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Abstract. Broiler chickens are a breed known for their rapid growth, 

typically reaching maturity in just 4-5 weeks. This growth is influenced by 

various factors, with cage management playing a significant role. One key 

factor in cage management is maintaining an optimal target temperature, 

which is determined by combining measurements of ambient temperature, 

humidity, and wind speed. This article examines how the XGBoost 

algorithm can be used to predict the target effective temperature in closed-

house broiler chicken systems. The goal is to develop a predictive network 

model with high accuracy, enabling the regulation of cage conditions to 

ensure the chickens' comfort. The study findings demonstrate that the 

proposed algorithm effectively models target temperatures, aiding in the 

management of cage conditions. 

1 Introduction 

The livestock sector plays a vital role in meeting the nutritional needs of the Indonesian 

population. This sector provides high-protein food products such as meat, milk, and eggs 

commonly consumed. Specifically, the production and consumption of broiler chicken meat 

in Indonesia have shown significant growth year after year, according to a survey by the 

Indonesian Central Bureau of Statistics [1].  

 Broiler chickens are more widely cultivated due to their high productivity. In just 4 – 5 

weeks, broiler chicks can grow into mature broiler chickens weighing around 2 kg and ready 

for harvest, offering promising profits for farmers. In general, there are two main broiler 

chicken farming systems: open housing and closed housing. The closed housing system 

(Figure 1) is considered by many farmers because it is less affected by weather conditions 

and environmental stress. Additionally, in terms of number of chickens per square meter, 

broiler chickens raised in closed housing can be higher [2]. 
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Fig. 1. Chicken farming in closed cages taken from [2]. 

1.1 Background 

Several important factors influencing housing comfort must be controlled to ensure optimal 

broiler chicken growth. These factors include the actual enclosure temperature, air humidity, 

and wind speed. Housing with low temperatures causes chickens to huddle together and 

reduce their activity. Conversely, housing with relatively high temperatures makes chickens 

feel thirsty more easily, leading to higher water consumption compared to food consumption. 
This can ultimately affect the chickens' growth, resulting in lower weights at harvest. 

  Therefore, in managing poultry housing, it is crucial to regulate the enclosure 

temperature to ensure the chickens grow comfortably. Such a temperature is referred to as 

the target effective temperature, which varies depending on the chickens' age. Older chickens 

require a lower target effective temperature because their body temperature becomes higher 

as they age. Additionally, air humidity in the enclosure greatly influences the perceived 

temperature, as higher humidity makes the chickens feel warmer. To address this, closed 

housing is usually equipped with fans that can lower the actual enclosure temperature to 

achieve the target effective temperature (Figure 2). 

 

 
Fig. 2. Closed cages are equipped with fans to lower the temperature taken from [3]. 

 

 Table 1 provides the target effective temperature in closed housing for chickens of 

various ages, ranging from 1 – 2-day-old chicks to mature chickens over 36 days old. The 

target effective temperature ranges from 21°C to 32°C. For 1 – 2-day-old chicks, the closed 

housing temperature must be set to around 32°C. This temperature is necessary for optimal 

growth. The table also shows a trend indicating that older chickens require lower housing 

temperatures for optimal growth. 

 

2

ITM Web of Conferences 71, 01015 (2025)
ICMAME 2024

https://doi.org/10.1051/itmconf/20257101015



Table 1. Target Effective Temperature in closed cage taken from [3]. 

Chicken age (in days) 
Target Effective Temperature 

(in degrees Celcius) 

1 – 2 days 32 

3 – 4 days 31 

5 – 7 days 30 

8 – 14 days 29 

15 – 21 days 27 

22 – 28 days 25 

29 – 35 days 22 

More than 36 days 21 

  

 Additionally, data on predictor variables—such as actual temperature, air humidity, and 

wind speed (generated by fans)—and the response variable, the target effective temperature, 

are available for various humidity levels, as shown in Figure 3. In this table, the variables 

include: housing temperature in degrees Celsius (°C), humidity in the housing as relative 

humidity (%rH), and wind speed in the housing in feet per minute (fpm). These variables—

temperature, humidity, and wind speed—are used as indicators in calculating the estimated 

target effective temperature such that the comfort of the chickens in the enclosure is 

maintained. The calculated target effective temperature is then used as an evaluation for 

adjusting the wind speed settings based on the chickens' needs and comfort during their care. 

