(q 

′ 
R 

) i = e −iαi 
u R q 

i 
R 

. (A.5) 

A ppl ying this WBT into Eq. ( A.1 ), we obtain 

L YM 

= −(
q 

′ 
L 

)i (
y 

′ 
u L 

)i ˜ φL 

T R 

− T L 

(
y 

′ 
u R 

)i∗ ˜ φ
† 
R 

(
q 

′ 
R 

)i − T L 

M T T R 

− h . c . 

− (
q 

′ 
L 

)i 
y 

i 
d L φL 

B R 

− B L 

y 

i∗
d R φ

† 
R 

(
q 

′ 
R 

)i − B L 

M B 

B R 

− h . c . , (A.6) 

where (
y 

′ 
u L 

)i = y 

i 
u L e 

−iαi 
u L , (A.7) 

(
y 

′ 
u R 

)i = y 

i 
u R e 

−iαi 
u R (A.8) 

ar e r eal vectors. On the other hand, y 

i 
d L 

and y 

i 
d R 

remain complex vectors with the redefined
phases. 

Next we write the (y 

′ 
u L ) 

i Yukawa coupling explained above as, 

(y 

′ 
u L ) 

i = 

⎛ ⎜ ⎝ 

sin θu 
L 

sin φu 
L 

sin θu 
L 

cos φu 
L 

cos θu 
L 

⎞ ⎟ ⎠ 

Y 

3 
u L 

= e u L 3 
Y 

3 
u L (A.9) 

and define another WBT, (
q 

′ 
L 

)i = ( V u L ) 
i j (q 

′′ 
L 

) j 
, (A.10) 

where in general V u L is a 3 × 3 unitary matrix formed by three orthonormal vectors with the
third column chosen as e u L 3 

in Eq. ( A.9 ), 

V u L = 

(
e u L 1 

e u L 2 
e u L 3 

)
, (A.11) 

which leads to the product ( V 

† 
u L ) 

ji ( y 

′ 
u L ) 

i = δ j3 Y 

3 
u L . 
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For the (y 

′ 
u R ) 

i Yukawa coupling, it can be deri v ed similarly by changing L → R in Eqs. ( A.9 –
A.11 ). For the down sector, the product of Eq. ( A.11 ) and the down-type Yukawa coupling
yields down-type Yukawa coupling on another basis. For example, ( V 

† 
u L ) 

ji ( y d L ) 
i = ( y 

′′ 
d L 

) j . There-
fore, the Lagrangian in Eq. ( A.6 ) becomes 

L YM 

= −Y 

3 
u L 

(
q 

′′ 
L 

)3 ˜ φL 

T R 

− Y 

3 
u R T L 

˜ φ
† 
R 

(
q 

′′ 
R 

)3 − T L 

M T T R 

− h . c . 

− (
q 

′′ 
L 

)i (
y 

′′ 
d L 

)i 
φL 

B R 

− B L 

(
y 

′′ 
d R 

)i∗
φ
† 
R 

(
q 

′′ 
R 

)i − B L 

M B 

B R 

− h . c . , (A.12) 

and it has the form such that the Yukawa couplings of the up-type quark doublet ( Y 

3 
u L and

 

3 
u R ) are gi v en by real positi v e numbers while the Yukawa couplings of the down-type quark

are general complex vectors as written in Eq. ( 2.3 ). 

A ppendix B . P ar ameterization of V d R and V d L 

In this appendix, we explain in more detail how to parameterize and remove the unphysical
phases of V d R and V d L . Both V d R and V d L have the following form: 

V = 

(
v 1 v 2 v 3 

)
, (B.1) 

where the third column is related to either y d R or y d L and is parameterized by, 

v 3 = 

⎛ ⎜ ⎝ 

sin θ sin φe iα1 

sin θ cos φe iα2 

cos θe iα3 

⎞ ⎟ ⎠ 

. (B.2) 

Since V is a unitary matrix, the column vectors satisfy v † i · v j = δi j and V has a matrix form as
follows: 

