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Abstract

Bubble flow configurations generated by an ejector bubble generator were captured using a
high-speed video camera and extracted into several images. The air flow and nozzle diameter
were varied during the test in ranges of 0.1-1.5 lpm and 1.17-3.5 mm, respectively. The
results reveal that in general the bubble flow structure coming out from the bubble generator
is divided into three regions, namely the entrance, bubble swarm, and bubble dispersed
region. It is found that there is a higher time delay of bubble production when the air flow
and the nozzle diameter decrease. On the other hand, the bubble production time is longer, if
the air flow and the nozzle diameter increase.

Keywords: Bubble swarm and dispersed regions, bubble delayed dan generated times

1 Introduction

Microbubble generators are a new and emerging technology with extensively

potential applications in numerous industries, such as medicine, where they are utilized

omom ,
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as a contrast agent in ultrasound examinations to improve the appearance of tissues or
organs [1], [2]. In addition, airlift pump systems use microbubbles to lift water and
sediment [3]-[6], while wastewater treatment employs them to diminish oil, heavy
metals, and tiny particulates in water via the flotation processes [7], [8]. Here,
microbubbles possess a high surface area, enabling them to expedite molecular
interactions in the chemical industry [9]. Therefore, microbubbles are frequently
employed to cleanse fresh products, disinfect food items, and sanitize equipment within
the food sectors [10], [11]. On the other hand, microbubbles in the shipping sector also
minimize drag on the ship's outer surface, thereby reducing fuel consumption [12].

However, several problems associated with microbubbles’ utilization encompass
sustaining stability across diverse conditions and attaining a reliable cost-effective
manufacturing scale for specific applications. Consequently, various researchers
persistently engage in research and development to enhance the utilization of
microbubbles and address current issues. They have innovated bubble formation methods,
such as reducing the channel cross-section to increase the flow velocity, which in turn
increases the shear force and breaks the bubble into a smaller diameter. Included in this
method are orifice [13]-[15], venturi [16]-[24], and spherical body [25] types of
microbubble generators. Another innovation employs swirl flow to harness centrifugal
force for enhancing shear force [26]-[29].

The orifice type features a design characterized by an abrupt decrease in cross-
section to enhance fluid velocity, which concurrently elevates the loss of flow energy.
Meanwhile, the design of the spherical body, minimizing the cross-section at the channel's
periphery instead of its center, poses issues in both production and maintenance. On the
other hand, the swirl flow configuration leads to considerable energy dissipations,
requiring a pump with substantial capacity to transport water. Therefore, Basso et al. [30]
and Terasaka et al. [31] designed a venturi type with a stepwise cross-sectional reduction
to minimize flow energy losses, hence enhancing its economic efficiency. Moreover, the
venturi type offers the benefits of simple installation and maintenance [32], and it
generates bubbles with a smaller diameter while maintaining the same operational
parameters as other types [33], [34]. In a mean time, the incorporation of air gap and

porous pipes on the air inlet side was executed to achieve a reduced bubble size
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distributions [14], [35]-[37]. Additionally, researchers have also used multistage venturi
and swirl-venturi combinations to achieve a smaller bubble diameter [27], [28], [38].

Next, Huang et al. [32] synthesized the effects of diverse geometric and
operational parameters on venturi-type microbubble generators. The results enhance that
the bubble size is inversely proportional to the water discharge, but it is proportional to
the air discharge as also implied on several reports [16], [17], [36], [39]. Here, the air
discharge has a smaller effect on the size and distribution of bubbles than the water
discharge because the bubble rupture is highly dependent on the flow turbulence.
Another, augmenting the throat length and divergence angle or reducing the throat and
outlet diameters in a venturi-type bubble generator results in a reduction of the bubble
diameter [40]. Here, the convergence angle, diameter, and number of air holes have
almost no effect on the bubble diameter as also reported by several others [19], [41].
Therefore, the throat diameter and divergence angle play an important role in the
performance of the venturi bubble generator.