 
Fig. 3. Relationship between actual temperature, wind speed and target effective temperature at 70% 

humidity taken from [3]. 
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In practice, broiler chicken farmers using closed housing adjust the wind speed (with fans) 

and humidity (with an evaporator) to achieve the desired target effective temperature in the 

enclosure, doing so manually based on the data in Figure 2. For example, at a humidity level 

of 70%, for 1 – 2-day-old chicks in an enclosure with an actual temperature of 34.1°C, the 

fans must be set to a speed of 150 fpm to bring the enclosure temperature down to 32°C. 

1.2 Problem Statement 

However, the available tables are quite limited, covering only humidity levels of 50%, 70%, 

80%, and 90% for a cage measuring 110 m x 10 m with a capacity of 20,000 chickens.  

 This study aims to design a mathematical model based on the XGBoost algorithm to 

formulate the relationship between humidity, wind speed, actual temperature, and the target 

effective temperature of the cage. As a result, standard tables for other humidity variations 

can be generated. If this is successfully implemented, the automation of closed-cage 

management can be achieved. This will further simplify the process for broiler chicken 

farmers in regulating the target effective temperature of their cages. 

2 Method  

In this part, we discuss the method outlining the approach and technique used to develop a 

mathematical model to achieve the objectives of this study. It provides a detailed description 

of the proposed model and the method of the hyperparameter tuning.  

2.1 XGBoost 

XGBoost, short for Extreme Gradient Boosting, is a fast, scalable, powerful and efficient 

algorithm which is used widely for supervised learning tasks, i.e. regression and 

classification. It is so popular because its superior performance in machine learning 

competitions and many real applications. The method proposed by Tianqi Chen in 2014 [4], 

belongs to gradient boosting algorithms which build many decision tree models sequentially 

and each new model corrects the errors resulted from the previous ones. Furthermore, the 

XGBoost outperforms the existing gradient boosting implementations in the speed and 

accuracy, handling missing values, reducing overfitting with regularization, and supporting 

parallel and distributed computing [5].  

The objective function ℒ of XGBoost algorithm has two key important components to be 

minimized, i.e. loss function ℓ and Ω  regularization term.  

ℒ = ∑ ℓ(𝑦𝑖 , �̂�𝑖) +  ∑ Ω (𝑓𝑘)

𝐾

𝑘=1

𝑛

𝑖=1

                                   (1) 

 

The loss function ℓ will measure how well the model’s output �̂�𝑖 predicts the true label 𝑦𝑖 , 

i.e. mean square error for regression and log loss for classification. The regularization term 

Ω will reduce the complexity of the model to avoid overfitting. For a tree 𝑓𝑘, the 

regularization is defined as 

Ω(𝑓𝑘) = 𝛾 𝑇 +  
1

2
 𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

                                              (2) 

 

where 𝑇 the number leaves in the tree, 𝑤𝑗  weight of the 𝑗-th leaf, 𝛾 regularization parameter 

for the number of leaves and 𝜆 regularization parameter for leaf weights. The prediction �̂�𝑖  

for a datum 𝑥𝑖 is the sum of the outputs from all 𝐾 trees, i.e. 
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�̂�𝑖 = ∑ 𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

                                                                      (3)  

  

where 𝑓𝑘 ∈ ℱ the space of decision trees. XGBoost will minimize ℒ by adding trees 

sequentially, where each new tree 𝑓𝑘 minimizes the following approximate objective 

 