V = (α1 , α2 , α3 ) R 12 (φ) R 23 (θ )(0 , δ, 0) R 12 (α)(ρ, σ, 0) , (B.3) 

where (α1 , α2 , α3 ) = diag (e iα1 , e iα2 , e iα3 ) ; (0 , δ, 0) = diag ( 1 , e iδ, 1) ; ( ρ, σ, 0) = diag (e iρ, e iσ , 1) ;
and 

R 12 (φ) = 

⎛ ⎜ ⎝ 

cos φ sin φ 0 

− sin φ cos φ 0 

0 0 1 

⎞ ⎟ ⎠ 

, R 23 (θ ) = 

⎛ ⎜ ⎝ 

1 0 0 

0 cos θ sin θ

0 − sin θ cos θ

⎞ ⎟ ⎠ 

, 

R 12 (α) = 

⎛ ⎜ ⎝ 

cos α sin α 0 

− sin α cos α 0 

0 0 1 

⎞ ⎟ ⎠ 

. (B.4) 

We have the freedom to rotate V by U(2) transformations from both sides. As shown in
Eqs. ( 3.18 ) and ( 3.57 ), we can remove the unphysical phases and angles in Eq. ( B.3 ) by fol-
lowing ˜ V = 

˜ U 

† V ̃

 W , (B.5) 

where ˜ U and 

˜ W are 3 × 3 unitary matrices which have the following expressions: ˜ U 

† = 

(
0 , 

α3 

2 

, 0 

)
R 

−1 
12 ( φ)( −α1 , −α2 , 0) , 

˜ W = (−ρ, −σ, 0) R 

−1 
12 (α)(0 , −δ, 0) 

(
0 , −α3 

, 0 

)
. (B.6) 
2 
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Thus, we obtain, 

˜ V = 

⎛ ⎜ ⎝ 

1 0 0 

0 cos θ sin θe i 
α3 
2 

0 − sin θe i 
α3 
2 cos θe iα3 

⎞ ⎟ ⎠ 

. (B.7) 

Appendix C. Diagonalization of quark mass matrix 

In this appendix, we deri v e the e xact mass eigenvalues of the top-bottom SM quarks and the
heavy VLQ partners, as well as the matrices used for the diagonalization procedure. We will
show the diagonalization procedure for the top sector. The bottom sector can be done similarly
because the form of M b is the same as M t . We start from Eq. ( 3.66 ), explicitly writing the (W T R ) 

43 

and (W T R ) 
44 values, 

M t ≡
( 

−Y 

3 
u L 

Y 

3 
u R 

v L v R 
2 m u 4 

Y 

3 
u L 

v L √ 

2 
M T 
m u 4 

0 m u 4 

) 

= 

( 

−m t 1 m t 2 

0 m u 4 

) 

, (C.1) 

where m t 1 and m t 2 in Eq. ( C.1 ) are defined as follows: 

m t 1 = 

Y 

3 
u L Y 

3 
u R v L 

v R 

2 m u 4 
, m t 2 = Y 

3 
u L 

v L √ 

2 

M T 

m u 4 
. (C.2) 

The top quark mass matrix in Eq. ( C.1 ) can be diagonalized by bi-unitary transformation,
which gi v es 

K 

† 
T L 

M t K T R = 

(
m 

diag 
t 

)
= diag ( m t , m t ′ ) . (C.3) 

Initially, we transform M t into a real symmetric matrix by m ultipl ying it on the left side with an
orthogonal matrix S t , which yields 

M 

′ 
t = S t M t , (C.4) 

where 

S t = 

( 

cos φT l − sin φT l 

sin φT l cos φT l 

) 

. (C.5) 

M 

′ 
t becomes a real symmetric matrix with the following expression: 

M 

′ 
t = 

( 

−m t 1 cos φT l −m t 1 sin φT l 

−m t 1 sin φT l m t 2 sin φT l + m u 4 cos φT l 

) 

(C.6) 

if the mixing angle satisfies the following condition: 

tan φT l = 

m t 2 

m u 4 − m t 1 
. (C.7) 

Then, a real symmetric matrix can be diagonalized by m ultipl ying from both sides another
2 × 2 orthogonal matrix R t and its transpose, 

R t M 

′ 
t R 

T 
t = diag (−m t , m t ′ ) , (C.8) 

where 

R t = 

( 

cos φT R sin φT R 

− sin φT R cos φT R 

) 

. (C.9) 