The present study employs an ejector bubble generator, a variant of the venturi
bubble generator in which a similar ejector’s working principle was briefly described on
the report of Mardikus [42]. Here, the ejector bubble generator utilizes a tapered cross-
section at the water input to reduce flow energy loss, and includes supplementary air space
prior to the amalgamation of air and water to increase bubbles’ production. Investigations
toward the detailed characteristics of the bubble generator were carried out by varying the
input air flow as a part of the operational parameters and the nozzle diameter as particular
geometric parameters. The configuration of the bubble flow emerging from the bubble
generator was examined utilizing a high-speed camera. Changes in the time delay and the
duration of bubble formation were investigated to determine the optimum value of the

pair of the air flow and nozzle diameter.

2 Material and Methods

In the present investigation, a procedure on the experiment, conducted at the
Mechanical Engineering Workshop of Politeknik Negeri Banyuwangi, commencing with
the assembly of an ejector bubble generator, is schematically illustrated in Fig. 1(A). The

water input diameter of the bubble generator, D, was 7 mm, while the nozzle diameter, d,
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was adjusted from 1.17 to 3.50 mm. The ejector bubble generator was positioned 5 cm
above the base of the test pool, exactly at the midpoint of its width. The test pool was 100
cm in length, 50 cm in width, and 50 cm in height; it was constructed from transparent
glass and filled with water to a depth of 45 cm, as depicted in Fig. 1(B).

The data collection was initiated by activating a 12 VDC water pump to supply
water to the bubble generator. The water discharge was constantly set at 5.0 liters per
minute (Ipm) using a water flowmeter. The air discharge flowing from the aerator was
regulated from 0.1 to 1.5 Ipm through an air flowmeter for each nozzle diameter.
Subsequently, the amalgamation of water and air in the ejector bubble generator produced
bubbles that were expelled and integrated with the water in the test pool. The bubble flow
was captured with a Sony ZV-1 high-speed camera at 1000 frames per second (fps), with
a shutter speed of 1/12800, an aperture of 8.0, and an ISO of 4000. The distance from
the lens to the central output of the ejector bubble generator was 30 cm. A series of 50 W

LED lamps was mounted behind the test pool to enhance the illumination, with a diffused

1. Aerator

2. Air flowmeter
3. Water flowmeter
4. Water pump

5. Filter

6. Bubble generator
7

8

9

(B)

. Personal Computer
. High Speed Camera
% Dl 0 . Diffused layer

) 10. LED lamp

o Water line

%o DIO Air line

Figure 1. (A) Detail of ejector MBG, (B) Apparatus schematic, (C) Image capturing

schematic
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layer to achieve a uniform lighting, as depicted in Fig. 1(C). The video of the bubble flow
emitted from the bubble generator for each air discharge and nozzle diameter was
subsequently recovered into multiple images using MATLAB software to analyze the

flow structures, time delays, and created durations.

3 Results and Discussions

3.1. Bubble flow configurations

Fig. 2 illustrates the standard flow configurations when the bubble exits the bubble
generator’s outlet. Here, flow areas can be grouped into entrance, bubble swarm, and
bubble dispersed regions. The entrance region is the closest area to the bubble generator
outlet, and the influence of the turbulent flow (yellow line) is very strong on this particular
area. This area is referred to a ligament as reported by Mawarni et al.[43] or a mixing
shock by Cramers et al.[44]. Next, the flow regions that occur in the ejector include a
configuration of jet flow, mixing shock and bubble flow. The jet flow area exhibits a low
pressure which drastically increases when it enters the mixing shock area and tends to be
stable in the bubble flow area. The mixing shock area has a high rate of energy dissipation,
turbulence, and shear stress. It produces small bubbles and increases the interfacial area.
Visually, it can be seen that if the air flow increases from Qg = 0.1 Ipm to Qg = 1.5 Ipm,
there is an increase in the entrance length. When the bubble comes out of the outlet, there
is another increase in the flow acceleration due to the changes in the momentum between

the bubble and the water in the pool.