ℒ(𝑡) ≈ ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
 ℎ𝑖  𝑓𝑡

2(𝑥𝑖)]

𝑛

𝑖=1

+ Ω (𝑓𝑡)                  (4) 

 

where 𝑔𝑖 =
𝜕ℓ(𝑦𝑖,�̂�𝑖

(𝑡−1)) 

𝜕 �̂�(𝑡−1)   is the gradient of the loss function and ℎ𝑖 =
𝜕2 ℓ(𝑦𝑖,�̂�𝑖

(𝑡−1)) 

𝜕 �̂�(𝑡−1)  is the 

Hessian of the loss function. Here 𝑡 refers to the index of the current iteration or tree being 

optimized and the predicted value for an instance 𝑖 at iteration 𝑡 is 

 

�̂�𝑖
(𝑡)

= �̂�𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)                                                            (5) 

 

where  �̂�𝑖
(𝑡−1)

 is the prediction from the previous (𝑡 − 1) iterations and 𝑓𝑡(𝑥𝑖) is the 

contribution of the current tree 𝑡 to correct the residual errors. 

2.2 Hyperparameter Tuning  

As it is known, XGBoost usually ensembles multiple weak different decision trees in a 

sequential and additive manner using gradient boosting. Each tree focuses on correcting the 

errors of the previous ones and the ensemble as a whole becomes a strong predictive model. 

Like a standard decision tree, the XGBoost model has also several hyperparameters that need 

to be tuned to optimize prediction accuracy [6,7,8]. The following table lists the most 

important hyperparameters of the XGBoost model along with their functions and effects. 

Table 2. Several important hyperparameters of the XGBoost. 

Name of 

hyparameters 

Common 

abbreviations 
Function 

 

Effect 

 

learning rate eta 
control the contribution of 

each tree to the final model 

decreasing prevents 

overfitting 

number of trees n_estimators 
specify the total number of 

boosting iterations (tree) 

increasing may improve 

scores with large data 

maximum tree 

depth 
max_depth 

determine the maximum 

depth of each tree 

decreasing prevents 

overfitting 

minimum child 

weight 
min_child_weight 

minimum sum of instance 

weights (hessian) needed to 

create a child node 

increasing prevents 

overfitting 

subsampling subsample 

fraction of training data 

used for growing each tree 

to reduce overfitting 

decreasing prevents 

overfitting 

column 

subsampling 
colsample_bytree 

fraction of features used to 

grow each tree to reduce 

overfitting 

decreasing prevents 

overfitting 
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L2 

regularization 

constant 

lambda 

penalizes large leaf weights 

to prevent overfitting by 

shrinking weights but retain 

all features 

increasing prevents 

overfitting 

L1 

regularization 

constant 

alpha 

penalizes large leaf weights 

to prevent overfitting by 

introducing sparsity (zero 

weights for some features) 

increasing prevents 

overfitting 

 

To select the optimal set of the above hyperparameters, we used a method called 

randomized search [9] that randomly samples combinations of hyperparameter values from 

predefined ranges. Comparing to grid search method which evaluates all possible 

combinations of predefined distribution of hyperparameter values, it is more efficient due to 

its ability to save computational time and identify near-optimal hyperparameter settings.  

3 Results and Discussion 

This section begins by outlining the key results derived from the analyses, supported by 

relevant statistical and graphical representations. Emphasis is placed on finding patterns, 

relationships, or trends that align with or diverge from the initial hypotheses.  

 

3.1 Data Analysis 
 

The data used in this article consists of 1,227 entries, which represent the target effective 

temperature data for various actual temperature conditions in the cage, air humidity, and wind 

speed, as available in the literature [3]. Thus, there are three predictor variables: 𝑥1 (air 

humidity), 𝑥2 (wind speed), 𝑥3 (actual cage temperature), and one response variable 𝑦 (target 

effective temperature). Out of the total data points used, around 90% are used as training data 

to build the model, and the remaining 10% are used as test data. 

