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In pattern mining, high-utility itemset mining (HUIM) is useful for discovering high-utility
patterns. The study of HUIM using heuristic techniques re°ects issues in producing better
o®spring. It is ine®ective in terms of search space organization, population diversity, and utility
calculation, which impact runtime and accuracy. It is observed that very few researchers have
experimented with genetic algorithm (GA) and are still facing the same issues as mentioned
before. To overcome these problems, a novel approach is proposed for HUIM using modi¯ed GA
and optimized local search (HUIM-MGALS) with six potential contributions. First is linking
the utility with the Bitmap dataset to reduce utility access time, leading to e®ective search space
organization. Second, HUIM-MGALS employs a ¯tness scaling strategy to avoid redundancy.
Third, a high-utility itemset (HUI) revision strategy is employed to explore signi¯cant HUIs.
Modi¯ed population diversity maintenance strategy and iterative crossover help to preserve
signi¯cant HUIs and improve search capability as fourth and ¯fth contributions. Sixth, the use
of multiple mutations re¯nes the wasted individuals to boost accuracy. Extensive experimen-
tation showed that HUIM-MGALS signi¯cantly outperforms the presented algorithms, up to
8.6 times faster. It also demonstrates superior HUI discovery capabilities for both sparse and
dense datasets. This is supported by the modi¯ed population diversity maintenance strategy,
which is proved to be the most impactful modi¯cation for HUI discovery in HUIM-MGALS.

Keywords: Genetic algorithm; local search; high-utility itemset mining; pattern mining; data
mining; HUIM-MGALS.

1. Introduction

The digital era has transformed the way humans store and analyze data. Data are

now stored digitally and has grown exponentially, making it di±cult to analyze

manually. Consequently, researchers use data mining techniques to extract

‡Corresponding author.

International Journal of Computational Intelligence and Applications
Vol. 24, No. 1 (2025) 2450024 (27 pages)

#.c World Scienti¯c Publishing Europe Ltd.

DOI: 10.1142/S146902682450024X

2450024-1

https://orcid.org/0000-0003-1739-0116
https://orcid.org/0000-0003-0865-6760
https://dx.doi.org/10.1142/S146902682450024X


interesting patterns from large amounts of data.1 The patterns exhibit strong rela-

tionships and correlations that can aid in decision-making. Association rule mining

(ARM)1 is a prevalent method for extracting patterns and is widely used in market

basket analysis to obtain valuable information for marketing strategies. Pattern

mining, as the ¯rst stage of ARM, plays a signi¯cant role in generating itemset

combinations that satisfy the user-speci¯ed threshold. In the second stage, these

combinations are then processed by rule generation to obtain interesting patterns.

The frequent itemset mining (FIM) was ¯rst introduced2 as a pattern mining tech-

nique to discover itemsets with support greater than the user-prede¯ned threshold.

Thereafter, FIM has gained prominence and been implemented in a variety of

domains. Because FIM considers frequency, it generates frequent itemsets that reveal

high-frequency patterns from the dataset, but these patterns may have low pro¯t. As

a result, frequency is insu±cient to represent the real problem.

High-utility itemset mining (HUIM) was introduced to address the limitations of

FIM. It considers utility such as quantity, pro¯t, or other factors based on the user's

preferences. A HUI is an itemset that has utility exceeds the user-prede¯ned

threshold. Thus, HUIM generates high-utility patterns that are both frequent and

pro¯table, and may provide better recommendations than FIM. Although HUIM

o®ers more bene¯ts, it su®ers from an exponential search space problem due to the

utility being neither monotonic nor anti-monotonic.3,4 The patterns may spread

throughout the search space, rendering existing FIM pruning strategy ine®ective. To

address this problem, several HUIM algorithms have been proposed, including

Apriori-based,4 tree-based,5,6 and utility list-based algorithms.7–9 Each of these data

structures has its own advantages and disadvantages, as discussed in detail in Ref. 10

This presents new opportunities for the development of more e±cient HUIM

algorithms.

The previously stated algorithms are deterministic/exact algorithms. These

algorithms always obtain the same output because they always follow the same

algorithm sequence. Additionally, they guarantee to generate the optimal patterns.

However, the search space increases exponentially as the number of distinct items,

transaction length, and number of transactions increase. This leads to high runtime,

as the algorithm must explore a great number of search spaces. In contrast, the

heuristic algorithm provides a nearly optimal solution in a reasonable time frame.11

Many algorithms have been proposed such as hill climbing and simulated annealing12

to address the limitations of heuristic algorithm. Evolutionary computation (EC),

which is inspired by biological evolution,13 was also introduced. It uses metaheur-

istics or stochastics to generate the optimal solution. It is used in various domains,

including job shop scheduling problems,14–16 bin packing problem,17 and composite

structures optimization.18 In HUIM, EC algorithms have been introduced such as

ant colony optimization (ACO),19,20 genetic algorithms (GAs),21–23 particle swarm

optimization (PSO),22,24–26 and bat algorithm.22 However, these algorithms may

miss some HUIs because they only explore a subset of the search space, following the

heuristic strategy. Additionally, the randomness mechanism in the evolution
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procedure may consume high runtime to ¯nd HUIs. Therefore, new modi¯cations are

required to enhance the existing algorithms.

With the intention to improve the existing heuristic algorithms and focus on the

oversight aspects, HUIM-MGALS is proposed which comes with the following novel

contributions with respect to the HUIM context:

(1) A Bitmap dataset representation linked with utility helps to reduce ¯tness cal-

culation time. Additionally, ascending transaction weighted utilization (TWU)

order is applied to the promising items to e®ectively organize the search space.

(2) A ¯tness scaling strategy prevents repeated itemsets from being chosen fre-

quently to avoid premature convergence. In addition, a HUI revision strategy for

repeated HUIs is proposed by prioritizing greater TWU items to explore signif-

icant HUIs.

(3) A modi¯ed population diversity maintenance strategy involving two latest HUIs

ensures that the population contains HUIs in order to obtain the optimum so-

lution in the search process.

(4) An iterative crossover is designed to ensure that at least one of the descendants is

better than their parents. This strategy may increase the search capability for

the next generation.

(5) A local search function as a novelty is introduced through the application of

multiple mutation functions that help to re¯ne the wasted individuals generated

by GA search functions in order to obtain a better population.

(6) Extensive experiments illustrate that HUIM-MGALS outperforms existing

algorithms in terms of runtime and shows the best ability to discover HUIs.