The minus sign inside the diagonal matrix on the right-hand side of Eq. ( C.8 ) arises because the
determinant of the top quark mass matrix M t is negati v e. Since m t is lighter than m t ′ , we assign
the minus sign to m t . Howe v er, we could eliminate the minus sign by m ultipl ying Eq. ( C.8 ) by
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−τ3 on the right side, where τ3 is the third component of the Pauli matrices. The mixing angle
can then be obtained as 

tan 2 φT R = 

2 m t 1 m t 2 

m 

2 
u 4 + m 

2 
t 2 − m 

2 
t 1 

. (C.10) 

The eigenvalues of Eq. ( C.8 ) can be computed using the following equation: 

λ2 − (
tr M 

′ 
t 

)
λ + det M 

′ 
t = 0 . (C.11) 

After performing the calculations, we obtain 

λ1 = −m t = 

√ 

m 

2 
t 2 + (m u 4 − m t 1 ) 2 

2 

−
√ 

m 

2 
t 2 + (m u 4 + m t 1 ) 2 

2 

, (C.12) 

λ2 = m t ′ = 

√ 

m 

2 
t 2 + (m u 4 − m t 1 ) 2 

2 

+ 

√ 

m 

2 
t 2 + (m u 4 + m t 1 ) 2 

2 

. (C.13) 

We can also equivalently express them with the parameters of the mass matrix as follows: 

m t = −
√ 

M 

2 
T + (m u R − m u L ) 2 

2 

+ 

√ 

M 

2 
T + (m u R + m u L ) 2 

2 

, (C.14) 

m t ′ = 

√ 

M 

2 
T + (m u R − m u L ) 2 

2 

+ 

√ 

M 

2 
T + (m u R + m u L ) 2 

2 

, (C.15) 

where 

m u R = Y 

3 
u R 

v R √ 

2 

, m u L = Y 

3 
u L 

v L √ 

2 

. (C.16) 

Finally, we can summarize all the matrix transformations explained above as 

R t S t M t R 

T 
t (−τ3 ) = diag (m t , m t ′ ) . (C.17) 

Additionally, the product of two orthogonal matrices is also an orthogonal matrix. Then we
can define O t as 

O t = R t S t = 

( 

cos φT L sin φT L 

− sin φT L cos φT L 

) 

(C.18) 

with φT L = φT R − φT l . Hence, by comparing Eq. ( C.17 ) and Eq. ( C.3 ) we obtain the expression
for the mixing matrices as follows: 

K 

† 
T L 

= 

( 

cos φT L sin φT L 

− sin φT L cos φT L 

) 

, (C.19) 

K T R = 

( 

cos φT R − sin φT R 

sin φT R cos φT R 

) ( 

−1 0 

0 1 

) 

= 

( 

− cos φT R − sin φT R 

− sin φT R cos φT R 

) 

. (C.20) 

For the bottom sector, we can deri v e the results similarly by replacing t with b, T with B, and
u with d . Thus, we write the mass eigenvalues and the mixing matrices for the bottom sector as
follows: 

m b = −
√ 

M 

2 
B 

+ (m d R − m d L ) 2 

2 

+ 

√ 

M 

2 
B 

+ (m d R + m d L ) 2 

2 

, (C.21) 

m b ′ = 

√ 

M 

2 
B 

+ (m d R − m d L ) 2 

2 

+ 

√ 

M 

2 
B 

+ (m d R + m d L ) 2 

2 

, (C.22) 

where 
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m d R = Y 

3 
d R 

v R √ 

2 

, m d L = Y 

3 
d L 

v L √ 

2 

, (C.23) 

K 

† 
B L 

= 

( 

cos φB L sin φB L 

− sin φB L cos φB L 

) 

, (C.24) 

K B R = 

( 

cos φB R − sin φB R 

sin φB R cos φB R 

) ( 

−1 0 

0 1 

) 

= 

( 

− cos φB R − sin φB R 

− sin φB R cos φB R 

) 

. (C.25) 