 Before building the model, preliminary data processing will be conducted to get the 

general description of the data and the relationships between the predictor variables and the 

response variable. Figure 3 shows the distribution of the data used in this analysis. Using a 

specific device, the humidity in cage can be adjusted to only a few values, namely 50%, 70%, 

80%, and 90%. Wind speed can also be controlled by adjusting a number of fans, resulting 

in values of 0, 50, 100, ..., 500 feet per minute. The actual cage temperature, measured with 

a thermometer, ranges from 21.1℃ to 35℃. The target effective temperature, as the response 

variable resulting from the interaction of the three predictor variables (humidity, wind speed, 

and actual cage temperature), is distributed as shown in the histogram in the bottom-right 

corner. 
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Fig. 4. Histogram of the data distribution. 
 

 Figure 5 shows the Pearson correlation coefficient between variable pairs. From the 

simple correlation between two variables, it can be concluded that the actual cage temperature 

variable is the most strongly (positively) correlated with the target effective temperature 

response variable, with a coefficient of 0.67. The wind speed variable has a negative 

correlation with the target effective temperature, while the humidity variable shows the 

weakest (positive) correlation. It means that the higher the humidity and temperature, the 

greater the target effective temperature. Conversely, the higher the wind speed, the lower the 

target effective temperature. 

 
Fig. 5. Correlation coefficient between variables. 

 

Using Python programming language, the XGBoost algorithm [10] is applied to the 

training data to identify the functional relationship between the predictor variables and the 

response variable. In this process, hyperparameter tuning is done to find the optimal 

hyparameters minimizing mean square error (mse). The optimal model obtained will then be 

tested using the test data, providing an estimate of the actual mse of the model. 

  

3.2 XGBoost Model 
 
The XGBoost regression model for this problem is built on the following hyperparameter 

setting. The first model using default values for hyperparameter (see third column of Table 

3) gives mean square error around 0.1537. The second model using values resulting from 

randomized search (see fourth column of Table 3) produces a smaller mean square error, i.e. 

0.146.  Both models demonstrate strong predictive performance in estimating the target 

effective temperature.  
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Table 3. Default value hyperparameter in the XGBoost package. 

name of 

hyparameters 

common 

abbreviations 
default values 

 

optimal values 

 

learning rate eta 0.3 
 

0.05 

number of trees n_estimators 100 
 

1200 

maximum tree 

depth 
max_depth 6 

 

3 

minimum child 

weight 
min_child_weight 1 

 

6 

subsampling subsample 1 
 

1 

column 

subsampling 
colsample_bytree 1 

 

1 

L2 

regularization 

constant 

lambda 1 
 

0.05 

L1 

regularization 

constant 

alpha 0 
 

0.05 

Furthermore, as shown in Figure 6, the feature importance analysis revealed that 

actual cage temperature contributed the most to the predictions, accounting for 42% of the 

total importance. Air humidity and wind speed also showed moderate contributions at 35% 

and 23%, respectively. 

 

Fig. 6. Feature importance. 

Overall, the results indicate that the XGBoost model can effectively predict the target 

effective temperature with minimal error, making it a robust tool for environmental 

management in broiler chicken farming.  
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4 Conclusion 

This study demonstrates the effective application of the XGBoost algorithm for predicting 

the target effective temperature in closed broiler chicken cages. By utilizing key 

environmental variables such as actual cage temperature, wind speed, and humidity, the 

model achieved high accuracy and reliability in forecasting the target effective temperature. 

The results reveal that the actual cage temperature is the most influential predictor, showing 

a strong positive correlation with the target effective temperature, while wind speed and 

humidity contribute less significantly. The findings highlight the potential of XGBoost as a 

robust predictive tool for optimizing environmental control in closed broiler chicken cages, 

promoting animal welfare and operational efficiency. Future research could explore 

integrating additional variables and testing the model under diverse conditions to further 

enhance its adaptability and precision. 
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