2. Related Work

Various HUIM algorithms have been introduced since Yao et al.27 presented the

fundamental principles of HUIM. To address the combinatorial problem, Liu et al.4

introduced a new upper bound known as the TWU model to considerably prune the

search space early. Due to its e±ciency, this model is used by the majority of HUIM

algorithms. The pattern growth algorithms5,6 were also introduced to address the

limitations of Apriori-based algorithms. They proposed more compact tree struc-

tures to e®ectively store the dataset. Several strategies were also proposed to

improve the mining e±ciency. Subsequently, utility list-based algorithms with

compact list structures were proposed.7–9 In Ref. 7, the utility list-based algorithm

was ¯rst introduced. Further, it was enhanced by Duong et al.8 by integrating the

bu®er concept to improve memory utilization and mining e±ciency. In Ref. 9, it

was also improved by employing cluster computing framework with several e®ec-

tive load balancing mechanisms to boost runtime for small and large problems.

Several HUIM variants were also proposed, including correlated HUIM,28 closed

HUIM,29 and Top-K HUIM.30 These variants make the results more related to real

problems.
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GA is an EC-based algorithm inspired by the structure of natural selection and

natural genetics.31 It can solve combinatorial problems by discovering the search

space using the survival of the ¯ttest concept and randomized information exchange.

The basic GA algorithm consists of initialization, evaluation, reproduction, cross-

over, and mutation.11 Some researchers have proposed new crossover operators,32,33

as summarized by Katoch et al.13 These crossover operators increase the discovery

rates of solutions because they generate a greater variety of o®spring. Elitism is

another technique that can be used in GA.22,23 It preserves high-quality solutions,

enhancing the ability to obtain the global optimal solution. Some researchers have

proposed population diversity maintenance strategies22,23 to keep the population

diverse, so that it can generate high-quality solutions even when the population

contains some low-quality individuals.26 Due to the limitations of GA's local

search,16 some researchers have combined GA with local search mechanisms.15–18

This can be used to re¯ne the wasted population generated by standard genetic

functions. GA can be adapted to HUIM because it is capable of solving combinatorial

problems.

Kannimuthu and Premalatha21 introduced the ¯rst GA-based HUIM algorithms,

one with and one without the minimum utility threshold. The GA with the minimum

utility threshold works similarly to the fundamental HUIM, considering itemsets

with utility higher than the threshold as HUIs. The GA without the minimum utility

threshold adopts the Top-K HUIM concept, choosing HUIs by sorting the itemsets in

descending order of utility and retrieving the Top-K itemsets. The negative utility

values are also excluded from item/itemsets to ensure accurate utility calculations.

Their algorithms rely on several basic genetic functions, such as roulette wheel se-

lection, single-point and two-point crossover, and ranked mutation. However, these

functions may limit their ability to ¯nd all possible HUIs.

Song andHuang22 designedbio-inspiredalgorithmbased onHUIMframeworks (Bio-

HUIFs). They proposed Bio-HUIF with GA (Bio-HUIF-GA) to improve the standard

roadmap of GA. It e±ciently stores the dataset using Bitmap dataset representation,

where transactions are transformed into a two-dimensional Boolean matrix. Columns

represent items, rows represent transactions, andBooleanvalues indicate thepresenceof

items in the corresponding transactions. This Bitmap dataset avoids expensive

searching for itemset combinations because Bitwise-AND operation can easily retrieve

transactions containing a combined itemset. To ensure candidate itemsets exist in the

dataset, a promising encoding vector (PEV) check is employed. It performs Bitwise-

AND operation to verify if an item combination exists in the Bitmap dataset. This also

removes irrelevant items, keeping only those present in the transactions. For genetic

functions, Bio-HUIF-GA utilizes roulette wheel selection, bit di®erence crossover, and

one-point mutation. To improve HUI discovery, it incorporates a population diversity

maintenance strategy. This strategy uses roulette wheel selection to choose two HUIs

from the solution list, which then replace two randomly selected chromosomes in the

current population. Despite having the best ability to discover HUIs using the proposed

approach, it has the slowest runtime among Bio-HUIFs.
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Zhang et al.23 introduced HUIM based on an improved GA (HUIM-IGA). They

modi¯ed the PEV check strategy22 to an individual repair strategy. This strategy

sorts items based on descending TWU order, prioritizing items likely to appear in

HUIs, which presumably improves e±ciency. For genetic functions, HUIM-IGA

utilizes roulette wheel selection, uniform crossover, one-point mutation, and elite

strategy. They also modi¯ed the population diversity maintenance strategy to pre-

serve population diversity, allowing the algorithm to explore more HUIs. This

strategy selects two consecutive HUIs from the solution list to replace two randomly

selected chromosomes in the current population. Additionally, they added a neigh-

borhood exploration strategy applied to repeated HUIs to improve HUI discovery.

This strategy employs neighborhood mutation by °ipping bits 1 and 0 in two random

positions of the chromosome. Finally, these strategies enable HUIM-IGA to out-

perform the other presented algorithms.

PSO is another EC-based algorithm. It has been used by some researchers to solve

HUIM problems, such as Lin et al.24 who proposed HUIM based on binary PSO with

sigmoid function (HUIM-BPSOsig). Unlike GA, PSO has only few parameters, such

as particle and velocity. HUIM-BPSOsig employs the TWU model to construct the

initial particle size for search space reduction during the evolution process. It also

uses the sigmoid function to update the particle process, resulting in more e±cient

HUI discovery. Lin et al.25 later improved it by proposing an OR/NOR-tree data

structure to prevent invalid itemsets. This tree maintains information about the

possible extension of itemsets, thus irrelevant combinations can be detected and

pruned without scanning the database multiple times. This approach leads to im-

proved HUIs discovery and e±ciency. However, it still generates fewer HUIs in some

datasets.

Song and Huang22 proposed Bio-HUIF with PSO (Bio-HUIF-PSO). Like other

Bio-HUIF algorithms, it utilizes the Bitmap dataset representation and the PEV

check strategy. Speci¯cally, they modi¯ed the standard velocity formula using bit

di®erence approach. During particle updating, the new velocity indicates the number

of bits that must be changed to achieve the optimal values for HUI discovery. Ex-

perimental results demonstrate that BIO-HUIF-PSO has e±cient runtime but gen-

erates fewer HUIs. Gunawan et al.26 recently proposed HUIM without a minimum

utility threshold based on binary PSO (HUIM-BPSO-nomut). Unlike other PSO-

based algorithms, it does not require a minimum utility threshold. The initial particle

is de¯ned using transactions with the k-highest utility, where k is the population size.

This strategy aims to leverage the most promising particles for better solution

generation. During particle updating, a combination of the v max method and a

piece-wise linear function is employed to update velocity, enhancing the algorithm's

ability to discover HUIs. According to their experiments, HUIM-BPSO-nomut dis-

covers more HUIs with greater total utility. However, it may obtain lower total

utility in non-complex datasets.