On the other hand, due to the influence of the hydrostatic force of the water, there
is a deceleration in the flow of the previously produced bubble. It causes a high turbulent
bubble flow to penetrate the bubble flow that has previously come out. Collisions,
ruptures, and amalgamations of bubbles transpire during this penetration. Both, collisions
between the bubbles, and also collisions between bubbles and water, respectively, cause
an interface instability. Here, if a light fluid is configured below a heavier fluid in a
gravitational field, the lighter fluid will press the heavier fluid so that the interface of the
two fluids is unstable to small disturbances. However, Rayleigh—Taylor instability states

that interface instability between two fluids occurs due to differences in the density. This
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interface instability occurs when there is a constant acceleration that leads from the heavy
fluid to the light fluid [45]. Additionally, Kelvin-Helmholtz instability also implies that
the interface between two fluids becomes unstable if there is a jump in tangential velocity
towards the interface. Here, the interface instability between two fluids is caused by
differences in velocity [46].

Hence, in the bubble swarm region the influence of turbulent flow begins to
decrease, and several bubbles start to separate for evenly distributed. The breaking and
coalescing of bubbles begin to occur. The bubble fragments into smaller pieces as a result
of the water's hydrodynamic force, which surpasses the bubble's surface tension. The
hydrodynamic force of water is generated by the erratic motion of the water and the
bubbles emanating from the bubble generator’s output. The break of this bubble causes a
smaller bubble diameter, which causes the surface tension to become more significant

and the rising velocity to become lower. It flows to the red circle with the dotted line in

the bubble dispersed area.

Qg =0.1 Ipm

Qg - 6.7 Ipm
Figure 2. Flow structure in various air flow rate at d = 1.40 mm
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Moreover, the bubble flows dispersed in the bubble dispersed region,
characterized by the formation of larger bubbles flowing towards the top, as shown by
the red arrow. In contrast, bubbles with smaller diameters flow towards the bottom, as
indicated by the blue arrow. The circle with the dotted line shows the difference in the
small bubble flow area in the bubble dispersed region. Here, the more air flow increases,
the fewer bubbles are in the circle with the dotted line. It further shows that the greater
the air flow, the larger the diameter of the bubble generated so that its volume is larger.
This enhances a buoyancy and ascent velocity of the bubble while reducing its residence
period, facilitating upward movement.

Fig. 2 shows that at the air flow Qg = 0.1 lpm, there is a stagnant bubble flow
caused by a delay in bubble production time between the first bubble in the dispersed
bubble region and the second bubble production in the entrance region. Different
phenomena occur when the air discharge increases from Qg = 0.4 Ipm to Qg = 1.5 lpm
with a shorter bubble production delay time. The smaller water discharge causes this
delayed time, and two-phase flow pressure at the outlet of bubble generator becomes
lower due to a lower friction between the phases [47]. The low contact area between the
phases causes the lower friction between phases due to the smaller bubbles formed when
the air flow is lower. Thus, bubbles are smaller when the air flow is lower due to the lower
inertial force. The bubble formation process is caused by ‘competition’ between inertial
force and the bubble's surface tension. More bubbles are produced when the surface

tension exceeds the inertial force.