For the approximate masses already written in Eqs. ( 6.9 –6.12 ) and the approximate mixing
angle this yields, 

sin φT L � − m u L M T 

M 

2 
T + m 

2 
u R 

, cos φT L � 1 , sin φT R � 

m 

2 
u L m u R M T (

M 

2 
T + m 

2 
u R 

)2 , cos φT R � 1 

sin φB L � −m d L 

M B 

, cos φB L � 1 , sin φB R � 

m 

2 
d L 

m d R 

M 

3 
B 

, cos φB R � 1 , (C.26) 

or in the approximate matrix form as follows: 

K 

† 
T L 

� 

⎛ ⎝ 

1 − m u L M T 

M 

2 
T + m 

2 
u R 

m u L M T 

M 

2 
T + m 

2 
u R 

1 

⎞ ⎠ , K T R � 

⎛ ⎜ ⎝ 

1 − m 

2 
u L 

m u R M T 

(M 

2 
T + m 

2 
u R 

) 2 

− m 

2 
u L 

m u R M T 

(M 

2 
T + m 

2 
u R 

) 2 
1 

⎞ ⎟ ⎠ 

(C.27) 

K 

† 
B L 

� 

( 

1 −m d L 
M B m d L 

M B 
1 

) 

, K B R � 

⎛ ⎝ 

−1 −m 

2 
d L 

m d R 

M 

3 
B 

−m 

2 
d L 

m d R 

M 

3 
B 

1 

⎞ ⎠ . (C.28) 

Appendix D. CKM-like matrices 
In this appendix, we will discuss CKM-like matrices in this model and the rephasing of the
CKM-like matrices. The CKM-like matrix, which appears for the first time in Section 3 , is an
“intermediate” right-handed CKM-like matrix which has explicit form as follows: 

V 

CKM 

R 

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 0 0 0 

0 c θd 
R 

s θd 
R 
c θB R 

e i 
α3 

d R 
2 s θd 

R 
s θB R 

e i 
α3 

d R 
2 

0 −c θT R 
s θd 

R 
e i 

α3 
d R 
2 c θT R 

c θd 
R 
c θB R 

e iα
3 
d R c θT R 

c θd 
R 
s θB R 

e iα
3 
d R 

0 −s θT R 
s θd 

R 
e i 

α3 
d R 
2 s θT R 

c θd 
R 
c θB R 

e iα
3 
d R s θT R 

c θd 
R 
s θB R 

e iα
3 
d R 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (D.1) 

where 

c θd 
R 

= cos θd 
R 

, s θd 
R 

= sin θd 
R 

, c θT R 
= cos θT R , 

s θT R 
= sin θT R , c θB R 

= cos θB R , s θB R 
= sin θB R . (D.2) 

After Step 6 is done, we have the expressions of the left-handed CKM-like matrix and right-
handed CKM-like matrix, which are defined in Eq. ( 3.73 ) and Eq. ( 3.74 ), respecti v ely. The
matrix forms of the left-handed CKM-like matrix and right-handed CKM-like matrix are as
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follows: 

V 

CKM 

L 

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 0 0 0 

0 c θd 
L 

s θd 
L 
c φB L 

e i 
α3 

d L 
2 −s θd 

L 
s φB L 

e i 
α3 

d L 
2 

0 −c φT L 
s θd 

L 
e i 

α3 
d L 
2 c φT L 

c θd 
L 
c φB L 

e iα
3 
d L −c φT L 

c θd 
L 
s φB L 

e iα
3 
d L 

0 s φT L 
s θd 

L 
e i 

α3 
d L 
2 −s φT L 

c θd 
L 
c φB L 

e iα
3 
d L s φT L 

c θd 
L 
s φB L 

e iα
3 
d L 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (D.3) 

where 

c θd 
L 

= cos θd 
L 

, s θd 
L 

= sin θd 
L 

, c φT L 
= cos φT L , 

s φT L 
= sin φT L , c φB L 

= cos φB L , s φB L 
= sin φB L (D.4) 

and 

V 

CKM 

R 

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 0 0 0 

0 c θd 
R 

−s θd 
R 
c βB R 

e i 
α3 

d R 
2 s θd 

R 
s βB R 

e i 
α3 

d R 
2 

0 c βT R 
s θd 

R 
e i 

α3 
d R 
2 c βT R 

c θd 
R 
c βB R 

e iα
3 
d R −c βT R 

c θd 
R 
s βB R 

e iα
3 
d R 

0 −s βT R 
s θd 

R 
e i 

α3 
d R 
2 −s βT R 

c θd 
R 
c βB R 

e iα
3 
d R s βT R 

c θd 
R 
s βB R 

e iα
3 
d R 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (D.5) 

where 

c θd 
R 

= cos θd 
R 

, s θd 
R 

= sin θd 
R 

, c βT R 
= cos βT R , 

s βT R 
= sin βT R , c βB R 

= cos βB R , s βB R 
= sin βB R , 

βT R = θT R − φT R , βB R = θB R − φB R . (D.6) 