Arti¯cial ¯sh swarm algorithm is another optimization algorithm inspired by the

collective behavior of ¯sh. Song et al.34 used this approach to model the HUIM

Modi¯ed Genetic Algorithm

2450024-5



problem. The proposed algorithm, HUIM-AF, discovers HUIs by recording only the

current position. This leads to the discovery of a large number of diverse results with

the help of follow, swarm, and prey operations. The roulette wheel selection is used to

initialize the position vector (PV). Then, the bit di®erence operation is used to

update PV during mining. Finally, if the updated PV has a utility higher than the

threshold, it is added to the collection of HUIs. Based on their experiments, HUIM-

AF discovers more HUIs, However, the runtime is not consistent, with some datasets

exhibiting high runtime.

3. Preliminaries

Consider I ¼ fi1; i2; i3; . . . ; ijg is a collection of items from a dataset D, where D

contains transactions fT1;T2;T3; . . . ;Tkg. A transaction Tk represents an itemset,

where an itemset X is a collection of items and X � I. Each item i in Tk has a

quantity q and a pro¯t p. Tables 1–4 present an instance of D, an instance of pro¯t,

TWU values, and the properties of HUIM, respectively.

4. Proposed Algorithm (HUIM-MGALS)

Based on a thorough literature survey, speci¯cally in Sec. 2, it is observed that a few

concepts are still not being focused on when applying GA for HUIM.21–23 This re-

search work tries to cover these aspects by proposing modi¯cations to various phases

of GA, along with adding a new phase (Algorithm 6). The proposed HUIM-MGALS

with all novel contributions and modi¯cations is presented in Algorithm 1 as com-

plete. The preprocessing steps are described in lines 1–6. The ¯rst population is

Table 1. Instance of D.

Tk Transaction

T1 (b:3) (f:2)

T2 (a:1) (b:4) (c:1) (e:4)

T3 (c:2) (e:1) (f:2)

T4 (b:3) (e:4) (f:2)
T5 (b:3) (c:2) (d:2) (e:3) (f:1)

Table 2. Instance of pro¯t.

Item a b c d e f
Pro¯t 5 1 4 3 2 4

Table 3. Items with their TWUs.

Item a b c d e f

TWU 21 78 66 27 85 75
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initialized in line 7 using Algorithm 2. In lines 8–20, the genetic functions are applied
iteratively until the maximum ¯tness evaluation number is reached. The iteration

begins by maintaining population diversity using Algorithm 3 (line 9). Lines 10–14
describe the crossover function using Algorithm 4. Both parents (c1 and c2) are

chosen randomly using roulette wheel selection with scaling factor (lines 11 and 12).

The new population is then mutated using Algorithm 5 in line 15. The elite strategy

is applied in lines 16–18 to preserve high-quality solutions for the next generations by

selecting the top-N individuals from both parents and o®spring.23 The last step is

executing the local search function to re¯ne the wasted chromosome using

Algorithm 6 (line 19). The speci¯c details of these steps are explained in the next

subsections.

4.1. Preprocessing

Lines 1–6 in Algorithm 1 describe the preprocessing stage, where the transactional

dataset D (line 1) and distinct items I (line 2) are retrieved from a ¯le. I is then

¯ltered using Eq. (1) to obtain promising items I� (line 3) by calculating TWU values

using Eqs. (4) and (6). The promising items are obtained using the TWU model.4

The minimum utility threshold is also calculated using Eqs. (5) and (7). We incor-

porate two new strategies into this stage: (i) sorting the promising items in ascending

TWU order and (ii) new representation for the Bitmap dataset. We consider sorting

the promising items in ascending TWU order (line 4), which has not been applied to

other GA-based algorithms. This sorting order may reduce the search space and

improve e±ciency during exploration.7,35 The ascending TWU order is the most

Table 4. Properties of HUIM.

No. De¯nition Equation Eq. Nos.

1 Utility of i in Tk uðij;TkÞ ¼ qðij;TkÞ � pðijÞ (1)

2 Utility of X in Tk uðX;TkÞ ¼
P

i2X^X�Tk
uði;TkÞ (2)

3 Utility of X in D uðXÞ ¼ P
X�Tk^Tk2DuðX;TkÞ (3)

4 Utility of a transaction tuðTkÞ ¼
P

i2Tk
uði;TkÞ (4)

5 Total utility of D TUðDÞ ¼ P
Tk2DtuðTkÞ (5)

6 TWU of X TWUðXÞ ¼ P
X�Tk^Tk2DtuðTkÞ (6)

7 Minimum utility threshold � ¼ TUðDÞ � �; (7)

where � is minimum utility

threshold in percent

8 HUI uðXÞ � � (8)
Itemset X is a HUI, if X has utility

equal to or greater than �

9 Promising items TWUðiÞ � � (9)
Each item i 2 I is a promising item

if i has TWU equal to or greater

than �.

If � ¼ 24 then b, c, d, e, and f are
promising items. Table 3 shows

the TWU values of I.
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e±cient compared to the descending TWU order23 and the lexicographical order22

because it requires fewer dataset scans to calculate the utility since lower TWU items

appear in the dataset less frequently. This mechanism avoids unnecessary search

space with low-utility itemsets and focuses on HUIs. It is also useful for the individual

repair strategy.

Based on the promising items, the dataset is revised by removing low-utility items

(line 5). This revised dataset D� is used to construct Bitmap dataset representation

BðD�Þ to optimize the mining process (line 6). The Bitmap contains k� j matrix

where k is the size of D� and j is the size of I�. Each value in BðD�Þ corresponds to
transaction Tk and item ij. It has two values that are de¯ned by Eq. (10). The value
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Bk;j½1� is 1 if item ij exists in transaction Tk, otherwise it is 0. Unlike existing work, we

added the second value to save runtime to calculate utility from D�. If item ij exists

in transaction Tk then Bk;j½2� contains the utility of item ij in transaction Tk

(Eq. (1)). This data structure eliminates the need for searching during utility cal-

culation. The Bitmap dataset representation of D� is shown in Table 5.

Bk;j ¼
1 if ij 2 Tk;

0 otherwise;

�
uðij;TkÞ if ij 2 Tk;

0 otherwise:

�� �
ð10Þ
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4.2. Initializing population

The initialization stage incudes several steps to generate a population that contains

N number of individuals. Each individual is represented as a chromosome by an

encoding vector, with 1 indicating that an item appears in a chromosome and 0

indicating that an item does not appear in a chromosome. The chromosome has

length jI�j and each value in the chromosome represents a sequential item in I�.
Thus, a chromosome is an itemset. Figure 1 depicts a chromosome for itemset

fd; f; bg. During the generation or modi¯cation of a chromosome, there is a possi-

bility that the chromosome representing an itemset may not exist in the dataset.

This wastes runtime and makes the search space larger. Therefore, an individual

repair strategy22,23 can be applied to modify the chromosome to form an itemset that

exists in the dataset by checking pairs of items consecutively. This strategy is similar

to exploring search space in exact algorithms. Since the promising items are sorted in

ascending TWU order, as in exact algorithms, the individual repair strategy may

form an e®ective combination that leads to e±cient mining.