3.2. Bubble-delay and Bubble-generation Times

One of the factors that affects the performance of the microbubble generator in
increasing dissolved oxygen is the number of generated microbubbles. Therefore, when
the time delay is longer, the number of bubbles generated is less so that the concentration
of dissolved oxygen is lower. Fig. 4 shows the effect of air flow and nozzle diameter on
waiting time for bubbles to come out from the ejector and time to produce bubbles. The
intermittent nature of the bubble emanating from the ejector output results in a delay in

bubble formation.
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Fig. 3(A) illustrates the procedure for quantifying bubble-delay and bubble-
generation’s durations. The video of the bubble formation was extracted in several
images, and then the bubble-delay and bubble-generation times were identified. Bubble-
generation time is the time needed to produce bubbles or the initial time the bubble comes
out from the outlet until it stops coming out. Here in the picture, when t = 0.99 s, the
bubble started to flow out of the bubble generator’s outlet and moved away until it was
separated from the outlet as at t = 1.74 s. A bubble-generation time is determined by
subtracting the final time of bubble formation from the initial time, so that here in
particular, the bubble-generation time equals to 1.74-0.99 = 0.74 s. After t = 1.74 s, the
bubble does not come out of the ejector outlet, and the bubble starts to come out again at
t =2.28 s. The time from t = 1.74 s to t = 2.28 s is called bubble-delay time. Therefore,
bubble-delay time is the time to wait until a new bubble produces from the ejector outlet.
Here, bubble-delay time is determined by the time of a new generated bubble minus the
time of the last generated bubble, so from Fig. 3(A), we get bubble-delay time equals to
2.28-1.74=0.54s.

Fig. 3(B) presents the influence of air discharge on generated and delayed times.
The solid line shows the trend line of bubble-delayed time, and the dotted line depicts the
bubble-generated time. The greater the air flow at a constant nozzle diameter, the more
significant the decrease in bubble-delayed time and the increase in bubble-generated time.
It is caused by the influence of the higher flow velocity when the air discharge is more
significant. The higher velocity causes the inertial force to be greater, so the two-phase
flow pressure at the bubble generator outlet is more significant. It causes the two-phase
flow's ability to penetrate the water in the pool to be greater, and the waiting time for the
bubble production becomes shorter. It shows that when the air flow supplied to the bubble
generator increases, the bubbles form more smoothly without delay. The intersection of
the trendline of delayed and generated time occurs at an air discharge of 0.5 Ipm, which
means that the generated water discharge and the delayed time are almost the same.

Fig. 3(C) shows the effect of nozzle diameter on bubble generated and delayed
times. When the nozzle diameter is larger, there is a decrease in the delayed time and an
increase in the bubble generated time. It is strongly influenced by a physical phenomenon

in which the larger the nozzle diameter, the greater the contact angle between the fluid
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and the outlet wall. The greater the contact angle, the smaller the throat area and the
shorter the low-pressure area. It allows more bubbles to be sucked in and implicates the
longer the bubble generated time. The intersection point of the generated trendline and
delayed time occurs at a nozzle diameter of 1.75 mm, with the shortest time difference. It
reveals that the nozzle diameter of 1.75 mm is the optimum dimension since there is no

significant difference between the bubble-generation and the bubble-delay times.
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Figure 3. (A) Measurement of generated and delayed time, (B) Generated and delayed
bubbles time for various air flow rate at d = 1.4 mm, (C) Generated and delayed bubbles

time for various nozzle diameter at Qg = 0.1 Ilpm

4 Conclusions

The investigations on the bubble flow configurations generated by bubble
generator-type ejectors were conducted to ascertain the bubble flow characteristics, the
periods of bubble generation, and the delays in bubble formation for different air
discharge rates and nozzle sizes. The results are as follows:

e The bubble flow from the ejector bubble generator is classified into the entrance,
bubble swarm, and bubble-dispersed regions. The division of this area is based on the
influence of the turbulent flow from the bubble generator outlet, which decreases as
the bubble gets further away from the outlet.

o In the bubble formation process using an ejector bubble generator, it is revealed that
the time delay in the bubble generated is shorter when the air flow rate is lower and
the nozzle diameter is smaller. The duration of bubble generation increases with a
higher airflow rate and a larger nozzle diameter. The condition with an air flow rate of
0.5 lIpm and a nozzle diameter of 1.75 mm provides an optimum performance for

bubble-delayed and bubble-generated times.
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