Recall the mass terms in the diagonal mass basis (including the massless two lightest quark
fields) as follows: 

L q ⊃ L mass = −(
u 

m 

L 

)α (
m 

diag 
t 

)α (
u 

m 

R 

)α − h . c . 

− (
d 

m 

L 

)α (
m 

diag 
b 

)α (
d 

m 

R 

)α − h . c . . (D.7) 

We have the freedom to rephase the quark fields with the following transformations: (
u 

m 

L ( R ) 

)α

= 

(
θu L ( R ) 

)α
δαβ

(
ˆ u 

m 

L ( R ) 

)β

, (D.8) (
d 

m 

L ( R ) 

)α

= 

(
θd L ( R ) 

)α
δαβ

(
ˆ d 

m 

L ( R ) 

)β

, (D.9) 

where θu L (R ) = diag (e iθu L (R )1 , e iθu L (R )2 , e iθu 3 , e iθu 4 ) and θd L (R ) = diag (e iθd L (R )1 , e iθd L (R )2 , e iθd 3 , e iθd 4 ) . One
can show that Eq. ( D.7 ) is invariant under transformation in Eqs. ( D .8 –D .9 ). 

We a ppl y this rephasing transformation into the L q . The left-handed and right-handed CKM-
like matrices are rephased and become 

ˆ V 

CKM 

L 

= θ † 
u L V 

CKM 

L 

θd L , 
ˆ V 

CKM 

R 

= θ † 
u R V 

CKM 

R 

θd R . (D.10) 

By choosing the proper phase and phase difference, we could rephase the left-handed and right-
handed CKM-like matrices and they become the following matrix forms: 

ˆ V 

CKM 

L 

= 

⎛ ⎜ ⎜ ⎜ ⎝ 

1 0 0 0 

0 c θd 
L 

s θd 
L 
c φB L 

−s θd 
L 
s φB L 

0 −c φT L 
s θd 

L 
c φT L 

c θd 
L 
c φB L 

−c φT L 
c θd 

L 
s φB L 

0 s φT L 
s θd 

L 
−s φT L 

c θd 
L 
c φB L 

s φT L 
c θd 

L 
s φB L 

⎞ ⎟ ⎟ ⎟ ⎠ 

, (D.11) 
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ˆ V 

CKM 

R 

= 

⎛ ⎜ ⎜ ⎜ ⎝ 

1 0 0 0 

0 c θd 
R 

−s θd 
R 
c βB R 

e i 
δ
2 s θd 

R 
s βB R 

e i 
δ
2 

0 c βT R 
s θd 

R 
e i 

δ
2 c βT R 

c θd 
R 
c βB R 

e iδ −c βT R 
c θd 

R 
s βB R 

e iδ

0 −s βT R 
s θd 

R 
e i 

δ
2 −s βT R 

c θd 
R 
c βB R 

e iδ s βT R 
c θd 

R 
s βB R 

e iδ

⎞ ⎟ ⎟ ⎟ ⎠ 

, (D.12) 

wher e we r edefine the phase differ ence as δ = α3 
d R 

− α3 
d L 

. Ther efor e, in this model, we have one
CP-violating phase δ and in our choice, it is included in the right-handed CKM-like matrix as
shown in Eq. ( D.12 ). 

Moreover, the mixing angles βT R and βB R can be expressed in the approximate form as, 

sin βT R � 

m u R √ 

M 

2 
T + m 

2 
u R 

, cos βT R � 

M T √ 

M 

2 
T + m 

2 
u R 

, sin βB R � 

m d R 

M B 

, cos βB R � 1 . 

(D.13) 
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