Modi¯ed Genetic Algorithm
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The process of population initialization is depicted in Algorithm 2. The algorithm

iterates the initialization process until the population has N individuals (line 1). The

number of bits 1 in a chromosome is generated randomly and assigned to m (line 2).

Then, each index that represents an item i is set to 1 based on roulette wheel selection

using Eq. (11) (line 4). In line 5, the chromosome is repaired using individual repair

strategy. In line 6, Eq. (3) which requires Eq. (2) is used to calculate the ¯tness value.

Since the item/itemset and its utility are available in Bk;j, the runtime to search and

calculate the ¯tness is reduced. The generated chromosome is then added to the

population, increasing the population size by 1 (line 7). In line 8, Eq. (8) is used to
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compare the ¯tness value of the chromosome to the minimum utility threshold. If it is

equal to or greater than the threshold, the HUI list is updated based on two situa-

tions (line 9): ¯rst, the generated chromosome is added to the HUI list if it does not

exist in the HUI list; second, we introduce scaling factor strategy. Since the roulette

wheel selection is used, some extraordinary chromosomes may be generated from the

start of the algorithm because item/itemsets with greater utility have a higher

possibility of being chosen. These chromosomes may dominate the population,

leading to premature convergence.31 In contrast, lower-quality chromosomes may

generate high-quality solutions by providing new genetic material into the popula-

tion, thereby improving variation.26 Thus, we propose a scaling factor. It works by

reducing the probability of selecting extraordinary chromosomes (HUIs) in the se-

lection process by 1
pop size. We use this equation because for repeated extraordinary

chromosomes, they have already been generated once as HUIs, so reducing their

selection probability by one chance gives lower-quality chromosomes a greater

chance of being selected for mating. This strategy is reasonable because selecting

extraordinary chromosomes too frequently for mating may lead to discover a limited

variation of combinations.

Pi ¼ TWUðiÞP jI�j
j¼1 TWUðI �

j Þ
: ð11Þ

4.3. Maintaining population diversity

The generated population from the previous iteration focuses on the best individuals,

which may limit the ability to explore HUIs. The population diversity maintenance

strategy is essential for keeping the population diverse and allowing the algorithm to

explore more HUIs. In this work, we suggest selecting two of the latest HUIs to

replace two random individuals from the population, instead of selecting the HUIs

randomly22 or consecutively.23 This may help to broaden the search space because

the latest HUIs may have greater ¯tness and may also have di®erent characteristics

Table 5. Bitmap dataset representation ofD�.

d c f b e

T1 ½0; 0� ½0; 0� ½1; 8� ½1; 3� ½0; 0�
T2 ½0; 0� ½1; 4� ½0; 0� ½1; 4� ½1; 8�
T3 ½0; 0� ½1; 8� ½1; 8� ½0; 0� ½1; 2�
T4 ½0; 0� ½0; 0� ½1; 8� ½1; 3� ½1; 8�
T5 ½1; 6� ½1; 8� ½1; 4� ½1; 3� ½1; 6�

Fig. 1. An instance of a chromosome.
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from the current population, leading to the exploration of more HUIs. Algorithm 3

depicts the process of maintaining population diversity. In lines 1–2, c1 and c2 are

initialized as random chromosomes from the population. Line 3 indicates the ¯rst

case, if the HUI list contains only one HUI, then the chromosomes corresponding to

c1 and c2 are replaced by HUI at index 0 (lines 4–5). Line 6 indicates the second case,

if the HUI list contains more than one HUI, then the chromosomes corresponding to

c1 and c2 are replaced by the last two HUIs (lines 7–8).

4.4. Crossover

We employ the well-known uniform crossover to generate new o®spring. It promotes

unbiased exploration and the generation of potential o®spring for recombination.13

However, the reproduction process, in which genes from two parents join, may

generate o®spring that is not necessarily superior to its parents. This reduces the

capability to ¯nd HUIs. Thus, the iterative uniform crossover is proposed (Algo-

rithm 4). Lines 1–2 de¯ne the o®spring based on two selected parents. Lines 3–24
repeat the crossover to obtain at least one of the o®spring has greater ¯tness than its

parents, because better o®spring may generate better solutions. Lines 4–8 perform

the uniform crossover. The chromosomes of the o®spring are repaired in lines 9 and

10. The ¯tness of the o®spring is calculated in lines 11 and 12. Lines 13–18 compare

the o®spring's ¯tness to the minimum utility threshold. If it is equal to or greater

than the threshold, the HUI list is updated. Line 19 checks whether any of the

o®spring has greater ¯tness than their parents, if so, the o®spring is added to the new

population (lines 20–21) and the loop breaks (line 22).

4.5. Mutation

The mutation operator is required to avoid local optima caused by other genetic

operators. It works by exploring new states using some e±cient strategies. In this

work, the single point mutation is used by °ipping one random gene from the

chromosome. The mutation algorithm is depicted in Algorithm 5. The mutation

process is repeated for all o®spring in lines 1–15. Lines 2–4 de¯ne the mutation. Line

5 is responsible for repairing the mutated chromosome. If the mutated chromosome

exists in the HUI list, it is revised in lines 6–10. We propose a new revision strategy

for repeated HUIs that prioritizes greater TWU items to ¯nd HUIs faster. The

revision process starts in line 7 by generating a random number between 0 and jI�j to
de¯ne the °ipping point. Line 8 revises the chromosome based on two conditions:

¯rst, if it is bit 1, it is °ipped to 0. Since one item is removed, we add one on the right

side to prioritize the high TWU item by °ipping the ¯rst bit 0 from the right side;

second, if it is bit 0, it is °ipped to 1. Since one item is added, we remove one low

TWU item from the left side by °ipping the ¯rst bit 1 from the left side. This strategy

prioritizes the items on the right side because they have higher utility than items on

the left side since they are sorted in ascending TWU order. The ¯tness value is then

calculated in line 11. Lines 12–14 compare the ¯tness value to the minimum utility

threshold. If it is equal to or greater than the threshold, the HUI list is updated.

E. H. S. Atmaja & K. Sonawane
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4.6. Proposed local search strategy

Local search can be implemented in GA to enhance the search capability in order to

¯nd a better solution. We designed a local search function at the end of each iteration

to re¯ne the wasted chromosomes generated by GA search functions. The local

search function is based on two mutation operators, namely swap and inverse, as

suggested by Viana et al.15 and Asadzadeh.16 We also included single point muta-

tion. The swap operation can be applied to the bits at two randomly selected posi-

tions b and c of the chromosome. The inverse operation can be applied to every bit

between two randomly selected positions b and c. The °ip operation can be applied to

a bit at one randomly selected position b.

Algorithm 6 describes the local search function. Lines 1–23 repeat the local search
for all individuals. The current chromosome is de¯ned in line 2. If the ¯tness value is

greater than the minimum utility threshold, it is skipped during the local search

process (lines 3–4). Note that we only process low-¯tness chromosomes. The best

chromosome is de¯ned as the current chromosome in line 6. Lines 7–21 describe the

heart of the local search function. In line 8, one mutation operator is randomly

chosen. The current chromosome is mutated using the selected operator (line 9) and

is then revised in line 10. The ¯tness value is then calculated in line 11. Lines 12–14
compare the ¯tness value to the minimum utility threshold. If it is equal to or greater

than the threshold, the HUI list is updated. The ¯tness values of the current chro-

mosome and best chromosome are compared. If it is greater, the best chromosome is

replaced with the current chromosome, and the local search iteration continues (lines

15–16). Otherwise, the population is updated with the best chromosome and the loop

breaks to avoid unnecessary exploration (lines 17–19).

4.7. Time complexity analysis

The time complexity of one HUIM-MGALS iteration, considering population size M

and chromosome length l, can be broken down into the following main components:

(1) Population diversity maintenance strategy has a complexity of Oð1Þ.
(2) Roulette wheel selection has a complexity of OðlogMÞ, since it is based on binary

search.

(3) Iterative uniform crossover has a complexity of OðM � l� iÞ, where i is the

number of iterations for iterative crossover.

(4) Fitness scaling strategy has a complexity of Oð1Þ.
(5) Individual repair strategy has a complexity of OðM � lÞ.
(6) One-point mutation has a complexity of OðMÞ.
(7) HUI revision strategy has a complexity of Oð1Þ.
(8) Elite strategy has a complexity of Oðð2MÞ logð2MÞÞ, since it is based on

merge sort.

(9) Local search has a complexity of OðM � jÞ, where j is the number of iterations

for each chromosome.

Modi¯ed Genetic Algorithm
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This complexity is similar to that of HUIM-IGA,23 which is comparable to the

general complexity of GA. According to line 8 of Algorithm 1, the main iteration is

limited by the maximum number of evaluations. Therefore, additional iterations i

and j from iterative uniform crossover and local search may not signi¯cantly degrade

the overall runtime. This is because these inner loops also perform ¯tness evalua-

tions, which contribute to the total evaluation number and potentially reduce the

number of main iterations. However, even within this limited number of iterations,

the proposed strategies have improved the search's ability to generate HUIs.

5. Experimentation Setup

The proposed HUIM-MGALS and several existing EC-based algorithms, including

HUIM-IGA,23 Bio-HUIF-GA,22 Bio-HUIF-PSO,22 and HUIM-BPSO25 were executed

on a common set of datasets. These algorithms were written in Java andwere executed

on a laptop with a 64-bit Windows 10 OS, an AMD Ryzen 7-5800H CPU clocked

3.2GHz, and 32GB of RAM.

Datasets: The experimentation used ¯ve standard datasets including connect,

accident, mushroom, chess, and foodmart.36 A real transaction dataset from Malang

Indonesia was also used, namely real retail.37 The minimum utility thresholds varied

for each dataset. Table 6 describes the dataset's characteristics.

Validation parameters: The performance of all algorithms was evaluated in terms

of runtime, convergence speed, accuracy, and the number of generated HUIs. Table 7

presents the parameter settings. The values of the ¯tness evaluation number and the

population size were set the same as those used in existing algorithms in order to

make the comparisons fair on a uniform setup.

Table 6. Datasets details.

Dataset Avg. Length jIj jDj
Connect 43 129 67,557

Accident 10% 34 468 34,019

Mushroom 23 119 8124

Chess 37 75 3196
Foodmart 4 1559 4141

Real retail 3 3114 24,511

Table 7. Parameters.

Parameter Value

Fitness evaluation number 60,000

Population size 20

Number of independent executions 5
Mutation One-point

Crossover Uniform (iterative)

Selector Roulette wheel (modi¯ed)
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6. Results and Discussions

6.1. Comparison of runtime

We calculated the average runtimes of several independent executions to evaluate

the e±ciency of HUIM-MGALS. Since heuristic algorithms commonly generate

di®erent results for every execution, the average value is calculated to represent the

overall performance. Figure 2 illustrates the runtime comparisons for four dense

datasets.

Observation 1: From Fig. 2, HUIM-MGALS has the best runtime. Overall

observations claim that HUIM-MGALS is up to 8.6 times faster than the other

algorithms for four dense datasets.

Under various minimum utility thresholds, HUIM-MGALS always achieves the

best runtime outperforming the other EC-based algorithms. It outperforms HUIM-

IGA, Bio-HUIF-GA, Bio-HUIF-PSO, and HUIM-BPSO for the mushroom dataset

up to 1.3, 1.9, 1.4, and 8.6 times faster, respectively. It is faster up to 1.4, 2.0, 1.5, and

2.9 times, respectively, for the chess dataset. It is up to 1.8, 2.6, 1.4, and 6.3 times

faster, respectively, for the accident 10% dataset. It is faster up to 1.1, 1.5, 1.1, and

1.7 times, respectively, for the connect dataset. HUIM-BPSO has the slowest run-

time compared to the other algorithms because it only utilizes the standard search

(a) (b)

(d)(c)

Fig. 2. Runtime for four dense datasets.
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function of PSO, which has a limited ability to ¯nd HUIs. Although Bio-HUIF-GA

employs some novel strategies to improve the search ability thus it outperforms

HUIM-BPSO, it is still not faster than the other three algorithms. Bio-HUIF-PSO

and HUIM-IGA perform similarly for the mushroom and connect datasets. Bio-

HUIF-PSO performs better for the accident 10% dataset and HUIM-IGA performs

better for the chess dataset. However, these two algorithms are still slower than

HUIM-MGALS because some new e±cient strategies have been applied to HUIM-

MGALS to improve the search ability and reduce some unnecessary computation.

Furthermore, compared to HUIM-AF34 (as presented in their paper), HUIM-

MGALS runs faster for all datasets. Based on the reported results, in the Chess

dataset with 28% and 29% thresholds, HUIM-MGALS has less than 16s runtime,

whereas HUIM-AF takes more than 200 s. Similar trends are observed in the

Mushroom dataset (14% threshold), Accident 10% dataset (12.6–13% thresholds),

and Connect dataset (31.8%, 32%, and 32.2% thresholds). In these cases, HUIM-

MGALS has runtimes less than 12, 121, and 1005 s, respectively, while HUIM-AF

takes over 200, 1500, and 11,000 s, respectively.

6.2. Comparison of convergence speed

The convergence speed of all algorithms is compared, as demonstrated in Fig. 3.

For the given ¯tness evaluation number, we investigate how many HUIs are

(a) (b)

(d)(c)

Fig. 3. Convergence speed for four dense datasets.

E. H. S. Atmaja & K. Sonawane

2450024-18



generated. The ¯tness evaluation number varied between 5K and 60K, with 5K

representing the ¯rst stage and 60K representing the later stage of the algorithm's

execution. We expect the algorithm to generate complete HUIs within a limited

number of evaluations. The maximum number of HUIs (representing 100% accu-

racy) for the mushroom, chess, accident 10%, and Connect datasets in Fig. 3 are 415,

1246, 736, and 377, respectively. By varying the ¯tness evaluation number and

recording the generated HUIs stage by stage, we can illustrate how fast (as early as

possible) the algorithm converges (reaches 100%/Maximum accuracy).

Observations 2: Figure 3 demonstrates that HUIM-MGALS and HUIM-IGA are

comparable. HUIM-MGALS also outperforms the other three algorithms for four

dense datasets.

For all datasets, HUIM-MGALS and HUIM-IGA are equally better. Below 10K

¯tness evaluation number, the accuracy decreases due to the limited number of

generations. For the chess and accident 10% datasets, HUIM-MGALS generates

more HUIs at the earliest stage (5K ¯tness evaluation number), which are 849 and

547, respectively. However, for the mushroom and connect datasets, HUIM-IGA

generates more HUIs at the earliest stage (5K evaluation number), which are 393

and 352, respectively. Both HUIM-MGALS and HUIM-IGA converge faster than the

other three algorithms and the results are also consistent for all datasets. Bio-HUIF-

PSO and Bio-HUIF-GA are comparable, with the exception of the accident 10%

dataset, where Bio-HUIF-GA has better performance. However, they are not better

than HUIM-MGALS. Bio-HUIF-PSO and Bio-HUIF-GA cannot generate complete

HUIs for all datasets, thus they are ine®ective in ¯nding HUIs. It is because they have

a few strategies to improve e®ectiveness. HUIM-BPSO gives the worst performance

due to the standard search function, which makes it di±cult to explore HUIs.

6.3. Comparison of accuracy

Generating the maximum number of HUIs determines the strength and accuracy of

heuristic HUIM algorithms. In this paper, we use PLB6 as an exact algorithm as a

benchmark to evaluate the accuracy of HUIM-MGALS and also to compare the

performances of the other algorithms on similar lines. The comparison of the best and

average performances of all algorithms is presented in Table 8. The best results

re°ect the ability/strength of the algorithm to ¯nd HUIs. Average performances are

indicators of the sustainability of this strength with varying parameters such as

minimum utility threshold and dataset.

Table 8 shows that for the mushroom dataset, HUIM-MGALS outperforms the

other algorithms. HUIM-IGA can generate complete HUIs withMinUtil ¼ 13:75% or

higher, whereas Bio-HUIF-GA can generate complete HUIs with MinUtil ¼ 14%.

Bio-HUIF-PSO and HUIM-BPSO are unable to generate the complete HUIs under

the given thresholds. For the chest dataset, HUIM-MGALS (99.69%) andHUIM-IGA

(99.86%) are equally performing better. Bio-HUIF-GA (89.23%) and HUIF-PSO

(90.09%) are performing similarly, but they are not better than HUIM-MGALS.

Modi¯ed Genetic Algorithm

2450024-19



T
ab

le
8.

A
cc
u
ra
cy

(%
)
fo
r
fo
u
r
d
en
se

d
at
as
et
s.

A
lg
or
it
h
m

H
U
IM

-M
G
A
L
S

H
U
IM

-I
G
A

B
io
-H

U
IF
-G

A
B
io
-H

U
IF
-P
S
O

H
U
IM

-B
P
S
O

D
at
as
et

M
in
U
ti
l
(%

)
A
v
g.

B
es
t

A
v
g.

B
es
t

A
v
g.

B
es
t

A
v
g.

B
es
t

A
v
g.

B
es
t

M
u
sh
ro
om

13
.0
0

99
.8
6

10
0

99
.5
8

99
.8
3

85
.0
2

87
.5
9

89
.9
0

91
.2
3

32
.2
2

3
3
.9
4

13
.2
5

99
.8
7

10
0

99
.6
2

99
.7
9

89
.3
9

90
.2
9

93
.2
4

93
.6
3

34
.2
2

3
5
.7
0

13
.5
0

99
.9
5

10
0

99
.7
4

99
.7
4

94
.2
3

95
.3
2

95
.3
2

96
.7
5

35
.9
0

3
7
.2
7

13
.7
5

10
0

10
0

10
0

10
0

98
.1
2

98
.4
3

97
.9
8

98
.6
1

41
.5
3

4
3
.9
0

14
.0
0

10
0

10
0

10
0

10
0

99
.7
6

10
0

99
.0
8

99
.5
2

46
.1
7

4
7
.9
5

A
v
g.

99
.9
4

10
0

99
.7
9

99
.8
7

93
.3
0

94
.3
3

95
.1
0

95
.9
5

38
.0
1

3
9
.7
5

C
h
es
s

26
.0
0

98
.5
6

98
.6
1

99
.0
1

99
.4
4

57
.4
5

59
.5
1

65
.5
2

66
.9
9

28
.4
5

2
9
.3
2

27
.0
0

99
.7
3

99
.8
4

99
.7
8

99
.8
4

84
.2
5

87
.2
4

84
.4
3

85
.7
1

43
.6
1

4
5
.1
8

28
.0
0

10
0

10
0

10
0

10
0

98
.7
4

99
.3
9

97
.2
8

97
.7
7

59
.8
4

6
2
.6
8

29
.0
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

71
.9
3

7
3
.8
6

30
.0
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

85
.5
9

8
8
.2
4

A
v
g.

99
.6
6

99
.6
9

99
.7
6

99
.8
6

88
.0
9

89
.2
3

89
.4
5

90
.0
9

57
.8
8

5
9
.8
6

A
cc
id
en
t
10

%
12

.2
0

98
.8
3

99
.2
9

99
.8
6

99
.9
1

86
.5
5

88
.1
1

78
.1
4

79
.1
5

48
.1
1

4
8
.9
8

12
.4
0

99
.0
9

99
.7
8

99
.7
8

10
0

89
.4
2

90
.5
3

82
.6
8

85
.0
9

50
.6
6

5
2
.7
7

12
.6
0

99
.5
4

99
.8
6

99
.8
9

10
0

91
.9
0

93
.0
7

87
.7
4

89
.5
4

54
.8
6

5
7
.0
7

12
.8
0

99
.5
9

10
0

99
.9
3

10
0

94
.6
5

97
.4
6

91
.2
0

92
.8
9

58
.0
7

6
0
.9
1

13
.0
0

99
.7
1

10
0

10
0

10
0

95
.4
5

97
.3
1

93
.2
6

94
.6
3

62
.2
3

6
3
.8
4

A
v
g.

99
.3
5

99
.7
9

99
.8
9

99
.9
8

91
.6
0

93
.3
0

86
.6
0

88
.2
6

54
.7
9

5
6
.7
2

C
on

n
ec
t

31
.4
0

99
.9
0

10
0

10
0

10
0

95
.4
9

96
.0
1

97
.0
2

97
.7
5

56
.8
5

5
8
.5
8

31
.6
0

99
.7
9

10
0

10
0

10
0

98
.9
4

99
.4
7

98
.8
9

10
0

62
.2
8

6
4
.1
9

31
.8
0

10
0

10
0

10
0

10
0

99
.6
9

10
0

99
.9
2

10
0

62
.5
3

6
5
.9
0

32
.0
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

73
.2
2

7
6
.0
2

32
.2
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

81
.2
2

8
2
.6
5

A
v
g.

99
.9
4

10
0

10
0

10
0

98
.8
3

99
.1
0

99
.1
7

99
.5
5

67
.2
2

6
9
.4
7

E. H. S. Atmaja & K. Sonawane

2450024-20



For the accident 10% dataset, HUIM-IGA outperforms the other algorithms at

MinUtil ¼ 12:4013%: It generates the complete set of HUIs.Whereas, HUIM-MGALS

achieves the same performance for threshold ranges between 12.8% and 13%. The

other three algorithms, on the other hand, do not provide the desired performance, as

they are not able to retrieve the HUIs completely. For the connect dataset, for all

thresholds, HUIM-MGALS and HUIM-IGA are equally performing best among all.

Bio-HUIF-PSO (99.55%) outperforms Bio-HUIF-GA (99.1%), whereas HUIM-BPSO

gives the worst performance among all. In general, HUIM-BPSO gives the worst

performance as it generates only 50–70% of HUIs.

For the average performance, HUIM-MGALS has the best performance producing

99.94% of HUIs. HUIM-IGA (99.79%) performance is in second place, followed by

Bio-HUIF-PSO (95.1%), Bio-HUIF-GA (93.3%), and HUIM-BPSO (38.01%). These

three algorithms are not able to retrieve the HUIs completely. For the chess dataset,

HUIM-MGALS (99.66%), and HUIM-IGA (99.76%) are equally performing better.

Bio-HUIF-PSO and Bio-HUIF-GA are performing similarly, but they are only able

to retrieve less than 90% of HUIs. HUIM-BPSO performance is in the last place with

only generating 57.88% of HUIs. For the accident 10% dataset, HUIM-MGALS

(99.35%), and HUIM-IGA (99.89%) are equally performing better followed by Bio-

HUIF-GA (91.6%), Bio-HUIF-PSO (86.6%), and HUIM-BPSO (54.79%). For the

connect dataset, HUIM-IGA outperforms the other algorithms, which can generate

the complete HUIs for all thresholds. HUIM-IGA performs equally with HUIM-

MGALS, which can generate only 0.06% fewer HUIs on average. Bio-HUIF-PSO

(99.17%) outperforms Bio-HUIF-GA (98.83%), whereas HUIM-BPSO (67.22%)

gives the worst performance among all. In conclusion, HUIM-MGALS is comparable

to HUIM-IGA. It generates only 0.48% fewer HUIs on average. Furthermore, in most

cases, it outperforms the other three algorithms.

Observations 3: Table 8 shows that HUIM-MGALS has the best accuracy for the

mushroom and connect datasets for the best cases. For average cases, HUIM-

MGALS has the best accuracy for the mushroom dataset.

Furthermore, compared to HUIM-AF34 (as presented in their paper), HUIM-

MGALS achieves higher accuracy by generating more HUIs for average results for all

datasets. In the Chess dataset with 28% and 29% thresholds, HUIM-MGALS

achieves 100% accuracy (generating 493 and 176 HUIs, respectively), whereas

HUIM-AF generates less than 300 and 150 HUIs, respectively. Similarly, in the

Mushroom dataset with 14% threshold, HUIM-MGALS achieves 100% accuracy

(generating 415 HUIs), whereas HUIM-AF generates less than 400 HUIs. In the

Accident 10% dataset with 12.6–13% thresholds, HUIM-MGALS achieves 99.54%,

99.59%, and 99.71% accuracy (generating 732, 588, and 482 HUIs, respectively),

whereas HUIM-AF generates less than 140, 120, and 100 HUIs, respectively. Lastly,

in the Connect dataset with 31.8%, 32%, and 32.2% thresholds, HUIM-MGALS

achieves 100% accuracy (generating 261, 171, and 98 HUIs, respectively), whereas

HUIM-AF generates less than 250, 150, and 90 HUIs, respectively.
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6.4. Comparison of number of generated HUIs

HUIM-MGALS and HUIM-IGA are competitive in terms of convergence speed and

accuracy, both demonstrating near-optimal performance with 98–100% accuracy on

four dense datasets. Consequently, to prove the superiority of our proposed techni-

ques in HUIM-MGALS for HUI discovery over those in HUIM-IGA, we conducted

further tests on sparse datasets. We selected the Foodmart and Real Retail datasets

with low thresholds, where the high sparsity of missing entries challenges the e®ec-

tiveness of heuristic algorithms in identifying HUIs. The results are presented in

Table 9. With an average of 4148 HUIs discovered, HUIM-MGALS has the best

performance on the Foodmart dataset. While it identi¯es 547 more HUIs on average

than its closest competitor, HUIM-IGA. Bio-HUIF-GA, Bio-HUIF-PSO, and HUIM-

BPSO fall further behind, generating 1401, 1513, and 1475 fewer HUIs on average,

respectively. For the Real Retail dataset, HUIM-MGALS demonstrates a remarkable

performance compared to the others. At the 0.9% threshold, where the maximum

number of HUIs is 17, HUIM-MGALS successfully identi¯es all of them, while the

others are not. This distinction becomes even more pronounced at 0.8% threshold

and below, where the other algorithms get stuck in local optima, hindering their

ability to accurately generate HUIs. In contrast, HUIM-MGALS consistently gen-

erates a signi¯cantly higher number of HUIs, clearly demonstrating its superior HUI

discovery capabilities.

These two results clearly demonstrate the superior e®ectiveness of our proposed

techniques in HUIM for HUI discovery, particularly in challenging scenarios like

mining sparse transactions with low thresholds. We can infer that introducing a

population diversity maintenance strategy, a ¯tness scaling factor strategy, and a

HUI revision strategy play a crucial role in achieving these superior results. These

strategies can preserve potential individuals for mating and prevent local optimum

Table 9. Average number of HUIs for the foodmart and real retail datasets.

Algorithm

Dataset MinUtil (%) HUIM-MGALS HUIM-IGA Bio-HUIF-GA Bio-HUIF-PSO HUIM-BPSO

Foodmart 0.002 4302 3700 2796 2736 2823

0.004 4249 3674 2807 2734 2824

0.006 4190 3668 2761 2712 2751
0.008 4128 3570 2748 2582 2588

0.01 3869 3392 2619 2410 2380

Avg. 4148 3601 2746 2635 2673

Real Retail 0.5 21,117 28 28 28 10
0.6 21,785 22 22 22 10

0.7 21,537 21 21 21 10

0.8 4686 16 16 16 10

0.9 17 15 15 15 9
Avg. 13,828 20 20 20 10
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from happening. Additionally, HUIM-MGALS employs local search and iterative

crossover to explore more possible solutions in a limited ¯tness evaluation number.

Observations 4: Table 9 shows that HUIM-MGALS has the best performance by

generating the highest number of HUIs among the others.

6.5. Impact of the proposed strategies

To evaluate the impact of the proposed strategies in HUIM-MGALS on accuracy and

convergence speed, we conducted an experiment on the Real Retail dataset with

0.5% threshold. We selected the Real Retail dataset because it is a challenging

dataset with the greatest number of HUIs, as discussed in Sec. 6.4. Table 10 presents

the average number of generated HUIs. The ¯rst row shows the result achieved by

the complete HUIM-MGALS, while the remaining rows present the results when

running HUIM-MGALS without each individual strategy. Generally, a higher

number of HUIs indicates both higher accuracy faster convergence speed.

HUIM-MGALS generates 21,117HUIs with complete strategies. However, without

iterative crossover, it generates 17,548 HUIs, losing 3569 HUIs due to limited explo-

ration in the crossover step. Similarly, without the modi¯ed population diversity

maintenance strategy, HUIM-MGALS generates only 746 HUIs. In most executions,

this lack of diversity leads HUIM-MGALS to get stuck in local optima. The HUI

revision strategy also plays a crucial role. Without it, HUIM-MGALS generates only

3484 HUIs, demonstrating the importance of this strategy in exploring repeated HUIs

for potentially better solutions. Optimized local search further improves the results.

Without it, HUIM-MGALS generates 8774 HUIs, demonstrating the e®ectiveness of

local search in re¯ning and exploring low-utility chromosomes. Finally, HUIM-

MGALS without ¯tness scaling strategy generates 15,490 HUIs, losing 5627 HUIs due

to unbalanced selection of high and low utility chromosomes.

Observations 5: Table 10 shows that the modi¯ed population diversity mainte-

nance strategy is the most impactful modi¯cation. This is because without this

strategy, HUIM-MGALS generates only 746 HUIs on average.

Table 10. Average number of HUIs for the real retail dataset with MinUtil ¼ 0:5%.

Strategic variations Algorithm

Average number

of HUIs

With Modi¯cations HUIM-MGALS (complete-all variations) 21,117

Individual impact of each

step if proposed

modi¯cation not applied

1. HUIM-MGALS without

iterative crossover

17,548

2. HUIM-MGALS without modi¯ed

population diversity maintenance

746

3. HUIM-MGALS without HUI revision 3484

4. HUIM-MGALS without optimized local search 8774
5. HUIM-MGALS without ¯tness scaling 15,490
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The most impactful modi¯cation is the modi¯ed population diversity mainte-

nance step. As we can see clearly the generated HUIs without this modi¯cation are

only 746. However, if we want to improve the accuracy, it will take a long time to

reach its maximum, which may not be even equivalent to the best result (21,117).

This clearly states that modi¯ed population diversity maintenance has a potential

impact on accuracy as well as convergence speed.

6.6. E®ect of population diversity on convergence speed

To observe the e®ect of population diversity on convergence speed, we conducted

experiments with HUIM-MGAL and HUIM-MGALS–(without population diversity

maintenance strategy) on the Mushroom and Chess datasets. Figure 4 presents the

convergence speed for both algorithms.

Observations 6: Figure 4 demonstrates that HUIM-MGALS achieves faster con-

vergence speed. This highlights the importance of population diversity in generating

HUIs more e®ectively.

For the mushroom dataset, HUIM-MGALS consistently outperforms HUIM-

MGALS–throughout the evolutionary stages, particularly in the middle stages where

population diversity naturally decreases. HUIM-MGAL converges by the 20K ¯tness

evaluation, while HUIM-MGALS–fails to converge until the 60K ¯tness evaluation.

Similarly, HUIM-MGAL exhibits signi¯cantly faster convergence on the Chess

dataset compared to HUIM-MGALS–. Without diversity maintenance, HUIM-

MGALS–misses many HUIs due to its limited exploration of the search space. These

results demonstrate that the proposed strategy promotes the generation of more

HUIs, especially in the middle and later stages of evolution, by maintaining higher

population diversity.

(a) (b)

Fig. 4. Convergence speed for two dense datasets.
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7. Conclusion

This research experimentation has brought novelty by proposing the use of Modi¯ed

GA for two signi¯cant reasons. First, as per the literature survey, GA being the

popular algorithm with better performance in many other contexts, but its use has

not been encouraged much in HUIM. Second, even though it has been used by a few

existing HUIM experiments, many aspects have been oversight, which have been

discussed as issues in Secs. 1 and 2. In order to focus on those aspects with the

intention to provide an optimal solution in a reasonable time frame, we proposed and

implemented a modi¯ed GA with six major modi¯cations.

The extensive experiments demonstrate that HUIM-MGALS performs best

among the presented algorithms in terms of runtime, up to 8.6 times faster in four

dense datasets. It also stands out with its superior HUI discovery capabilities, gen-

erating the highest number of HUIs compared to other algorithms while also e®ec-

tively avoiding local optima, particularly in challenging scenarios like mining sparse

datasets with low thresholds. We also discovered that the modi¯ed population di-

versity maintenance step has the most impactful modi¯cation in generating HUIs

compared to other modi¯cations. This is evident because HUIM-MGALS generates

the fewest HUIs without this modi¯cation. The convergence speed of HUIM-MGALS

is comparable to HUIM-IGA,23 but it generates only four fewer HUIs on average.

HUIM-MGALS and HUIM-IGA are equally better in terms of accuracy, with only a

0.48% di®erence in accuracy, on average. HUIM-MGALS also performs better than

the other three algorithms, namely Bio-HUIF-GA,22 Bio-HUIF-PSO,22 and HUIM-

BPSO,25 in terms of convergence speed and accuracy. Further comparison with

HUIM-AF34 shows that HUIM-MGALS has faster runtime and higher accuracy for

all four dense datasets.

Using the proposed strategies and intended contributions, the HUIM-MGALS

experimentations with respect to varying thresholds and datasets achieve the desired

and consistent results for all evaluation parameters. Overall study has proven the

e®ectiveness of six potential modi¯cations at various phases of GA compared with

existing contributions. So, this can be recommended as one of the e®ective heuristic

strategies for HUIM, titled HUIM-MGALS. Future research may consider other EC-

based algorithms such as ACO, PSO, and Bat to utilize the proposed strategies.

Some e±cient strategies can also be designed to increase the ability to ¯nd HUIs.

Applying parallel frameworks i.e., MPI and Apache Spark might be proven powerful

to boost the runtime for large datasets.
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